The application claims priority from German Utility Model Application No. 202,007,010,686.6 dated 29 Jun. 2007 and German Patent Application No. 102,008,014,175.5 dated 14 Mar. 2008, the entire disclosure of each of which is incorporated herein by reference.
The invention relates to an apparatus for the fibre-sorting or selection of a fibre bundle comprising textile fibres, especially for combing, which is supplied by means of supply means to a fibre-sorting device, especially to a combing device. Clamping devices are provided, which clamp the fibre bundle at a distance from its free end and a mechanical device may be present which generates a combing action from the clamping site to the free end of the fibre bundle in order to loosen and remove non-clamped constituents, such as, for example, short fibres, neps, dust and the like from the free end. For removal of the combed fibre material at least one take-off device may be present and the clamping devices each comprise two nipper arms with clamping jaws (upper and lower nipper).
In practice, combing machines are used to free cotton fibres or woolen fibres of natural impurities contained therein and to parallelise the fibres of the fibre sliver. For that purpose, a previously prepared fibre bundle is clamped between the jaws of the nipper arrangement so that a certain sub-length of the fibres, known as the “fibre tuft”, projects at the front of the jaws. By means of the combing segments of the rotating combing roller, which segments are filled with needle clothing or toothed clothing, this fibre tuft is combed and thus cleaned. The take-off device usually consists of two counter-rotating rollers, which grip the combed fibre tuft and carry it onwards.
In order to separate short fibres, neps, dirt and other constituents from a fibre mixture it is known to supply the fibre material in the form of lap rolls to combing machines for mechanical combing-out, the end of the lap web being clamped by a nipper and the end projecting beyond the clamping line being mechanically combed-out by means of the comb clothing of a circular comb. The combed-out fibre tuft is then transferred to a detaching roller pair where it is in turn formed into a coherent web, or “pieced”. When the fibre tuft is removed from the nipper by the detaching rollers, the end severed from the lap is likewise pulled through a mechanical top comb, so that as far as possible no short fibres, neps, dirt and other undesirable constituents remain in the combed web. A disadvantage of that known combing method is, in particular, the discontinuous mode of operation, in which large masses have to be accelerated and decelerated during the operating cycle.
The back and forth swinging movement of the nipper assembly gives rise to very substantial vibration, especially in the case of high nip rates, which on the one hand requires the drive elements and bearing elements to be of suitably stable construction and on the other hand places high demands on the framework of the machine as well as on the base on which the machine is mounted.
In order to be able to remove the partially cleaned fibres from the jaws of the nipper unit using the rollers of the take-off device, either the relatively heavy take-off device needs to move linearly or over part of an arc of a circle to the fibre tuft held between the jaws of the nipper arrangement or, the other way round, the nipper arrangement has to be moved towards the stationary take-off rollers. In the case of the 450 nips per minute usually required, the large masses being moved result in a high level of dynamic agitation of the entire combing machine which limits its operating speed and productivity.
Furthermore, a problem of conventional combing machines is that when the combed fibres are removed by the counter-rotating take-off rollers, up to 50% of the fibre length has not been cleaned by the circular comb, because during the combing process, that is to say when the combing segment passes, the fibres were clamped between the jaws of the nipper arrangement or were located behind the jaws, seen in the transport direction. In order also to clean that portion of the fibres as well as possible, those fibres are conventionally pulled through a top comb arranged in front of the take-off rollers. The top comb is an additional structural element for every combing head.
The detaching roller pair, consisting of a lower detaching roller and an upper detaching roller, is directly adjacent to the nipper apparatus and the circular comb. The lower detaching roller is located between the path of movement of the comb tips of the circular comb and the upper detaching roller and, together with the upper detaching roller, forms the clamping nip for the combed sliver. The nipper arrangement is mounted so as to swing in two directions. Firstly, it is moved, at a distance from the detaching roller pair, towards the path of movement of the comb tips of the circular comb. In that position, the combing of the fibre tuft is carried out by the circular comb. When that operation is complete, the nipper apparatus is raised as a unit so that the fibre bundle that has just been combed arrives in front of the clamping nip of the detaching roller pair. During that movement, the nipper apparatus also approaches the detaching roller nip horizontally. The portion of combed sliver conveyed back at that time point is overlapped with the tips of the new, combed fibre bundle, compressed in the clamping nip of the detaching rollers and drawn in the take-off direction by the detaching rollers, the top comb being inserted into the end of the fibre bundle that has just been combed and combing out that free piece of fibre. As a result of the receding movement of the nipper apparatus and the take-off movement of the detaching roller pair, the combed fibre bundle is detached and a fresh fibre bundle is supplied to the nipper apparatus by the feed roller, clamped and brought into the combing position relative to the circular comb. Such an arrangement is disadvantageous because, in particular, the nipper apparatus has to perform a variety of very large movements with greater or lesser degrees of acceleration. The operating speed is thus considerably limited, a large amount of noise is generated and the inertial forces that arise result in above-average wear. Adjustment of the detaching distance and the feed quantity car be effected only while the machine is stationary. A further crucial disadvantage is that the free end of the fibre bundle that has just been combed also has to be moved at relatively high speed, with its free fibre tips to the front, over large distances and placed in an exactly defined position onto the returned end of the combed sliver. En dependence upon the air vortices that occur and the respective air resistance, the fibre bundle is frequently incorrectly positioned on the returned combed sliver so that it is necessary to operate at relatively low speeds. In any case, however, losses of quality are observed in the combed sliver. A further disadvantage of the known apparatus is that uncontrolled fold-formation occurs between the detaching roller pair and the take-off rollers as a result of the pilgrim-step motion of the detaching rollers, which additionally results in disruption of the combing process.
When the nipper is located in its forward position, it is opened and transfers the combed-out fibre bundle to the detaching roller pair, that bundle being pieced with the previously detached fibre bundle.
The known cotton-combing process is a discontinuous process. During a nipping operation, all assemblies and their drive means and gears are accelerated, decelerated and in some cases reversed again. High nip rates result in high acceleration. Particularly as a result of the kinematics of the nippers, the gear for the nipper movement and the gear for the pilgrim-step movement of the detaching rollers, high acceleration forces come into effect. The forces and stresses that arise increase as the nip rates increase. The known flat combing machine has reached a performance limit with its nip rates, which prevents productivity from being increased. Furthermore, the discontinuous mode of operation causes vibration in the entire machine which generates dynamic alternating stresses.
EP 1 586 682 A discloses a combing machine in which, for example, eight combing heads operate simultaneously one next to the other. The drive of those combing heads is effected by means of a lateral drive means arranged next to the combing heads having a gear unit which is in driving connection by way of longitudinal shafts with the individual elements of the combing heads. The fibre slivers formed at the individual combing heads are transferred, one next to the other on a conveyor table, to a subsequent drafting system in which they are drafted and then combined to form a common combing machine sliver. The fibre sliver produced in the drafting system is then deposited in a can by means of a funnel wheel (coiler plate). The plurality of combing heads of the combing machine each have a feed device, a pivotally mounted, fixed-position nipper assembly, a rotatably mounted circular comb having a comb segment for combing out the fibre tuft supplied by the nipper assembly, a top comb and a fixed-position detaching device for detaching the combed-out fibre tuft from the nipper assembly. The nipper assembly comprises a lower nipper, which co-operates with an upper nipper plate. The upper nipper plate is here pivotally mounted on the lower nipper by way of a pivot axis. The lower nipper and the upper nipper are formed with complementary profiles at their front end region, via which, when the nipper assembly is closed, they clamp the lap supplied via a feed cylinder. The fibre tuft protruding in this clamped position from the nipper assembly is combed by a comb segment of a circular comb. The circular comb arranged beneath the nipper assembly is secured, without relative rotation, on a circular comb shaft, which is connected via the drive connection to a gear mechanism. The drive of the gear mechanism is effected by a main motor. The nipper assembly is pivotally mounted on the axis of the circular comb shaft via one (or two) pivot arm(s). The free end of the pivot arm is fixedly secured to the frame of the lower nipper. In its rear region, the lower nipper has a pivot axis, on which a lever is rotatably mounted. This lever is rotatably secured via an axle to a crank disc. The axle of the crank disc is in connection via a drive connection with a drive motor. The nipper parts are steel plates with a contour worked therein for clamping the fibre lap. The nipper parts are secured to the nipper assembly oscillating back and forth. The clamping force of about 300N is generated by an eccentric shaft with compression spring. Its function is to clamp the lap during combing, and to align it in a downward direction towards the circular comb roller. During the detaching operation, the nipper is open. Disadvantages of that combing machine are especially the large amount of equipment required and the low hourly production rate. There are eight individual combing heads which have in total eight feed devices, eight fixed-position nipper assemblies, eight circular combs with comb segments, eight top combs and eight detaching devices. A particular problem is the discontinuous mode of operation of the combing heads. Additional disadvantages result from large mass accelerations and reversing movements, with the result that high operating speeds are not possible. Finally, the considerable amount of machine vibration results in irregularities in the deposition of the combed sliver. Moreover, the ecartement, that is to say the distance between the nipper lip of the lower nipper plate and the clamping point of the detaching cylinder, is structurally and spatially limited.
It is an aim of the invention to provide an apparatus of the kind described at the beginning which avoids or mitigates the mentioned disadvantages and which in a simple way, in particular, enables the amount produced per hour (productivity) to be substantially increased and an improved combed sliver to be obtained.
The invention provides an apparatus for the fibre-sorting or fibre-selection of a fibre bundle comprising textile fibres having: a fibre sorting device in which clamping devices are provided which each clamp a bundle of the textile fibres at a distance from its free end; a supply device for supplying the fibre bundle to the fibre-sorting device; at least one mechanical device for generating a combing action from the clamping site to the free end of the fibre bundle in order to loosen and remove non-clamped constituents; and a take-off device; wherein the fibre-sorting device comprises at least two rotatably mounted rollers that, in use, rotate rapidly without interruption, the clamping devices for the fibre bundles being distributed spaced apart in the region of the periphery of said rollers and each comprising two nipper arms with clamping jaws, the clamping jaws including clamping surfaces, and at least one nipper of each clamping device is comprised at least partially of a lightweight material.
By implementing the functions of clamping and moving the fibre bundles to be combed-out on at least two rotating rollers, high operating speeds (nip rates) are achievable—unlike the known apparatus—without large mass accelerations and reversing movements. In particular, the mode of operation can be continuous. When two high-speed rollers are used, a very substantial increase in hourly production rate (productivity) is achievable which had previously not been considered possible in technical circles. A further possible advantage is that the rotary rotational movement of the rollers with the plurality of clamping devices may lead to an unusually rapid supply of a plurality of fibre bundles per unit of time to the first roller and to the second roller. In particular the high rotational speed of the rollers may allow production to be substantially increased. To form the fibre bundle, the fibre sliver pushed forward by the feed roller is clamped at one end by a clamping device and detached by the rotary movement of the turning rotor. The clamped end contains short fibres, the free region comprises the long fibres. The long fibres are pulled by separation force out of the fibre material clamped in the feed nip, short fibres remaining behind through the retaining force in the feed nip. Subsequently, as the fibre bundle is transferred from the turning rotor onto the combing rotor the ends of the fibre bundle are reversed: the clamping device on the combing rotor grips and clamps the end with the long fibres, so that the region with the short fibres projects from the clamping device and lies exposed and can thereby be combed out. The fibre bundles are—unlike the known apparatus—held by a plurality of clamping devices and transported under rotation. The clamping point at the particular clamping devices therefore remains constant until the fibre bundles are transferred to the first and second rollers. A relative movement between clamping device and fibre bundle does not begin until after the fibre bundle has been gripped by the first and second roller respectively and in addition clamping has been terminated. Because a plurality of clamping devices are available for the fibre bundles, in an especially advantageous manner fibre bundles can be supplied to the first and second roller respectively one after the other and in quick succession, without undesirable time delays resulting from just a single supply device. A particular advantage is that the supplied fibre bundles on the first roller (which is, preferably, a turning rotor) are continuously transportable. The speed of the fibre bundle and of the co-operating clamping elements is the same. The clamping element may close and open during the movement in the direction of the transported fibre material. The at least one second roller (which is, preferably, a combing rotor) is arranged downstream of the at least one first roller (turning rotor). With the apparatus according to the invention, a substantially increased productivity is achievable. A further particular advantage is that at high and maximum operating speeds of the rotor combing machine, at least one nipper part is lightweight, and at the same time allows reliable clamping of the fibre material. The intrinsically lightweight material makes a low mass inertia possible, and hence a high acceleration. In this way, the mass of the nippers and nipper parts is reduced, so that high nip rates can be implemented with the clamping devices without disruptive strong vibrations occurring. The clamping surfaces may have a high coefficient of friction. A high coefficient of friction of the clamping surfaces with respect to the fibre material, makes a large frictional resistance achievable, which is important especially when detaching the fibre material from the supply means.
In certain preferred embodiments the clamping nippers consist at least partially of aluminium. The clamping nippers may consist at least partially of plastics material. The clamping nippers may consist at least partially of glass-reinforced plastics material (GRP). The clamping nippers may consist at least partially of carbon fibre-reinforced plastics material (CFRP). The clamping nippers may consist at least partially of titanium.
Where, as is preferred, the clamping jaws have a high coefficient of friction in the region of their clamping surfaces, the high coefficient of friction may be determined by the material in the region of the clamping surface. A plastics material having a high coefficient of friction may be used as the material. A rubber or the like having a high coefficient of friction may be used as the material.
The high coefficient of friction may be determined by a mechanical surface property in the region of the clamping surface. The clamping surfaces may be roughened or the like. The clamping surfaces may be profiled or the like. The clamping surfaces may be corrugated or the like.
In certain preferred embodiments the invention further provides apparatus with a nipper assembly for a rotor combing machine as described above, characterised in that at least one nipper part is manufactured completely or partially from fibre-reinforced composite material and in the region of the clamping point is provided with contours improving clamping and/or with elements improving the friction pairing between fibres and clamping jaws. The clamping nippers may be mounted on a rotatably mounted high-speed roller. The nipper parts may be manufactured from GRP and/or CFRP. The nippers may consist partially of composite material. A steel insert, for example, may be mounted in the region of the clamping points. The moving nipper elements may be made from lightweight material. Plastics material elements or rubber elements, for example, may be used to improve the friction pairing. The plastics material elements or rubber elements may be usable for cushioning the nipper closing action.
In some embodiments, the drive of the nippers may be effected mechanically, for example, via cam mechanisms. In other embodiments, the drive of the nippers may be effected electromagnetically or pneumatically, for example, via electromagnets. To generate the clamping forces at least one nipper part may be in the form of a leaf spring. The movement of at least one clamping nipper may be effected through intrinsic resilience. The leaf spring may be manufactured from fibre-reinforced composite material, for example, GRP.
A non-yielding or resiliently yielding counter-layer may be arranged on one nipper element, for example, on the lower nipper. The movable nipper element may be demountable with no need to demount the nipper shaft.
The invention further provides apparatus for the fibre-sorting or fibre-selection of a fibre bundle comprising textile fibres, especially for combing, which is supplied by means of supply means to a fibre-sorting device, especially a combing device, in which clamping devices are provided which clamp the fibre bundle at a distance from its free end, and mechanical means are present which generate a combing action from the clamping site to the free end of the fibre bundle, in order to loosen and remove non-clamped constituents, such as, for example, short fibres, neps, dust and the like from the free end, wherein for removal of the combed fibre material at least one take-off means is present and the clamping devices each comprise two nipper arms with clamping jaws (upper and lower nipper), characterised in that downstream of the supply means there are arranged at least two rotatably mounted rollers rotating rapidly without interruption, which are provided with clamping devices for the fibre bundle, which clamping devices are distributed spaced apart in the region of the periphery of the rollers, at least one nipper part of each clamping device consists at least partially of an intrinsically lightweight material and the clamping jaws have a high coefficient of friction in the region of their clamping surfaces.
a, 4b is a diagrammatic side view of a clamping device with two clamping nippers (upper and lower nipper), the upper nipper in the form of a leaf spring being disengaged from the lower nipper (
a to 10g are diagrammatic views of different clamping contours on the clamping jaws,
With reference to
An autoleveller drafting system 50 (see
In accordance with a further construction, more than one rotor combing machine 2 is provided. If, for example, two rotor combing machines are present, then the two delivered comber slivers 17 can pass together through the downstream autoleveller drafting system 50 and be deposited as one drafted comber sliver in the sliver-deposition device 3.
The sliver-deposition device 3 comprises a rotating coiler head 3a, by which the comber sliver can be deposited in a can 3b or (not shown) in the form of a can-less fibre sliver package.
The first roller 12 is provided in the region of its outer periphery with a plurality of first clamping devices 18 which extend across the width of the roller 12 (see
The second roller 13 is provided in the region of its outer periphery with a plurality of two-part clamping devices 21, which extend across the width of the roller 13 (see
To form the fibre bundle, the fibre structure pushed forward by the feed roller is clamped at one end by a clamping device, and is detached by the rotary movement of the turning rotor. The clamped end contains short fibres, the free region comprises the long fibres. The long fibres are pulled by separation force out of the fibre material clamped in the feed nip, short fibres remaining behind through the retaining force in the feed nip. Subsequently, as the fibre bundle is delivered from the turning rotor 12 onto the combing rotor 13 the ends of the fibre bundle are reversed: the clamping device 21 on the combing rotor 13 grips and clamps the end with the long fibres, so that the region with the short fibres projects from the clamping device and lies exposed and can thereby be combed out.
In the embodiment of
In the embodiment of
The upper nipper 19 consists of a fibre-reinforced composite material, for example, glass fibre-reinforced plastics material, which is lightweight (e.g. 1.8 g/cm3). The lightweight material may lie in the range of 0.5 g/cm3 to 5 g/cm3. The lightweight material may lie in the range 1 g/cm3′ to 3 g/cm3, or more preferably 1 g/cm3 to 2 g/cm3. Owing to the substantially reduced mass inertia, a high nip rate (closing sequence) with rapid resilient deflection for applying the clamping force and rapid spring-back is advantageously achieved. The leaf spring is lightweight, resilient, resistant to reversed bending stress, and flat.
In the further embodiments described below, the nipper pairs, which may differ in their structure and operation from those described with reference to
In the embodiment of
In the embodiment of
In the embodiment of
In the case of the embodiment according to FIG. 8—unlike the construction shown in FIG. 5—a lifting magnet is assigned only to the upper nipper 19. The lower nipper 20 can be driven in a different manner (not shown), for example, mechanically by a cam disc.
In an embodiment shown in
a to 10g show different clamping contours or profiles of the clamping jaws in the end region of the clamping nippers 19 and 20. The clamping jaws can be made in one piece (
According to
In the embodiment of
Additionally, a flow of blown air B, C can be provided in the region of the supply device 8 and/or in the region of transfer between the rollers. The source of the flow of blown air (blowing nozzle 39) is arranged inside the feed roller 10 and acts, through the air-permeable surface of the supply device or through air passage openings, towards the outside in the direction of the first roller. Also, in the region of the supply device 8, the element for producing the blowing air current can be fixedly arranged, directly under or over the supply device 8. In the region of the transfer between the rollers 12, 13 the blown air current sources can be arranged at the rotor perimeter of the first roller 12, directly under or over each nipper device. For the blown air generation there may be used compressed air nozzles or air blades.
The suction flow B is able not only to promote the deflection but also the process of separating the lap and the fibre tuft to be detached in the region of the supply device 8, and to shorten the time required for this.
As a result of the provision of additional air guide elements and lateral screens 61, 62 the direction of the flow can be influenced and the air carried round with the rotors separated off. In that way the time for set up can be further shortened. In particular, a screen element between the first rotor 12 and supply device 8 over the lap and a screen element on each side of the roller have proved useful.
The combed-out fibre bundle passes from the second roller 13 onto the piecing roller 14.
In the embodiment of
In the embodiment of
The apparatus of the invention may additionally or instead provide inter alia one or more of the following advantages:
The invention has been explained using the example in particular of the clamping devices 18 on the roller 12 (turning rotor). Similarly, the invention is applicable to the clamping devices 21 on the roller 13 (combing rotor).
The circumferential speeds are, for example, for the feed roller 10 about from 0.2 to 1.0 m/sec; the first roller 12 about from 2.0 to 6.0 m/sec; the second roller 13 about from 2.0 to 6.0 m/sec; the doffer 14 about from 0.4 to 1.5 m/sec; and the revolving card top assembly 15 about from 1.5 to 4.5 m/sec. The diameter of the first roller 12 and the second roller 13 is, for example, about from 0.3 m to 0.8 m.
Using the rotor combing machine 2 according to the invention, more than 2000 nips/min, for example from 3000 to 5000 nips/min, are achieved.
In use of the rotor combing machine according to the invention there is achieved a mechanical combing of the fibre material to be combed, that is, mechanical means are used for the combing. It is possible that there may be no pneumatic combing of the fibre material to be combed, that is, no air currents, e.g. suction and/or blown air currents, are used.
In the rotor combing machine according to the invention there are present rollers that rotate rapidly without interruption and that have clamping devices. Rollers that rotate with interruptions, stepwise or alternating between a stationary and rotating state are not used.
Although the foregoing invention has seen described in detail by way of illustration and example for purposes of understanding, it will be obvious that changes and modifications may be practiced within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 030 471 | Jun 2007 | DE | national |
20 2007 010 686 | Jun 2007 | DE | national |
10 2008 014 175 | Mar 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1408780 | Schleifer | Mar 1922 | A |
1425059 | Schleifer | Aug 1922 | A |
1694432 | Schleifer | Dec 1928 | A |
1708032 | Schleifer | Apr 1929 | A |
1715473 | Schleifer | Jun 1929 | A |
1799066 | Schleifer | Mar 1931 | A |
2044460 | Bowerbank et al. | Jun 1936 | A |
2962772 | Draving et al. | Dec 1960 | A |
3108333 | Schleifer | Oct 1963 | A |
4270245 | Stewart et al. | Jun 1981 | A |
5007623 | Unkuri et al. | Apr 1991 | A |
5343686 | Buchner et al. | Sep 1994 | A |
5404619 | Jorg | Apr 1995 | A |
5457851 | Mondini | Oct 1995 | A |
5502875 | Stolz et al. | Apr 1996 | A |
5796220 | Clapp et al. | Aug 1998 | A |
6163931 | Leifeld | Dec 2000 | A |
6173478 | Patelli et al. | Jan 2001 | B1 |
6216318 | Leifeld | Apr 2001 | B1 |
6235999 | Rubenach | May 2001 | B1 |
6295699 | Temburg | Oct 2001 | B1 |
6499194 | Gresser et al. | Dec 2002 | B1 |
6611994 | Bischofberger et al. | Sep 2003 | B2 |
7173207 | Losbrock et al. | Feb 2007 | B2 |
20020124354 | Pferdmenges et al. | Sep 2002 | A1 |
20030005551 | Schurenkramer et al. | Jan 2003 | A1 |
20030029003 | Breuer et al. | Feb 2003 | A1 |
20030070260 | Rubenach | Apr 2003 | A1 |
20030154572 | Pferdmenges et al. | Aug 2003 | A1 |
20040040121 | Schmitz | Mar 2004 | A1 |
20040128799 | Hosel et al. | Jul 2004 | A1 |
20050076476 | Temburg | Apr 2005 | A1 |
20050198783 | Rubenach | Sep 2005 | A1 |
20050278900 | Dammig | Dec 2005 | A1 |
20060260100 | Duda et al. | Nov 2006 | A1 |
20070180658 | Saeger et al. | Aug 2007 | A1 |
20070180659 | Saeger et al. | Aug 2007 | A1 |
20070180660 | Saeger et al. | Aug 2007 | A1 |
20070266528 | Farber et al. | Nov 2007 | A1 |
20080092339 | Bossman et al. | Apr 2008 | A1 |
20090000064 | Saeger et al. | Jan 2009 | A1 |
20090000065 | Saeger et al. | Jan 2009 | A1 |
20090000066 | Saeger et al. | Jan 2009 | A1 |
20090000067 | Leder et al. | Jan 2009 | A1 |
20090000068 | Saeger et al. | Jan 2009 | A1 |
20090000069 | Saeger et al. | Jan 2009 | A1 |
20090000070 | Saeger et al. | Jan 2009 | A1 |
20090000071 | Saeger et al. | Jan 2009 | A1 |
20090000072 | Saeger et al. | Jan 2009 | A1 |
20090000073 | Saeger et al. | Jan 2009 | A1 |
20090000074 | Bossmann | Jan 2009 | A1 |
20090000075 | Saeger et al. | Jan 2009 | A1 |
20090000076 | Bossmann et al. | Jan 2009 | A1 |
20090000078 | Saeger et al. | Jan 2009 | A1 |
20090000079 | Bossmann | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
367482 | Jan 1923 | DE |
382169 | Sep 1923 | DE |
399885 | Jul 1924 | DE |
489 420 | Jan 1930 | DE |
30 48 501 | Jul 1982 | DE |
103 20 452 | Nov 2004 | DE |
1 586 682 | Oct 2005 | EP |
WO-2006012758 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090000077 A1 | Jan 2009 | US |