Apparatus for the introduction and manipulation of multiple telescoping catheters

Information

  • Patent Grant
  • 10653862
  • Patent Number
    10,653,862
  • Date Filed
    Friday, October 27, 2017
    6 years ago
  • Date Issued
    Tuesday, May 19, 2020
    4 years ago
Abstract
A delivery apparatus includes a steerable shaft having a proximal portion, a distal portion, and a pull-wire conduit that extends through the proximal and distal portions. A pull wire extends through the conduit and has a distal portion that is fixed to the shaft. An adjustment mechanism is connected to the proximal end portion of the pull wire and configured to increase and decrease tension in the pull wire to adjust the curvature of the shaft. The distal portion of the shaft has a steerable portion including one or more layers. A compression-resistance portion is incorporated into a layer of the steerable portion, and extends angularly along a portion of a cross-section of the layer. The layer of the steerable portion into which the compression-resistance portion is incorporated has a first hardness, and the compression-resistance portion has a second hardness that is greater than the first hardness.
Description
FIELD

The present application pertains to embodiments of steerable endovascular delivery devices.


BACKGROUND

Endovascular delivery devices are used in various procedures to deliver prosthetic medical devices or instruments to locations inside the body that are not readily accessible by surgery or where access without surgery is desirable. Access to a target location inside the body can be achieved by inserting and guiding the delivery device through a pathway or lumen in the body, including, but not limited to, a blood vessel, an esophagus, a trachea, any portion of the gastrointestinal tract, a lymphatic vessel, to name a few. In one specific example, a prosthetic heart valve can be mounted in a crimped state on the distal end of a delivery device and advanced through the patient's vasculature (e.g., through a femoral artery) until the prosthetic valve reaches the implantation site in the heart. The prosthetic valve is then expanded to its functional size such as by inflating a balloon on which the prosthetic valve is mounted, or by deploying the prosthetic valve from a sheath of the delivery device so that the prosthetic valve can self-expand to its functional size.


The usefulness of delivery devices is largely limited by the ability of the device to successfully navigate through small vessels and around tight bends in the vasculature, such as through the inferior vena cava or around the aortic arch. Various techniques have been employed to adjust the curvature of a section of a delivery device to help “steer” the valve through bends in the vasculature. Typically, a delivery device employs a pull wire having a distal end fixedly secured to the steerable section and a proximal end operatively connected to an adjustment knob located on a handle of the delivery device outside the body. The pull wire is typically disposed in a pull-wire lumen that extends longitudinally in or adjacent to a wall of the delivery device, for example, a sheath or catheter. Adjusting the adjustment knob, for example, rotating the knob, applies a pulling force on the pull wire, which in turn causes the steerable section to bend.


A drawback of many guide sheaths is that they are prone to undesirable deformation when deflected or flexed. For example, a guide sheath subject to significant curvature, such as when accessing the mitral valve in a transseptal approach, may kink at one or more locations along the radius of curvature, dramatically reducing the inner diameter of the guide sheath and resulting in unpredictable movement of the distal end of the guide sheath. A flexed guide sheath may also “pancake,” in which the cross-section of the catheter is ovalized due to a lack of adherence between the materials of adjacent layers of the sheath. Additionally, a flexed guide sheath may be reduced in length, or foreshortened, due to axial compression of the shaft as it is flexed. Such deformation of the guide sheath, especially at the distal end, can interfere with the precise positioning of an implant at the treatment site. Thus, a need exists for improved steerable shaft devices.


SUMMARY

Certain embodiments of the disclosure concern delivery apparatuses with steerable shafts. In a representative embodiment, a delivery apparatus comprises a steerable shaft having a proximal portion, a distal portion, and a pull-wire conduit that extends at least partially through the proximal and distal portions of the shaft. The delivery apparatus further includes a pull wire extending through the pull-wire conduit and having a proximal end portion and a distal end portion. The distal end portion of the pull wire is fixed to the distal portion of the shaft. The delivery apparatus further comprises an adjustment mechanism operatively connected to the proximal end portion of the pull wire and configured to increase and decrease tension in the pull wire to adjust the curvature of the distal portion of the shaft. The distal portion of the shaft comprises a steerable portion having one or more layers. The steerable portion includes a compression-resistance portion incorporated into a respective layer of the steerable portion, and extending angularly along a portion of a cross-section of the layer. The layer of the steerable portion into which the compression-resistance portion is incorporated has a first hardness, and the compression-resistance portion has a second hardness that is greater than the first hardness.


In another representative embodiment, a method comprises inserting a shaft of a delivery apparatus into the body of a patient, the shaft having a proximal portion, a distal portion, and a pull-wire conduit that extends at least partially through the proximal and distal portions. A pull wire extends through the pull-wire conduit, and the distal portion of the shaft comprises a steerable portion having one or more layers. The steerable portion includes a compression-resistance portion incorporated into a respective layer of the steerable portion and extending angularly along a portion of a cross-section of the layer. The layer of the steerable portion into which the compression-resistance portion is incorporated has a first hardness, and the compression-resistance portion has a second hardness that is greater than the first hardness. The method further comprises applying tension to the pull wire to adjust the curvature of the distal portion of the shaft.


In another representative embodiment, a delivery apparatus comprises a steerable shaft having a proximal portion, a distal portion, and a pull-wire conduit that extends at least partially through the proximal and distal portions of the shaft. The delivery apparatus further includes a pull wire extending through the pull-wire conduit and having a proximal end portion and a distal end portion. The distal end portion of the pull wire is fixed to the distal portion of the shaft. The delivery apparatus further comprises an adjustment mechanism operatively connected to the proximal end portion of the pull wire and configured to increase and decrease tension in the pull wire to adjust the curvature of the distal portion of the shaft. The distal portion of the shaft comprises one or more layers and a compression-resistance portion incorporated into a respective layer of the distal portion. The compression-resistance portion extends angularly along a portion of a cross-section of the layer and has a hardness that is greater than a hardness of the layer into which the compression-resistance portion is incorporated. The compression-resistance portion is angularly offset from the pull-wire conduit along the cross-section of the layer.


The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a representative embodiment of a delivery apparatus.



FIG. 2 is a side elevation view of the guide sheath of the delivery apparatus of FIG. 1.



FIG. 3 is cross-sectional side elevation view of the distal portion of the guide sheath of FIG. 1 illustrating the atraumatic tip portion and the coupling portion.



FIG. 4 is a cross-sectional view of the guide sheath of FIG. 1 taken along line 4-4 of FIG. 2.



FIG. 5 is a side elevation view illustrating the pull ring and the distal portions of the pull wires coupled to the pull ring.



FIG. 6 is a plan view of the distal portion of the guide sheath of FIG. 1 illustrating the various layers of the guide sheath.



FIG. 7 is a perspective view of the distal portion of the guide sheath of FIG. 1 illustrating the compression-resistance portion of the outer layer.



FIG. 8 is a cross-sectional view of the guide sheath of FIG. 1 taken along line 8-8 of FIG. 2.



FIG. 9 is a detail view of the pull-wire conduit receiving portion of the guide sheath of FIG. 8.



FIG. 10 is a cross-sectional view of the guide sheath of FIG. 1 taken along line 10-10 of FIG. 2.



FIG. 11 is a perspective view of the guide sheath of FIG. 1 illustrating flexing of the guide sheath.



FIG. 12 is a cross-sectional view of an alternative embodiment of a guide sheath including one pull wire.





DETAILED DESCRIPTION

In particular embodiments, a delivery apparatus that can be used to deliver a medical device, tools, agents, or other therapy to a location within the body of a subject can include one or more steerable catheters or sheaths. Examples of procedures in which steerable catheters and sheaths are useful include neurological, urological, gynecological, fertility (e.g., in vitro fertilization, artificial insemination), laparoscopic, arthroscopic, transesophageal, transvaginal, transvesical, transrectal, and procedures including access in any body duct or cavity. Particular examples include placing implants, including stents, grafts, embolic coils, and the like; positioning imaging devices or components thereof, including ultrasound transducers; and positioning energy sources, for example, for performing lithotripsy, RF sources, ultrasound emitters, electromagnetic sources, laser sources, thermal sources, and the like.


In some embodiments, the delivery apparatus includes a steerable shaft such as a guide sheath having one or more delivery catheters coaxially disposed within the guide sheath. In certain configurations, the delivery catheters can comprise one or more balloons at or near a distal end portion of the catheter. In some implementations, the delivery apparatus can be used to deliver a medical device through the vasculature, such as to a heart of the subject. These devices may comprise one or more eccentrically positioned pull wires configured to cause the steerable shaft to curve in a given direction, or to straighten. The steerable shaft can further comprise a steerable portion located near the distal end of the shaft including a compression-resistance portion that reduces foreshortening of the shaft and increases the degree of curvature attainable for a given pulling force applied to the shaft by the pull wires, thereby enhancing the steerability of the delivery apparatus.



FIG. 1 illustrates a representative embodiment of a delivery apparatus 100 including a handle portion 102 and a shaft configured as a steerable guide sheath 104. The delivery apparatus 100 can be used to perform any diagnostic, therapeutic, or interventional procedure where access to a target location inside the body of a patient is desired. For example, the delivery apparatus 100 can be used to deliver and deploy a prosthetic device in the body, to deliver tools to a target location in the body, or to deliver or introduce drugs or other agents, to name a few exemplary uses.


In certain embodiments, the delivery apparatus can include one or more catheters coaxially disposed within and movable relative to the guide sheath 104. For example, in the illustrated configuration, the delivery apparatus includes an intermediate catheter configured as a steerable catheter 106 disposed within the guide sheath 104, and an inner catheter configured as a delivery or implant catheter 108 coaxially disposed within the steerable catheter 106. The implant catheter 108 can have a prosthetic device 110 mounted on a distal end of the implant catheter in a radially compressed state. In the illustrated configuration, the prosthetic device 110 is a prosthetic heart valve mounted on an inflatable balloon 112 at the distal end of the implant catheter, and the delivery apparatus can be configured to deliver the prosthetic heart valve 110 to one of the native valves of the heart (the aortic, mitral, pulmonary, or tricuspid valves).


In one specific example, the prosthetic heart valve 110 can be a plastically-expandable prosthetic heart valve, and the inflatable balloon 112 can be configured to expand and deploy the valve 110 at a treatment site. Exemplary configurations of the balloon 112 and implant catheter 108 are further disclosed in U.S. Patent Application Publication Nos. 2013/0030519, 2009/0281619, 2008/0065011, and 2007/0005131, the disclosures of which are incorporated herein by reference in their entireties. Exemplary plastically-expandable prosthetic heart valves are disclosed in U.S. Patent Application Publication Nos. 2010/0036484 and 2012/0123529, which are incorporated herein by reference.


In another example, the delivery apparatus 100 can be used to deliver and deploy a self-expandable prosthetic heart valve (e.g., a prosthetic valve having a frame formed from a shape-memory material, such as nitinol). To deliver a self-expandable prosthetic valve, the prosthetic valve can be loaded into a delivery sheath or sleeve in a radially compressed state and advanced from the distal open end of the sheath at the target location to allow the prosthetic valve to expand to its functional size. The delivery sheath can be the distal end portion of the implant catheter 108, or the distal end portion of another shaft that extends through the guide sheath 104. Further details regarding a self-expandable prosthetic valve and delivery devices for a self-expandable prosthetic valve are disclosed in U.S. Patent Application Publication Nos. 2010/0049313 and 2012/0239142, which are incorporated herein by reference. Additionally, it should be understood that the delivery apparatus 100 can be used to deliver any of various other implantable devices, such as docking devices, leaflet clips, etc.


Referring to FIGS. 1 and 2, the steerable guide sheath 104 can include a proximal portion 114 coupled to the handle portion 102, and a distal portion 116. The distal portion 116 can include low durometer atraumatic tip portion 118 coupled to a coupling portion 120 positioned proximally of the atraumatic tip 118. In certain configurations, the atraumatic tip 118 can be radiopaque. The distal portion 114 of the guide sheath 104 can include a steerable portion 122 located proximally of the coupling portion 120 and configured to flex and unflex to adjust the curvature of the distal portion of the guide sheath, as described in detail below.



FIGS. 3-10 illustrate the construction of the guide sheath 104, and particularly of the distal portion 116, in greater detail. The curvature of the guide sheath 104 can be controlled by one or more eccentrically-positioned pull wires (see, e.g., FIGS. 3, 5, and 8). For example, in the illustrated configuration the guide sheath 104 includes two pull wires 124, 126 extending longitudinally through respective pull-wire lumens or conduits 128, 130. The assembled pull wires 124, 126 and conduits 128, 130 can be disposed in a pull-wire conduit portion 154 of the guide sheath. In the illustrated configuration, the pull-wire conduit portion 154 is at least partially defined by a recess 142 of an inner layer 134 of the guide sheath. In the illustrated configuration, the recess 142 can extend into an inner diameter D1 of the guide sheath 104, although other configurations are possible. In certain embodiments, the pull-wire conduits 128, 130 can be made from a lubricious material, such as polytetrafluoroethylene (PTFE) to reduce friction between the pull wires 124, 126 and the respective conduits 128, 130 as the pull wires move within the conduits.


The pull wires 124, 126 can be coupled at one end to a pull ring 144 embedded in the coupling portion 120, and coupled at the opposite end to a control mechanism configured as a rotatable knob 132 of the handle 102 (see FIG. 1). Rotation of the knob 132 can increase and decrease tension in the pull wires 124, 126 which, in turn, can cause the distal portion 116, and particularly the steerable portion 122, to flex and unflex to control the curvature of the guide sheath. A cross-sectional view of the coupling portion 122 illustrating the pull ring 144 encapsulated in the coupling portion is shown in FIG. 4.


The pull ring 144 and the distal portions of the pull wires 124, 126 are shown in isolation in FIG. 5. In the illustrated configuration, the pull ring 144 can define a plurality of openings 156 about its circumference. During fabrication of the guide sheath 104, the polymeric material of the coupling portion 120 can be reflowed over the pull ring 144, and the material can flow through the openings 156 to encapsulate the pull ring in the coupling portion, as shown in FIG. 3. Additionally, although the illustrated embodiment includes two pull wires 124, 126, it should be understood that other configurations are possible. For example, the guide sheath 104 can include any suitable number of pull wires having any suitable size or layout, including a single pull wire (see FIG. 12), or more than two pull wires, depending upon the requirements of the device. The particular embodiment illustrated herein includes two pull wires because, in some configurations, two pull wires can occupy a smaller cross-sectional area than that of a single larger pull wire for transmitting a given force to the pull ring 144, particularly when relatively large forces are required (such as when flexing the guide sheath loaded with the steerable catheter 106 and the implant catheter 108).


Referring to FIGS. 3-10, the guide sheath 104 can include a plurality of layers comprising a variety of different materials at different locations along the length of the guide sheath and configured to impart various properties to the guide sheath. For example, with reference to FIGS. 3 and 6, the steerable portion 122 of the guide sheath 104 comprises a first inner layer 134 defining an inner diameter D1 of the guide sheath 104, and a second pull-wire conduit encapsulating layer 135 disposed radially outward of the inner layer 134. A third helically coiled layer 136 extends over the pull-wire conduit encapsulating layer 135. A fourth braided layer 138 is disposed over the helically coiled layer 136, and a fifth outer layer 140 is disposed over the braided layer, and defines an outer diameter D2 of the guide sheath. FIG. 6 illustrates a plan view of the distal portion 116 of the guide sheath 104 with each of the outer layer 140, the braided layer 138, the helically coiled layer 136, and the pull-wire conduit encapsulating layer 135 shown partially removed to illustrate the construction of the guide sheath.


The first layer 134 extends along the full length of the guide sheath 104, and can be made from (or coated with) a lubricious material (e.g., PTFE) to allow the steerable intermediate catheter 106 to slide relative to the guide sheath 104 within the guide sheath's lumen. As stated above, the first layer 134 can also define the recess 142 of the pull-wire conduit portion 154 in which the pull wires 124, 126 and conduits 128, 130 are received.


The pull-wire conduit encapsulating layer 135 can be disposed between the first inner layer 134 and the helically coiled layer 136, and can have a thickness that varies angularly around the circumference of the guide sheath. For example, with reference to FIGS. 8 and 9, the portion of the pull-wire conduit encapsulating layer 135 proximate the pull-wire conduit portion 154 can be sufficiently thick such that the layer 135 encapsulates the pull-wire conduits 128, 130 in the pull-wire conduit portion. Meanwhile, the portion of the pull-wire conduit encapsulating layer 135 opposite the pull-wire conduit portion 154 can be relatively thin. Alternatively, the pull-wire conduit encapsulating layer 135 can extend around only a portion of the cross-section of the guide sheath, such as around the portion (e.g., half) including the pull-wire conduits 128, 130. In such a configuration, the helically coiled layer 136 can directly contact the inner layer 134 along the portion of the inner layer's cross-section that is opposite the pull-wire conduits, and can transition over the pull-wire conduit encapsulating layer 135 at the location along the circumference of the inner layer 134 where the pull-wire conduit encapsulating layer originates. In some embodiments, the pull-wire conduit encapsulating layer 135 can be made from any suitable polymer, such as any of various polyether block amides (e.g., Pebax®). In certain configurations, the pull-wire conduit encapsulating layer 135 can extend from the proximal end of the coupling portion 120, through the steerable portion 122, to the pull wire exit 148 (FIG. 2).


The helically coiled layer 136 can be formed from, for example, a wire helically wrapped or wound about the pull-wire conduit encapsulating layer 135 or the first layer 134. In the illustrated embodiment, the helically coiled layer 136 can extend from adjacent the pull ring 144 proximally through the coupling portion 120 and the steerable portion 122 to a transition region 146 (FIG. 1) located between the proximal and distal portions 114, 116. In certain embodiments, the transition region 146 where the helically coiled layer 136 ends can be the location at which the outer layer 140 changes from a material having a relatively higher durometer or hardness (e.g., 63D Pebax®) to a material having a relatively lower durometer (e.g., a polyamide such as VESTAMID®). In some embodiments, gradually varying (e.g., stepwise) the hardness of the outer layer 140 or the other layers of the shaft along their length can reduce the likelihood of kinking, fracture, or warping of the shaft during flexing, or when traversing vessels of the body. Additionally, in certain examples, the helically coiled layer 136 can be made from stainless steel or titanium flat wire wound at, for example, 50 coils per inch with a pitch of 0.020 inch, and can be configured to resist kinking or crushing of the guide shaft 104, and particularly of the steerable portion 122, when it is flexed.


The braided layer 138 can extend over the helically coiled layer 136. In the illustrated configuration, the braided layer 138 can extend from the coupling portion 120 proximate the pull ring 144 proximally to, for example, the pull wire exit 148. The braided layer 138 can be, for example, metal wires braided together in a pattern to form a tubular layer over the helically coiled layer 136. For example, in the illustrated embodiment the braided layer 138 is made from stainless steel or titanium flat wires braided in an over 1 under 1 pattern, although any suitable braid pattern can be used. For example, in another representative embodiment, the wires of the braided layer 138 can be braided in a 1 over 2, under 2 pattern with a pick count of 60 picks per inch (PPI). The braided layer 138 can be configured to, for example, resist undesirable torsional deformation of the guide sheath 104 to allow the guide sheath to transmit torque, which can aid in positioning the implant at the treatment site. The braided layer 138 can also provide crush or kink-resistance properties to the guide sheath 104. In the illustrated configuration, the coupling portion 120 can also include a braided layer 158 disposed beneath the pull ring 144, as shown in FIGS. 3 and 4.


The outer layer 140 can comprise, for example, any of a variety of polymeric materials such as polyamides (e.g., VESTAMID®), polyether block amides (e.g., Pebax®), nylon, or any other suitable biocompatible polymer or combinations thereof along its length. In the illustrated configuration, the pull-wire conduit encapsulating layer 135, the helically coiled layer 136, and the braided layer 138 can terminate distally of the proximal end of the guide sheath 104. For example, in some configurations these layers can terminate at the pull wire exit 148. Proximally of the pull wire exit 148, the outer layer 140 can increase in thickness to maintain a substantially uniform outer diameter along the length of the guide sheath, as illustrated in FIG. 10.


Referring to FIGS. 7 and 8, the distal portion 116 of the guide sheath 104 can include a compression-resistance portion 150. In the illustrated configuration, the compression-resistance portion 150 is incorporated into the outer layer 140, and forms a respective part of the steerable section 122. As illustrated in FIG. 7, the compression-resistance portion 150 can extend along a length L of the steerable portion 122. The compression-resistance portion 150 can also extend circumferentially or angularly along, or occupy a respective portion of, the cross-section of the outer layer 140. For example, with reference to FIG. 8, the angular extent of the compression-resistance portion 150 along the cross-section of the outer layer 140 is denoted by the angle θ. In some embodiments, the angle θ can be from 10 degrees to 180 degrees (or half of the circumference of the cross-section). In some embodiments, the angle θ can be from 10 degrees to 90 degrees. In the embodiment of FIG. 8, the angle θ is 60 degrees.


In certain configurations, the compression-resistance portion 150 can be disposed opposite the pull wire conduits 128, 130. For example, in the illustrated configuration, the compression-resistance portion 150 is angularly offset from the pull wire conduit portion 154 by 180 degrees such that it is located diametrically opposite the pull wire conduits 128, 130. In this configuration, a plane 152 that bisects the pull wire conduit portion 154 also bisects the compression-resistance portion 150, as shown in FIG. 8. In the configuration of FIG. 8 including two pull wires and conduits, the plane 152 bisecting the pull-wire conduit portion 154 passes between the respective conduits 128, 130. However, in configurations including a single pull wire, such as the alternative configuration illustrated in FIG. 12, a single pull wire 160 and conduit 162 can be coaxially aligned with the pull-wire conduit portion 154 such that the plane 152 bisecting the pull-wire conduit portion 154 and the compression-resistance portion 150 also bisects the pull wire 160 and the conduit 162. In other configurations, the compression-resistance portion 150 can be angularly offset from the pull-wire conduit portion 154 along the cross-section of the outer layer 140 by, for example, from 90 degrees to 180 degrees, as desired.


The compression-resistance portion 150 can be made from a material having a relatively higher hardness or durometer than the remainder of the outer layer 140 in the steerable portion 122 in which the compression-resistance portion is incorporated. For example, in certain embodiments the compression-resistance portion 150 can have a durometer that is from 1.5 times to 5 times greater than a durometer of the remainder of the outer layer 140 in the steerable portion 122. In some embodiments, the durometer of the compression-resistance portion 150 can be from 2 times to 3 times greater than the durometer of the remainder of the outer layer 140 in the steerable portion 122. In an exemplary embodiment, the compression-resistance portion 150 can be made from PEBAX® having a durometer of 72D, and the remainder of the outer layer 140 of the steerable portion 122 can be made from PEBAX® having a durometer of 25D, such that a ratio of the durometer of the compression-resistance portion 150 and the durometer of the remainder of the outer layer 140 in the steerable portion 122 is 2.9:1. In some embodiments, the ratio of the durometer of the compression-resistance portion 150 to the durometer of the remainder of the outer layer 140 in the steerable portion 122 can be 3:1.


In other embodiments, the compression-resistance portion 150 can be made of any of various materials exhibiting suitable hardness properties, including metals such as stainless steel, titanium, nickel titanium alloys such as nitinol, cobalt chromium, or other polymers. In addition, in certain configurations, the compression-resistance portion need not have a thickness equal to the overall thickness of the outer layer 140. For example, the compression-resistance portion 150 can have a thickness that is less than the overall thickness of the outer layer, and may be encapsulated within the outer layer, as desired. The durometer of the compression-resistance portion 150 can also vary along its length. For example, the proximal portion of the compression-resistance portion 150 can have a relatively lower durometer than the distal portion, or vice versa.


The compression-resistance portion 150 can provide a variety of advantageous characteristics to the steerable portion 122 of the guide sheath 104. For example, the relatively higher durometer of the compression-resistance portion 150 can provide axial strength to the steerable portion 122. This can significantly reduce or prevent undesirable foreshortening of the guide sheath 104, and particularly of the steerable portion 122, when the guide catheter is flexed. More particularly, the compression-resistance portion 150 can reduce axial compression of the guide sheath and associated wrinkling of the material when the guide sheath is flexed compared to when it is in a non-deflected state. Such axial compression and wrinkling of the material can decrease the length of the guide sheath 104 as the material is deformed, and can damage the guide sheath. By reducing or eliminating foreshortening of the guide sheath 104 when it is flexed, the compression-resistance portion 150 can reduce the need for the operator to longitudinally reposition the delivery apparatus (e.g., by advancing or retracting the delivery apparatus through the patient's vasculature) in order to obtain or regain a desired position of the implant at the treatment site after flexing the guide sheath.


Additionally, the location of the compression-resistance portion 150 angularly offset from the pull wire conduits 128, 130 can aid in initiating deformation of the steerable portion 122 of the guide sheath in a specified direction. For example, when the compression-resistance portion 150 is located opposite the pull wire conduits 128, 130, the axial stiffness of the compression-resistance portion can induce deflection of the steerable portion 122 in a direction away from the compression-resistance portion when the guide sheath is flexed, as illustrated in FIG. 11. The compression-resistance portion 150 can also reduce or prevent ovalizing (also referred to as “pancaking”) of the guide sheath by reducing longitudinal movement of the different layers of the sheath relative to one another when the sheath is flexed, especially in cases in which one or more constituent layers (e.g., PTFE layers such as inner layer 134) are not strongly adhered to the surrounding layer(s).


The compression-resistance portion 150 can also increase the degree of flexion of the distal portion 116 attainable for a given force applied to the distal portion by the pull wires 124, 126, without damaging the guide sheath. The angle of flexion of the distal portion 116 is denoted α, and is illustrated in FIG. 11. For example, by reducing foreshortening of the guide sheath 104, a greater proportion of the force applied by the pull wires 124, 126 is available to flex the guide sheath instead of elastically compressing the guide sheath. Additionally, the compression-resistance portion 150 can reduce or prevent slackening of the pull wires 124, 126 attendant to foreshortening of the guide sheath 104 when it is flexed, resulting in a greater degree of curvature attainable for a given pull wire travel as compared to typical guide sheaths. As used herein, the term “pull wire travel” refers to the linear distance that a given point along the length of a pull wire moves with respect to a stationary reference (e.g., a pull wire conduit) when tension is applied to the pull wire.


Additionally, the compression-resistance portion 150, together with the helically coiled layer 136, and the braided layer 138 described above, can provide significant synergistic advantages that improve the performance of the guide sheath 104 over known steerable sheaths and catheters. For example, the distal portion of an unloaded guide sheath (e.g., a guide sheath without a delivery catheter or other shaft extending through its lumen) having an inner diameter of 22 Fr and including the compression-resistance portion, helically coiled layer, and braided layer features is capable of flexing nearly 355 degrees without kinking, and without significant foreshortening, under a force of 175 N applied by the pull wires. In this example, 50 mm of pull wire travel were required to apply a force of 175 N to the distal portion of the guide sheath. In contrast, for a typical steerable catheter device without the compression-resistance portion and without a delivery catheter or other sheath extending through its lumen, a force of 175 N produces 270 degrees of flexure and requires 60 mm of pull wire travel, and the guide sheath can be expected to foreshorten by 6 mm to 10 mm.


In another example, the distal portion of a guide sheath having an inner diameter of 22 Fr and including the above compression-resistance portion, helically coiled layer, and braided layer features, and loaded with a delivery catheter and an implant catheter extending coaxially within the lumen of the guide sheath, was capable of flexing 270 degrees without kinking, and without significant foreshortening, under a force of 250 N applied by the pull wires. In this example, 40 mm of pull wire travel were required to apply a force of 250 N to the distal portion of the guide sheath. In contrast, for a steerable catheter device without the compression-resistance portion and loaded with a delivery catheter and an implant catheter, a force of 250 N produces 180 degrees of flexure and requires 70 mm of pull wire travel, and the guide sheath can be expected to foreshorten by 6 mm to 10 mm.


In use, the delivery apparatus 100 can be introduced and advanced through the patient's vasculature using any known delivery technique. In a transfemoral procedure, the delivery apparatus can be inserted through a femoral artery and the aorta to access the heart (typically, but not exclusively used for aortic valve replacement). In a transeptal procedure (typically used for aortic or mitral valve replacement), the delivery device can be advanced to the right atrium, such as via a femoral vein, and through the septum separating the right and left ventricles. The disclosed embodiments can be particularly useful for delivering a prosthetic valve to the native mitral valve, as the torqueability of the guide sheath 104 and the relatively high degree of curvature achievable with the distal portion 116 allows for precise positioning of the prosthetic valve at the target site despite the tortuous pathway the delivery apparatus must follow to access the mitral valve in some approaches. In a transventricular procedure, the delivery apparatus can be inserted through a surgical incision made on the bare spot on the lower anterior ventricle wall (typically, but not exclusively used for aortic or mitral valve replacement). In a transatrial procedure, the delivery apparatus can be inserted through a surgical incision made in the wall of the left or right atrium. In a transaortic procedure, the delivery apparatus can be inserted through a surgical incision made in the ascending aorta and advanced toward the heart (typically, but not exclusively used for aortic valve replacement).


In certain of these procedures, the combination of the compression-resistance portion 150, the helically coiled layer 136, and the braided layer 138 can aid in precisely positioning a prosthetic device, such as the heart valve 110, at a treatment site. For example, in a transseptal procedure to access the mitral valve, after the distal end of the delivery apparatus is advanced to the treatment site, the distal portion 116 of the guide sheath 104 can be flexed to axially align the prosthetic valve 110 with the mitral valve (e.g., 180 degrees or more, in certain examples). While the distal portion 116 is in a flexed state, the guide sheath 104 can also be torqued to radially position the prosthetic valve 110 with respect to the mitral valve. The combination of the compression-resistance portion 150, the helically coiled layer 136, and the braided layer 138 can allow the guide sheath to flex without significant foreshortening or kinking, and to be torqued without undesirable torsional deformation of the shaft or associated unpredictable rotational motion of the guide sheath.


It should be understood that in alternative configurations, the components of the disclosed delivery apparatus embodiments can be rearranged without departing from the spirit of the disclosure. For example, the locations of the helically coiled layer 136 and the braided layer 138 can be reversed such that the helically coiled layer is on top of the braided layer. Alternatively, the helically coiled layer 136 and the braided layer 138 can be separated from one another by one or more intermediate layers. Additionally, the compression-resistance portion 150 need not be a respective portion of the outer layer 140, but can be incorporated into any suitable layer in the guide sheath 104. The compression-resistance portion 150 also need not extend along the entire length of the steerable portion 122, but can extend along any suitable portion of the steerable portion. The disclosed compression-resistance portion, helically coiled layer, and braided layer features described herein can also be applicable to other types of steerable catheter devices, such as delivery catheters.


General Considerations


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.


Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.


As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally mean electrically, electromagnetically, or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.


In the context of the present application, the terms “lower” and “upper” are used interchangeably with the terms “inflow” and “outflow”, respectively. Thus, for example, the lower end of the valve is its inflow end and the upper end of the valve is its outflow end.


As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.


Unless otherwise indicated, all numbers expressing quantities of components, distances, forces, ratios, angles, percentages, and so forth, as used in the specification or claims are to be understood as being modified by the term “about.” Accordingly, unless otherwise indicated, implicitly or explicitly, the numerical parameters set forth are approximations that can depend on the desired properties sought and/or limits of detection under test conditions/methods familiar to those of ordinary skill in the art. When directly and explicitly distinguishing embodiments from discussed prior art, the embodiment numbers are not approximates unless the word “about” is recited. Furthermore, not all alternatives recited herein are equivalents.


In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims.

Claims
  • 1. A delivery apparatus, comprising: a steerable shaft comprising a proximal portion, a distal portion, and a pull-wire conduit that extends at least partially through the proximal and distal portions of the shaft;a pull wire extending through the pull-wire conduit and having a proximal end portion and a distal end portion, wherein the distal end portion of the pull wire is fixed to the distal portion of the shaft; andan adjustment mechanism operatively connected to the proximal end portion of the pull wire and configured to increase and decrease tension in the pull wire to adjust the curvature of the distal portion of the shaft;wherein the distal portion of the shaft comprises a steerable portion having a first inner layer that defines an inner diameter of the shaft and a second outer layer that defines an outer diameter of the shaft, the steerable portion including a compression-resistance portion incorporated into the second outer layer of the steerable portion and extending angularly along a portion of a cross-section of the second outer layer, the second outer layer of the steerable portion into which the compression-resistance portion is incorporated having a first hardness, the compression-resistance portion having a second hardness that is greater than the first hardness.
  • 2. The delivery apparatus of claim 1, wherein the compression-resistance portion is located opposite the pull-wire conduit.
  • 3. The delivery apparatus of claim 1, wherein the compression-resistance portion extends from 10 degrees to 180 degrees along the cross-section of the second outer layer.
  • 4. The delivery apparatus of claim 3, wherein the compression-resistance portion extends 60 degrees along the cross-section of the second outer layer.
  • 5. The delivery apparatus of claim 1, wherein the shaft further comprises a third helically coiled layer between the first inner layer and the second outer layer.
  • 6. The delivery apparatus of claim 5, wherein the shaft further comprises a fourth braided layer braided over at least a portion of the helically coiled layer.
  • 7. The delivery apparatus of claim 6, wherein the shaft further comprises a pull-wire conduit encapsulating layer between the first inner layer and the helically coiled layer that encapsulates the pull-wire conduit.
  • 8. The delivery apparatus of claim 1, wherein the first inner layer defines a recess configured to receive the pull-wire conduit.
  • 9. The delivery apparatus of claim 8, wherein: the pull wire is a first pull wire;the pull-wire conduit is a first pull-wire conduit; andthe shaft further comprises a second pull wire received in a second pull-wire conduit disposed adjacent the first pull-wire conduit in the recess.
  • 10. The delivery apparatus of claim 1, wherein a ratio of the second hardness to the first hardness is from 1.5:1 to 5:1.
  • 11. The delivery apparatus of claim 10, wherein the ratio is 3:1.
  • 12. The delivery apparatus of claim 1, wherein the shaft is a guide sheath, and the delivery apparatus further includes an implant catheter coaxially disposed within the guide sheath including a prosthetic valve mounted on a distal end of the implant catheter.
  • 13. A method, comprising: inserting a shaft of a delivery apparatus into the body of a patient, the shaft having: a proximal portion,a distal portion,a pull-wire conduit that extends at least partially through the proximal and distal portions, anda pull wire extending through the pull-wire conduit,the distal portion of the shaft comprising a steerable portion having a first inner layer that defines an inner diameter of the shaft and a second outer layer that defines an outer diameter of the shaft,the steerable portion including a compression-resistance portion incorporated into the second outer layer of the steerable portion that extends angularly along a portion of a cross-section of the layer, the second outer layer of the steerable portion into which the compression-resistance portion is incorporated having a first hardness, the compression-resistance portion having a second hardness that is greater than the first hardness; andapplying tension to the pull wire to adjust the curvature of the distal portion of the shaft.
  • 14. The method of claim 13, further comprising torqueing the shaft to rotate the distal portion of the shaft after inserting the shaft into the body, and after adjusting the curvature of the distal portion of the shaft.
  • 15. The method of claim 13, further comprising: mounting a prosthetic valve in a radially compressed state on a distal end of an implant catheter extending coaxially through the shaft;inserting the prosthetic valve into the body of the patient when inserting the shaft into the body; anddeploying the prosthetic valve within the body.
  • 16. A delivery apparatus, comprising: a steerable shaft comprising a proximal portion, a distal portion, and a pull-wire conduit that extends at least partially through the proximal and distal portions of the shaft;a pull wire extending through the pull-wire conduit and having a proximal end portion and a distal end portion, wherein the distal end portion of the pull wire is fixed to the distal portion of the shaft;an adjustment mechanism operatively connected to the proximal end portion of the pull wire and configured to increase and decrease tension in the pull wire to adjust the curvature of the distal portion of the shaft; andwherein the distal portion of the shaft comprises a first inner layer that defines an inner diameter of the shaft and a second outer layer that defines an outer diameter of the shaft and a compression-resistance portion incorporated into the second outer layer of the distal portion, the compression-resistance portion extending angularly along a portion of a cross-section of the second outer layer and having a hardness that is greater than a hardness of the second outer layer into which the compression-resistance portion is incorporated, the compression-resistance portion being angularly offset from the pull-wire conduit along the cross-section of the layer.
  • 17. The delivery apparatus of claim 16, wherein the compression-resistance portion is located opposite the pull-wire conduit.
  • 18. The delivery apparatus of claim 16, wherein the compression-resistance portion extends from 10 degrees to 180 degrees along the cross-section of the second outer layer into which the compression-resistance portion is incorporated.
  • 19. The delivery apparatus of claim 16, wherein a ratio of the hardness of the compression-resistance portion to the hardness of the second outer layer into which the compression-resistance portion is incorporated is from 1.5:1 to 5:1.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 62/418,528, filed Nov. 7, 2016, which is incorporated herein by reference in its entirety.

US Referenced Citations (357)
Number Name Date Kind
3874388 King et al. Apr 1975 A
4340091 Skelton et al. Jul 1982 A
4506669 Blake, III Mar 1985 A
4590937 Deniega May 1986 A
4693248 Failla Sep 1987 A
4803983 Siegel Feb 1989 A
5125895 Buchbinder et al. Jun 1992 A
5171252 Friedland Dec 1992 A
5195962 Martin et al. Mar 1993 A
5292326 Green et al. Mar 1994 A
5327905 Avitall Jul 1994 A
5363861 Edwards et al. Nov 1994 A
5368564 Savage Nov 1994 A
5370685 Stevens Dec 1994 A
5389077 Melinyshyn et al. Feb 1995 A
5411552 Andersen et al. May 1995 A
5450860 O'Connor Sep 1995 A
5456674 Bos et al. Oct 1995 A
5474057 Makower et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5487746 Yu et al. Jan 1996 A
5507725 Savage et al. Apr 1996 A
5565004 Christoudias Oct 1996 A
5607462 Imran Mar 1997 A
5609598 Laufer et al. Mar 1997 A
5611794 Sauer et al. Mar 1997 A
5626607 Malecki et al. May 1997 A
5695504 Gifford, III et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5727569 Benetti et al. Mar 1998 A
5741297 Simon Apr 1998 A
5782746 Wright Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5836311 Borst et al. Nov 1998 A
5843076 Webster, Jr. et al. Dec 1998 A
5855590 Malecki et al. Jan 1999 A
5885271 Hamilton et al. Mar 1999 A
5888247 Benetti Mar 1999 A
5891017 Swindle et al. Apr 1999 A
5891112 Samson Apr 1999 A
5894843 Benetti et al. Apr 1999 A
5921979 Kovac et al. Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5957835 Anderson et al. Sep 1999 A
5972020 Carpentier et al. Oct 1999 A
5980534 Gimpelson Nov 1999 A
6004329 Myers et al. Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6086600 Kortenbach Jul 2000 A
6120496 Whayne et al. Sep 2000 A
6132370 Furnish et al. Oct 2000 A
6162239 Manhes Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6171295 Garabedian Jan 2001 B1
6182664 Cosgrove Feb 2001 B1
6193732 Frantzen et al. Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6200315 Gaiser et al. Mar 2001 B1
6241743 Levin et al. Jun 2001 B1
6269829 Chen et al. Aug 2001 B1
6312447 Oz et al. Aug 2001 B1
6461366 Seguin Oct 2002 B1
6468285 Hsu et al. Oct 2002 B1
6508805 Garabedian Jan 2003 B1
6508806 Hoste Jan 2003 B1
6508825 Selmon et al. Jan 2003 B1
6530933 Yeung et al. Mar 2003 B1
6537290 Adams et al. Mar 2003 B2
6544215 Bencini et al. Apr 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6709429 Schaefer Mar 2004 B1
6764510 Kimblad Apr 2004 B2
6770083 Seguin Aug 2004 B2
6837867 Kortelling Jan 2005 B2
6855137 Bon Feb 2005 B2
6866660 Garabedian Mar 2005 B2
6913614 Marino et al. Jul 2005 B2
6939337 Parker et al. Sep 2005 B2
6942654 Schaefer Sep 2005 B1
6945956 Waldhauser Sep 2005 B2
7048754 Martin et al. May 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7288097 Seguin Oct 2007 B2
7371210 Brock et al. May 2008 B2
7464712 Oz et al. Dec 2008 B2
7509959 Oz et al. Mar 2009 B2
7682369 Seguin Mar 2010 B2
7731706 Potter Jun 2010 B2
7744609 Allen et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753932 Gingrich et al. Jul 2010 B2
7758596 Oz et al. Jul 2010 B2
7780723 Taylor Aug 2010 B2
7803185 Gabbay Sep 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7981123 Seguin Jul 2011 B2
7985214 Garabedian Jul 2011 B2
7988724 Salahieh et al. Aug 2011 B2
8052750 Tuval et al. Nov 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8096985 Legaspi et al. Jan 2012 B2
8133239 Oz et al. Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8206437 Bonhoeffer et al. Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8323241 Salahieh Dec 2012 B2
8348995 Tuval et al. Jan 2013 B2
8348996 Tuval et al. Jan 2013 B2
8414643 Tuval et al. Apr 2013 B2
8449599 Chau et al. May 2013 B2
8449606 Eliasen et al. May 2013 B2
8460368 Taylor et al. Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8540767 Zhang Sep 2013 B2
8568472 Marchand Oct 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8608736 Kaufmann Dec 2013 B2
8652202 Alon Feb 2014 B2
8668733 Haug et al. Mar 2014 B2
8708953 Salahieh Apr 2014 B2
8721665 Oz et al. May 2014 B2
8740918 Seguin Jun 2014 B2
8771347 DeBoer et al. Jul 2014 B2
8778017 Eliasen et al. Jul 2014 B2
8834564 Tuval et al. Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8876894 Tuval et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8920369 Salahieh Dec 2014 B2
8945177 Dell et al. Feb 2015 B2
9034032 McLean et al. May 2015 B2
9061119 Le Jun 2015 B2
9155619 Liu Oct 2015 B2
9198757 Schroeder et al. Dec 2015 B2
9259317 Wilson et al. Feb 2016 B2
9301834 Tuval et al. Apr 2016 B2
9308360 Bishop et al. Apr 2016 B2
9339384 Tran May 2016 B2
9387071 Tuval et al. Jul 2016 B2
9427327 Parrish Aug 2016 B2
9439763 Geist et al. Sep 2016 B2
9510837 Seguin Dec 2016 B2
9510946 Chau et al. Dec 2016 B2
9572660 Braido et al. Feb 2017 B2
9586025 Salahieh Mar 2017 B2
9642704 Tuval et al. May 2017 B2
9700445 Martin et al. Jul 2017 B2
9775963 Miller Oct 2017 B2
D809139 Marsot et al. Jan 2018 S
9889002 Bonhoeffer et al. Feb 2018 B2
9913717 Chau Mar 2018 B2
9949824 Bonhoeffer et al. Apr 2018 B2
10076327 Ellis et al. Sep 2018 B2
10076415 Metchik et al. Sep 2018 B1
10076638 Tran Sep 2018 B2
10105221 Siegel Oct 2018 B2
10105222 Metchik et al. Oct 2018 B1
10111751 Metchik et al. Oct 2018 B1
10123873 Metchik et al. Nov 2018 B1
10130475 Metchik et al. Nov 2018 B1
10136993 Metchik et al. Nov 2018 B1
10159570 Metchik et al. Dec 2018 B1
10226309 Ho et al. Mar 2019 B2
10231837 Metchik et al. Mar 2019 B1
10238494 McNiven et al. Mar 2019 B2
10238495 Marsot et al. Mar 2019 B2
10299924 Kizuka May 2019 B2
10376673 Van Hoven et al. Aug 2019 B2
20010005787 Oz et al. Jun 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020107531 Schreck et al. Aug 2002 A1
20020173811 Tu et al. Nov 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20030097119 Garabedian May 2003 A1
20030187467 Schreck Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040003819 St. Goar et al. Jan 2004 A1
20040034365 Lentz et al. Feb 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040122360 Waldhauser et al. Jun 2004 A1
20040127981 Randert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040147943 Kobayashi Jul 2004 A1
20040162543 Schaefer Aug 2004 A1
20040181206 Chiu et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20050049618 Masuda et al. Mar 2005 A1
20050143767 Kimura et al. Jun 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050182388 Garabedian et al. Aug 2005 A1
20050251183 Buckman et al. Nov 2005 A1
20050288786 Chanduszko Dec 2005 A1
20060100649 Hart May 2006 A1
20060122647 Callaghan et al. Jun 2006 A1
20060178700 Quinn Aug 2006 A1
20060224169 Weisenburgh Oct 2006 A1
20070005131 Taylor Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070021779 Garvin et al. Jan 2007 A1
20070032807 Ortiz et al. Feb 2007 A1
20070093857 Rogers et al. Apr 2007 A1
20070191154 Genereux et al. Aug 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070198038 Cohen et al. Aug 2007 A1
20070282414 Soltis et al. Dec 2007 A1
20080039743 Fox et al. Feb 2008 A1
20080039953 Davis et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065149 Thielen et al. Mar 2008 A1
20080077144 Crofford Mar 2008 A1
20080140089 Kogiso et al. Jun 2008 A1
20080147093 Roskopf et al. Jun 2008 A1
20080147112 Sheets et al. Jun 2008 A1
20080167713 Bolling Jul 2008 A1
20080177300 Mas et al. Jul 2008 A1
20080255427 Satake et al. Oct 2008 A1
20080294247 Yang et al. Nov 2008 A1
20080319455 Harris et al. Dec 2008 A1
20090131865 Partlett et al. May 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090275902 Heeps et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20100022823 Goldfarb et al. Jan 2010 A1
20100036484 Hariton et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100057037 Webler Mar 2010 A1
20100094317 Goldfarb et al. Apr 2010 A1
20100324595 Linder et al. Dec 2010 A1
20100331776 Salahieh Dec 2010 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110137410 Hacohen Jun 2011 A1
20110245855 Matsuoka et al. Oct 2011 A1
20110282379 Lee et al. Nov 2011 A1
20110295281 Mizumoto et al. Dec 2011 A1
20120109160 Martinez et al. May 2012 A1
20120116419 Sigmon, Jr. May 2012 A1
20120123327 Miller May 2012 A1
20120123529 Levi et al. May 2012 A1
20120209318 Qadeer Aug 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120277730 Salahieh Nov 2012 A1
20130030519 Tran et al. Jan 2013 A1
20130046298 Kaufman et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130066342 Dell et al. Mar 2013 A1
20130072945 Terada Mar 2013 A1
20130073034 Wilson et al. Mar 2013 A1
20130116705 Salahieh May 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20140046433 Kovalsky Feb 2014 A1
20140058324 Salahieh Feb 2014 A1
20140058411 Soutorine et al. Feb 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140067052 Chau et al. Mar 2014 A1
20140107623 Salahieh Apr 2014 A1
20140135685 Kabe et al. May 2014 A1
20140236198 Goldfarb et al. Aug 2014 A1
20140243968 Padala Aug 2014 A1
20140316428 Golan Oct 2014 A1
20150039084 Levi et al. Feb 2015 A1
20150057704 Takahashi Feb 2015 A1
20150073341 Salahieh et al. Mar 2015 A1
20150094656 Salahieh Apr 2015 A1
20150105808 Gordon et al. Apr 2015 A1
20150157268 Winshtein et al. Jun 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150223793 Goldfarb et al. Aug 2015 A1
20150230919 Chau et al. Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150257883 Basude et al. Sep 2015 A1
20150313592 Coillard-Lavirotte et al. Nov 2015 A1
20160022970 Forcucci et al. Jan 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113764 Sheahan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160155987 Yoo et al. Jun 2016 A1
20160158497 Tran et al. Jun 2016 A1
20160174979 Wei Jun 2016 A1
20160174981 Fago et al. Jun 2016 A1
20160242906 Morriss et al. Aug 2016 A1
20160287387 Wei Oct 2016 A1
20160317290 Chau et al. Nov 2016 A1
20160331523 Chau et al. Nov 2016 A1
20160354082 Oz et al. Dec 2016 A1
20170020521 Krone et al. Jan 2017 A1
20170035561 Rowe et al. Feb 2017 A1
20170035566 Krone et al. Feb 2017 A1
20170042456 Budiman Feb 2017 A1
20170049455 Seguin Feb 2017 A1
20170100236 Robertson et al. Apr 2017 A1
20170173303 Salahieh Jun 2017 A1
20170239048 Goldfarb et al. Aug 2017 A1
20170281330 Liljegren Oct 2017 A1
20170348102 Cousins et al. Dec 2017 A1
20180008311 Shiroff et al. Jan 2018 A1
20180021044 Miller et al. Jan 2018 A1
20180021134 McNiven et al. Jan 2018 A1
20180078271 Thrasher, III Mar 2018 A1
20180126124 Winston May 2018 A1
20180146964 Garcia et al. May 2018 A1
20180146966 Hernandez et al. May 2018 A1
20180153552 King et al. Jun 2018 A1
20180161159 Lee et al. Jun 2018 A1
20180221147 Ganesan et al. Aug 2018 A1
20180235657 Abunassar Aug 2018 A1
20180243086 Barbarino et al. Aug 2018 A1
20180258665 Reddy et al. Sep 2018 A1
20180263767 Chau et al. Sep 2018 A1
20180296326 Dixon et al. Oct 2018 A1
20180296327 Dixon et al. Oct 2018 A1
20180296328 Dixon et al. Oct 2018 A1
20180296329 Dixon et al. Oct 2018 A1
20180296330 Dixon et al. Oct 2018 A1
20180296331 Dixon et al. Oct 2018 A1
20180296332 Dixon et al. Oct 2018 A1
20180296333 Dixon et al. Oct 2018 A1
20180296334 Dixon et al. Oct 2018 A1
20180325671 Abunassar et al. Nov 2018 A1
20190000613 Delgado et al. Jan 2019 A1
20190000623 Pan et al. Jan 2019 A1
20190008642 Delgado et al. Jan 2019 A1
20190008643 Delgado et al. Jan 2019 A1
20190015199 Delgado et al. Jan 2019 A1
20190015200 Delgado et al. Jan 2019 A1
20190015207 Delgado et al. Jan 2019 A1
20190015208 Delgado et al. Jan 2019 A1
20190021851 Delgado et al. Jan 2019 A1
20190021852 Delgado et al. Jan 2019 A1
20190029810 Delgado et al. Jan 2019 A1
20190029813 Delgado et al. Jan 2019 A1
20190030285 Prabhu et al. Jan 2019 A1
20190060058 Delgado et al. Feb 2019 A1
20190060059 Delgado et al. Feb 2019 A1
20190060072 Zeng Feb 2019 A1
20190060073 Delgado et al. Feb 2019 A1
20190060074 Delgado et al. Feb 2019 A1
20190060075 Delgado et al. Feb 2019 A1
20190069991 Metchik et al. Mar 2019 A1
20190069992 Delgado et al. Mar 2019 A1
20190069993 Delgado et al. Mar 2019 A1
20190167197 Abunassar et al. Jun 2019 A1
20190261995 Goldfarb et al. Aug 2019 A1
20190261996 Goldfarb et al. Aug 2019 A1
20190261997 Goldfarb et al. Aug 2019 A1
Foreign Referenced Citations (9)
Number Date Country
1142351 Feb 1997 CN
0098100 Jan 1984 EP
2146050 Feb 1973 FR
9711600 Mar 1997 FR
2017015632 Jan 2017 WO
2018195015 Oct 2018 WO
2018195201 Oct 2018 WO
2018195215 Oct 2018 WO
2019139904 Jul 2019 WO
Non-Patent Literature Citations (31)
Entry
Al Zaibag et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis”, British Heart Journal. vol. 57, No. 1. Jan. 1987.
Al-Khaja et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications”, European Journal of Cardio-thoracic Surgery 3: pp. 305-311, 1989.
Andersen, H.R. “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
Benchimol et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man”, The American Journal of the Medical Sciences, vol. 273, No. 1, pp. 55-62, 1977.
Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms”, The New England Journal of Medicine, vol. 331, No. 26, pp. 1729-1734, Dec. 29, 1994.
Dotter et al., “Transluminal Treatment of Arteriosclerotic Obstruction: Description of a New Technic and a Preliminary Report of Its Application”, Circulation; vol. XXX, pp. 654-670, 1964.
Inoune, M.D., Kanji, et al.; “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984.
Kolata, Gina “Device that Opens Clogged Arteries Gets a Failing Grade in a New Study”, The New York Times, http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . , pp. 1-2, wrriten Jan. 3, 199, web page access Jul. 29, 2009.
Lawrence, Jr., et al., “Percutaneous Endovascular Graft: Experimental Evaluation”, Cardiovascular Radiology 163, pp. 357-360, May 1987.
Porstmann et al., “Der Verschluß des Ductus Arteriosus Persistens Ohne Thorakotomie”, Thoraxchirurgie Vaskuiäre Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203.
Rashkind et al., “Creation of an Atrial Septal Defect Without Thoracotomy: A Pallative Approach to Complete Transposition of the Great Arteries”, The Journal of the American Medical Association, vol. 196, No. 11, pp. 173-174, Jun. 13, 1956.
Reul RM et al., “Mitral valve reconstruction for mitral insufficiency”, Prog Cardiovasc Dis., vol. 39, Issue—6, May-Jun. 1997.
Rosch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Intery Radiol 2003; 14:841-853.
Sabbah et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview”, Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989.
Selby et al., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems”, Radiology: 176. pp. 535-538, 1990.
Serruys et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?”, European Heart Journal, 10, 774-782, pp. 37-45, 1989.
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Uchida et al., “Modifications of Gianturco Expandable Wire Stents”, Technical Note, American Roentgen Ray Society, pp. 1185-1187, May 1988.
Watt et al., “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia: A Dose-Ranging Study and Interaction with Dipyridarnole”, Br. J. Clin. Pharmac. 21, pp. 227-230, 1986.
Almagor et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits”, Journal of the American College of Cardiology, vol. 16, No. 5, pp. 1310-1314, Nov. 15, 1990.
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708.
Batista RJ et al., “Partial left ventriculectomy to treat end-stage heart disease”, Ann Thorac Surg., vol. 64, Issue—3, pp. 634-638, Sep. 1997.
Beall AC Jr. et al.,“Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis”, Ann Thorac Surg., vol.—5, Issue 5, pp. 402-410, May 1968.
Fucci et al., “Improved results with mitral valve repair using new surgical techniques”, Eur J Cardiothorac Surg. 1995;Issue 9, vol.—11, pp. 621-626
Maisano F et al., ‘The edge-to-edge technique: a simplified method to correct mitral insufficiency’, Eur J Cardiothorac Surg., vol. 13, Issue—3, pp. 240-245, Mar. 1998.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Ross, D.N, “Aortic Valve Surgery”, Surgery of the Aortic Valves, Guy's Hospital, London, pp. 192-197.
Uma{hacek over (n)}a JP et al., Bow-tie' mitral valve repair: an adjuvant technique for ischemic mitral regurgitation, Ann Thorac Surg., vol. 66, Issue—6, pp. 1640-1646, Nov. 1998.
Urban, Philip MD, “Coronary Artery Stenting”, Editions Medecine et Hygiene, Geneve, pp. 1-47; 1991.
Wheatley, David J., “Valve Prosthesis”, Rob & Smith's Operative Surgery, pp. 415-424, 1986.
Praz Et A., “Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study,” Lancet vol. 390, pp. 773-780, 2017.
Related Publications (1)
Number Date Country
20180126124 A1 May 2018 US
Provisional Applications (1)
Number Date Country
62418528 Nov 2016 US