1. Field of the Invention.
The present invention relates to vapor compression systems, more particularly, to a vessel disposed within such a system for containing refrigerant and having a variable storage volume.
2. Description of the Related Art.
Refrigeration systems typically include, in series, a compressor, a condenser, an expansion device, and an evaporator. In operation, gas phase refrigerant is drawn into the compressor where it is compressed to a high pressure. The high pressure refrigerant is then cooled and condensed to a liquid phase in the condenser. The pressure of the liquid phase refrigerant is then reduced by the expansion device. In the evaporator the low pressure liquid phase refrigerant absorbs heat and converts the low pressure liquid phase refrigerant back to a gas. The gas phase refrigerant then returns to the compressor and the cycle is repeated.
Compressors are typically designed for the compression of gas phase refrigerant, however, it is possible for a certain amount of liquid phase refrigerant to flow from the evaporator toward the compressor. For instance, when the system shuts down condensed refrigerant may be drawn into the compressor from the evaporator, thereby flooding the compressor with liquid phase refrigerant. When the system is restarted, the liquid phase refrigerant within the compressor can cause abnormally high pressures within the compressor and can thereby result in damage to the compressor. To prevent this phenomenon from occurring, it is known to use suction accumulators in the refrigeration system in the suction line of the compressor.
Commonly used suction accumulators are mounted near the suction inlet of the compressor and separate liquid and gas phase refrigerant. As the refrigerant flows into the accumulator, the liquid phase refrigerant collects at the bottom of the storage vessel, while the gas phase refrigerant flows through the storage vessel to the compressor. Typically, a metered orifice is provided in the lower portion of the vessel to dispense a small amount of the collected liquid phase refrigerant to the compressor, thereby preventing large amounts of potentially harmful liquid phase refrigerant from entering the compressor.
Similar vessels for separating liquid and gas phase refrigerant may also be located on the discharge side of the compressor. When located on the discharge side of the compressor, such vessels are typically referred to as receivers. Examples of known suction accumulators are disclosed in U.S. Pat. Nos. 4,009,596 and 4,182,136 assigned to Tecumseh Products Company and which are hereby expressly incorporated herein by reference.
The present invention provides a vessel for containing a refrigerant fluid in a vapor compression system wherein the storage volume or configuration of the vessel can be varied to thereby vary the total charge of refrigerant being circulated in the vapor compression system. The interior volume of the vessel includes both a displacement chamber and a storage chamber and the storage volume, defined by the storage chamber, available within the vessel to receive refrigerant fluid is controlled by varying the volume and/or position of the displacement chamber.
The present invention comprises, in one form thereof, a vessel for containing a refrigerant fluid in a vapor compression system wherein the vessel includes a housing defining a fixed interior volume and an internal structure. The internal structure is disposed within the housing and subdivides the interior volume. The interior volume defines a storage chamber defining a volume for containing refrigerant fluid and a displacement chamber. The storage chamber is in fluid communication with the vapor compression system and contains both liquid phase refrigerant fluid and gas phase refrigerant fluid during normal operation of the vapor compression system. The displacement chamber has a selectively variable volume wherein varying the volume of the displacement chamber inversely varies the volume of said storage chamber, i.e., an increase in the displacement chamber volume causes a decrease in the storage chamber volume and a decrease in the displacement chamber volume causes an increase in the storage chamber volume. The vessel housing also defines an inlet port through which refrigerant fluid is communicated into the storage chamber and an outlet port through which refrigerant fluid is communicated out of the storage chamber. The internal structure is positionable at least partially below the outlet port and varying the volume of the displacement chamber at least partially varies the volume of the storage chamber below the outlet port.
The internal structure may define an enclosure for a working fluid wherein varying the volume of the working fluid selectively varies the volume of said displacement chamber. The vessel may also include a thermal exchange element for exchanging thermal energy with the working fluid to thereby vary the volume of the working fluid. The thermal exchange element may take a variety of forms, e.g., it may be a heat pipe, a heating element or it may conveys a second working fluid for exchanging thermal energy with the working fluid. Alternatively, the working fluid within the enclosure may be thermally coupled with an external thermal reservoir, e.g., a heat source formed by a compressor or a heat sink formed by a portion of the low pressure region of the vapor compression system.
The working fluid and the refrigerant fluid may be the same fluid wherein the working fluid is gas phase refrigerant and the vessel includes a thermal exchange element and the enclosure defines an opening proximate the bottom of the enclosure and positioned below an upper surface of liquid phase refrigerant fluid contained within the storage chamber.
In some embodiments, the enclosure fully encloses the working fluid and is at least partially flexible or elastic. In other embodiments, the enclosure fully encloses the working fluid and includes a fixed enclosure housing and a moveable barrier sealingly engaged with the enclosure housing wherein movement of the barrier relative to the enclosure housing varies the volume of the displacement chamber.
The present invention comprises, in another form thereof, a vessel for containing a refrigerant fluid in a vapor compression system. The vessel includes a vessel housing defining a fixed interior volume and an internal structure disposed within the housing and subdividing the interior volume wherein the interior volume defines a storage chamber defining a volume for containing refrigerant fluid and a displacement chamber. The storage chamber is in fluid communication with the vapor compression system and contains both liquid phase refrigerant fluid and gas phase refrigerant fluid during normal operation of the vapor compression system. The vessel housing defines an inlet port through which refrigerant fluid is communicated into the storage chamber and an outlet port through which refrigerant fluid is communicated out of the storage chamber. The internal structure is repositionable within the vessel housing and repositioning of the internal structure varies the volume of the displacement chamber disposed below the outlet port. The displacement chamber may have a substantially constant volume.
The present invention comprises, in another form thereof, a vapor compression system for use with a refrigerant fluid which includes a compressor, a first heat exchanger, an expansion device and a second heat exchanger fluidly connected in serial order to thereby define a vapor compression circuit and a vessel. The vessel has a housing defining a fixed interior volume and an internal structure disposed within the housing and subdividing the interior volume. The interior volume defines a storage chamber defining a volume for containing refrigerant fluid and a displacement chamber. The storage chamber is in fluid communication with the vapor compression circuit and contains both liquid phase refrigerant fluid and gas phase refrigerant fluid during normal operation of the vapor compression system. The displacement chamber has a selectively variable volume wherein varying the volume of the displacement chamber inversely varies the volume of the storage chamber.
The present invention comprises, in yet another form thereof, a method of regulating the charge of refrigerant circulating in a vapor compression system. The method includes providing a vessel having a housing defining a substantially fixed interior volume, subdividing the interior volume into a storage chamber and a displacement chamber, and providing fluid communication between the storage chamber and the vapor compression system. The method also includes storing both liquid phase and gas phase refrigerant fluid in the storage chamber during normal operation of the vapor compression system and selectively varying the volume of the storage chamber by controlling the volume of the displacement chamber whereby the volume of refrigerant contained within the housing is selectively variable.
The volume of the displacement chamber may be controlled by controlling the temperature of a working fluid within the displacement chamber and the working fluid may be contained within an enclosure that fully encloses the working fluid. The method may employ a vessel housing that defines an inlet port through which refrigerant fluid is communicated into the storage chamber and an outlet port through which refrigerant fluid is communicated out of the storage chamber wherein the outlet port is positioned below the inlet port and varying the volume of the displacement chamber at least partially varies the volume of the storage chamber below the outlet port and the method further includes discharging liquid phase refrigerant fluid through the outlet port by increasing the volume of the discharge chamber. The storage chamber may be placed in fluid communication with the vapor compression system between an evaporator and a compressor and with the method further including separating liquid phase refrigerant fluid from gas phase refrigerant fluid within the storage chamber.
The above-mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
The embodiments hereinafter disclosed are not intended to be exhaustive or limit the invention to the precise forms disclosed in the following description. Rather the embodiments are chosen and described so that others skilled in the art may utilize its teachings.
Vessels 10 in accordance with the present invention are illustrated in the Figures and several embodiments, i.e., vessels 10a-10d, of the novel vessel are illustrated and discussed below. With reference to
A vapor compression system 44 is illustrated in
Several embodiments of a vessel 10 having a variable storage volume are illustrated in the Figures. The illustrated vessels include a housing 12 defining a fixed interior volume that is subdivided into a storage chamber 14 and a displacement chamber 24 wherein an increase in the volume of the displacement chamber results in a decrease in the volume of the storage chamber. Similarly, a decrease in the volume of the displacement chamber results in an increase in the volume of the storage chamber. The storage chamber 14 is in fluid communication with the vapor compression system 44 and by varying the volume of the storage chamber 14, the mass of refrigerant contained within vessel 10 can also be varied.
With reference to a first embodiment 10a of the vessel illustrated in
As schematically illustrated, liquid phase refrigerant is contained in the lower portion 22 of the storage chamber 14 and gas phase refrigerant is contained in the upper portion of the storage chamber 14.
Similarly, a decrease in the displacement volume 26 increases the volume of storage chamber 14 available to contain refrigerant and, depending upon the location of outlet 18, increases the volume of storage chamber 14 that is available to store liquid phase refrigerant. The decrease in displacement volume 26 may, in some embodiments, also be accompanied by a decrease in the temperature within storage chamber 14 facilitating the condensation of refrigerant and the increase of refrigerant mass contained within storage chamber 14.
The vessel 10 may be operated whereby the default state of the working fluid 30, and displacement volume 26, is in a relatively contracted state and heat is selectively added to working fluid 30 to expand displacement volume 26. Alternatively, the default state of working fluid 30, and displacement volume 26, may be in a relatively expanded state and working fluid 30 is selectively cooled to reduce displacement volume 26, or, some combination of actively heating and cooling working fluid 30 may be employed.
The various illustrated embodiments of vessel 10 will now be discussed. In the embodiment 10a illustrated in
Enclosure 25 may be formed out of various materials including plastic and metallic materials. By forming enclosure out of a plastic material, it may be provided with enhanced insulative properties in comparison to an enclosure formed out of a metallic material. Alternatively, enclosure 25 may be formed out of a metallic material and lined with an insulative material or structure such as a multilayer structure including a vacuum layer.
Vessel 10 may also include a means for physically separating working fluid 30 from the refrigerant contained within storage vessel 14. For instance, as shown in
Referring now to
Vessel 10c includes a thermal exchange element 32c that is formed by a fluid conduit that exchanges thermal energy with working fluid 30. Although, not shown, conduit 32c may include thermally conductive fins on its exterior surface within displacement volume 26. Conduit 32c may be used to either heat or cool working fluid 30. For example, by fluidly coupling the inlet of conduit 32c to vapor compression system 44 proximate point A and fluidly coupling the outlet of conduit 32c to vapor compression system 44 proximate point B, conduit 32c may be used to heat working fluid 30. Alternatively, by fluidly coupling the inlet of conduit 32c to vapor compression system 44 proximate point C and fluidly coupling the outlet of conduit 32c to vapor compression system 44 proximate point D, conduit 32c may be used to cool working fluid 30. By the use of one or more selectively actuated valves, fluid flow through conduit 32c, and the transfer of thermal energy between conduit 32c and working fluid 30, can be readily controlled.
Turning now to
Working fluid 30 may be any fluid capable of expanding and contracting in response to temperatures created by thermal exchange elements 32. More particularly, vessel 10 may be equipped with working fluids 30 having vaporization temperatures and properties corresponding to the thermal source used. It may also be advantageous to utilize the gas phase of the refrigerant contained within storage chamber 14 as working fluid 30 so that damage to the refrigeration system 44 is prevented in the event working fluid 30 is drawn into the refrigeration system. In each of the illustrated embodiments, the discharge chamber employs a gas phase working fluid 30, however, discharge chambers in accordance with the present invention are not limited to gas phase working fluids.
As discussed above, the thermal exchange element 32 may either heat or cool working fluid 30 and may be a heat pipe, an electric heating element, a heat exchanging conduit or a heat conducting element connected to a thermal reservoir.
The thermal exchange element 32 may provide for the continual transfer of thermal energy during operation of system 44. For example, it may continuously transfer heat to working fluid 30 to maintain working fluid 30 in a gas phase. A higher rate of transfer could then be employed to expand the volume of the working fluid. Alternatively, thermal exchange element 32 might only be used to exchange thermal energy with working fluid 30 when it is desirable to change the volume of working fluid 30.
In some applications it may also be advantageous to relocate the inlet port defined by inlet tube 16 to a position that is below the outlet port defined by outlet tube 18 as depicted by inlet tube 16a in
The volume range through which working fluid 30 is expanded and contracted may consist of only a minimum and maximum value or, with the relatively precise control of thermal exchange element 32 such as an electrical heating element, it may also be provide a range of displacement volume values between a minimum and maximum volume value. Temperature and pressure sensors may be placed at various locations in vapor compression system 44 and within displacement chamber 24. The output of the sensors may be received by an electronic controller to monitor the performance of system 44 and displacement chamber 24 and control the volume of storage chamber 14 by varying the temperature of displacement chamber 24 in response to changes in the load on system 44.
If desired, vessel 10 may also separate liquid phase refrigerant from gas phase refrigerant during normal operation of system 44. As shown in the plan view of
As can also be seen in
Although the illustrated embodiments of vessel 10a-10d each employ a thermal transfer element to alter the volume of the displacement chamber, alternative embodiments could employ other means of expanding and contracting the volume of the displacement chamber such as by forcing additional working fluid 30 into the displacement chamber to enlarge the displacement chamber volume and removing working fluid from the chamber to reduce the displacement chamber volume.
A vessel 10e is shown in
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.