The present invention relates to the oil and gas industry and, more particularly, to the transport and storage of proppant.
Hydraulic fracturing is the propagation of fractions in a rock layer caused by the presence of pressurized fluid. Hydraulic fractures may form naturally, in the case of veins or dikes, or may be man-made in order to release petroleum, natural gas, coal seam gas, or other substances for extraction. Fracturing is done from a wellbore drilled into reservoir rock formations. The energy from the injection of a highly-pressurized fracking fluid creates new channels in the rock which can increase the extraction rates and ultimate recovery of fossil fuels. The fracture width is typically maintained after the injection by introducing a proppant into the injected fluid. Proppant is a material, such as grains of sand, ceramic, or other particulates, that prevents the fractures from closing when the injection is stopped.
A dominant proppant is silica sand, made up of ancient weathered quartz, the most common mineral in the Earth's continental crust. Unlike common sand, which often feels gritty when rubbed between the fingers, sand used as a proppant tends to roll to the touch as a result of its round, spherical shape and tightly-graded particle distribution. Sand quality is a function of both deposit and processing. Grain size can be a key factor, as any given proppant must reliably fall within certain mesh ranges, subject to downhole conditions and completion design. Generally, coarser proppant allows for higher flow capacity due to the larger pore spaces between grains. It may break down, however, or crush more readily under stress due to the relatively fewer grain-to-grain contact points to bear the stress often incurred in deep oil- and gas-bearing formations.
Applicant has recognized a number of problems in the prior art. For example, Applicant has recognized that, in any hydraulic fracturing operation, a large amount of proppant is required, and it can be difficult to effectively store the proppant at the fracturing sites. Additionally, Applicant has recognized the difficulty in effectively transporting the proppant to the desired location. Proppant may be hauled to the desired locations on the back of trucks and clumped onsite. Under such circumstances, the proppant is exposed to adverse weather conditions. This may degrade the quality of the proppant during its storage. Additionally, the maintenance of proppant in containers at the hydraulic fracturing site requires a large capital investment in storage facilities. Typically, the unloading of such storage facilities is carried out on a facility-by-facility basis. As such, there is a need to be able to effectively transport the proppant to and store the proppant in a desired location adjacent to the hydraulic fracturing location.
With the development and acceptance of the well stimulation methodology known as “hydraulic fracturing,” a unique logistics challenge has been created in delivering the massive quantities of proppant from domestic sand mines to the wellhead. This logistics challenge affects every stakeholder up-and-down the logistics chain. In particular, this includes sand mine owners, railroads, trans-loading facilities, oil-field service companies, trucking companies and exploration and production companies. As such, Applicant has recognized a need for facilitating the ability to quickly and inexpensively off-load proppant from rail cars so as to enable railroads to improve the velocity, turn-around and revenue-generating capacity of the rail-car fleet.
Applicant further has recognized that limited storage at trans-loading facilities has severely limited many of the current facilities' ability to operate efficiently. Most trans-load facilities are forced to off-load rail hopper cars by bringing in trucks (i.e. pneumatics) along the rail siding, and conveying sand directly from rail to truck. This requires an intense coordination effort on the part of the trans-loader as well as the trucking community. Long truck lines are commonplace, and demurrage fees (i.e. waiting time charged by trucking companies) amount to hundreds of millions of dollars nationwide. As such, Applicant further has recognized that the throughput of these trans-loading terminals is reduced greatly, which costs the terminal meaningful revenue.
Additionally, Applicant has recognized that trans-load terminal locations are not able to move from one area of the shale pay to another, and a potential loss of the investment in such immobile silos can often scare investment capital away from these types of future projects so as to further exacerbate the logistics chain problem. As such, a need has developed for a portable, inexpensive storage and delivery solution for proppant.
Furthermore, Applicant has recognized that service companies (such as fracturing companies) are held captive by the current proppant delivery process. This is the result, in part, of inefficient trans-load facilities and pneumatic (bulk) truck deliveries. A service company cannot frac a well if it does not have a supply of proppant. Thus, Applicant has recognized that pressure pumps, coiled tubing, and other well stimulation equipment sit idle due to the lack of required proppant at the well-site. “Screening-Out” or running out of proppant may occur at well locations due to the lack of control over what is happening up-stream in the proppant logistics chain.
Applicant further has recognized that an improper arrangement of plates extending to the discharge opening of a container creates conflicting problems in the delivery of proppant. For example, if the funnel was at an angle that was too great, then it would occupy too much space within the interior of the container. As such, the desired ability to transport between 45,000 pounds and 48,000 pounds of proppant was compromised. Although the steep inclination of the funnel would allow for the proper discharge of all of the proppant from the interior of the container, the containers were found to be unable to contain the desired amount of proppant. On the other hand, if the angle of the funnel is too shallow, then the proppant could not be discharged properly from the bottom discharge opening. It was found that a certain amount of proppant would be retained within the interior volume of the container after discharge. As such, the full amount of the proppant could not be delivered, by a conveyor, to the wellsite. Additionally, if the angle of the funnel was too shallow, certain bridging effects would occur with the proppant within the container. As such, this could block the flow of proppant properly moving outwardly of the discharge opening. Although a shallow angled funnel would allow the container to receive the desired amount of proppant, the shallowness of the angle of the funnel would actually work against the ability of the container to properly discharge the desired amount of proppant. As such, Applicant recognized the need to provide a properly configured funnel so as to maximize the amount of proppant contained within the container while, at the same time, assuring that all of the proppant within the container would be properly discharged by gravity discharge onto a conveyor.
Embodiments of the invention provide for the enhanced transport and storage of proppant. Apparatus embodiments comprise a container having a top wall, a pair of end walls and a pair of sidewalls. The pair of side walls extend between the pair of end walls. The container has a bottom discharge opening. The container has a funnel extending from the pair of sidewalls and from the pair of end walls toward the bottom discharge opening. In embodiments, the funnel has sides extending an angle of greater than 25° with respect to horizontal.
In embodiments, the funnel includes a pair of side plates extending respectively from the pair of side walls toward the bottom discharge opening. The funnel also includes a pair of end plates extending respectively from the pair of end walls toward the bottom discharge opening. According to embodiments, each of the pair of side plates extends at an angle of greater than 30° with respect to the horizontal. In particular, each of the pair of side plates can extend at an angle of approximately 38° with respect to the horizontal. In embodiments, each of the pair of end plates extends at an angle of less than 37° with respect to the horizontal. In particular, each of the pair of end plates can extend at an angle of approximately 31° with respect to horizontal. The funnel can be formed of a stainless steel material.
The top wall has an opening formed therein. In embodiments, this opening has a length substantially greater than one-half of the length of the top wall. The opening has a width less than one-half of the width of the top wall. A hatch is hingedly connected to the top wall. The hatch has an area greater than an area of the opening. The hatch is movable between an open position and a closed position. In embodiments, the interior volume of the container is approximately 600 cubic feet. As such, in embodiments the container is configured so as to contain between 45,000 and 48,000 pounds of proppant.
The bottom discharge opening has a gate cooperative therewith. The gate is movable between a first position closing the bottom discharge opening and a second position at least partially opening the bottom discharge opening. Each of the pair of end walls extends downwardly from the top wall toward an upper edge of the funnel. Each of the pair of sidewalls extends downwardly from the top wall toward another upper edge of the funnel. A frame is affixed to the outer surface of the pair of sidewalls and affixed to an outer surface of the pair of end walls. This frame includes a plurality of horizontal beams and a plurality of vertical beams. The plurality of horizontal beams and plurality of vertical beams are arranged in a cross-hatched configuration with respect to the sidewalls and the end walls of the container. A plurality of receptacles are positioned at each corner of the frame. This plurality of receptacles are suitable for receiving a pin therein so as to allow the container to be positioned on a support.
The transport vehicle can be a vehicle that can be used in commercial roadway systems, railroad systems, or proppant supply or discharge stations. Embodiments of the invention include a method for supplying proppant to a transport vehicle. This process can include the steps of: (1) forming a proppant supply station; (2) forming a track in a circuit form such that a portion of the track is adjacent the proppant supply station; (3) forming a proppant discharge station in a location away from the proppant supply station; and (4) moving a trolley along the track between the proppant supply station and the proppant discharge station. In embodiments, the track extends to a location adjacent to the proppant discharge station. The trolley then can carry an empty proppant container to the proppant supply station. The trolley then can carry a filled proppant container to the proppant discharge station.
According to embodiments, the method further includes forming a proppant transport pathway in a location away from the proppant discharge station. This proppant transport pathway is suitable for allowing a proppant-hauling vehicle to move therealong. A lifting apparatus can be positioned in a location between the proppant transport pathway and the proppant discharge station. The filled proppant container is moved from a location adjacent to the proppant discharge station to a location between the proppant transport pathway and the proppant discharge station. The filled proppant container is loaded from the location adjacent to the proppant transport pathway onto the proppant-hauling vehicle. This step of loading can include lifting the filled proppant container from the location adjacent the proppant transport pathway by using the lifting apparatus, and moving the lifted filled proppant container to a bed of the vehicle on the proppant transport pathway.
In embodiments of the method, a container transport pathway is formed in a location away from the proppant discharge station. The container transport pathway is suitable for allowing an empty container-hauling vehicle to move therealong. A lifting apparatus is positioned in a location between the container transport pathway and the proppant discharge station. An empty proppant container can be moved on the empty container-hauling vehicle along the container transport pathway to a location adjacent to the lifting apparatus. The lifting apparatus serves to lift the empty proppant container from the empty container-hauling vehicle. The lifted empty proppant container can be moved to a location between the container transport pathway and the track.
According to embodiments, the proppant supply station includes one or more silos positioned above the track. Proppant is gravity discharged from the silo into the empty proppant container on the trolley. Proppant is supplied from a pile of proppant at the mine to the silo. The proppant is dried and then separated by grain size.
According to embodiments, the lifting apparatus is a gantry crane. This gantry crane has a portion extending above the proppant discharge station and another portion extending above the proppant transport pathway. The step of moving the filled proppant container can include the steps of lifting the filled proppant container from the trolley, moving the lifted filled proppant container along the gantry crane to a desired location, and depositing the filled proppant container onto the earth or on top of another filled proppant container location below the gantry crane in the location between the proppant transport pathway and the proppant discharge station.
Additionally, the deposited filled proppant container can be lifted from the location between the proppant transport pathway and the proppant discharge station by the gantry crane. The lifted filled proppant container is moved to a location above the proppant transport pathway. The filled proppant containers then are deposited onto the proppant-hauling vehicle. The proppant-hauling vehicle then is moved, along with the filled proppant container, along the proppant transport pathway to a desired fracturing location.
Additionally, embodiments serve to move empty containers. The step of moving the empty proppant containers can include lifting the empty proppant container from the empty container-hauling vehicle by the gantry crane, moving the lifted empty proppant container along the gantry crane to a desired location, and depositing the empty proppant container onto the earth or onto a top of another empty proppant container in the location between the container transport pathway and the track. In particular, the empty proppant container is lifted from the location between the container transport pathway and the track by the gantry crane. The gantry crane moves the empty proppant container to a location above the track and then deposits the empty container upon the trolley on the track. The trolley then can be moved with the deposited empty proppant container thereon to the proppant supply station.
In embodiments, the proppant hauling vehicle can be a truck or a railcar. If a truck is used, then the step of depositing can include depositing the filled proppant container onto the bed of a chassis of the truck, and then moving the truck, along with the filled proppant container, along the road to the desired location. Additionally, if the proppant hauling vehicle is a railcar, then the filled proppant container can be deposited onto the bed of the railcar, and then the railcar can be moved, along with the filled proppant container, along the railroad track to a desired location.
According to embodiments, the container transport pathway also can be a road (and can be the same road as the proppant transport pathway). The empty container-hauling vehicle also can be a truck. The truck can be moved, along with the empty proppant container, along to the road to a location below the gantry crane. The empty proppant container can be lifted from the bed of the chassis of the truck by the gantry crane. In those circumstances where the proppant hauling vehicle is a railcar, then the filled proppant container can be deposited onto the bed of the railcar and the railcar is moved, along with the filled proppant container, along the railroad tracks to the desired location. Additionally, the railcar can be used so as to move empty proppant containers to a location below the gantry crane. As such, the gantry crane can lift the empty proppant containers from the bed of the railcar.
Embodiments also include a proppant delivery system that comprises a track, a container-hauling trolley movably positioned on the track, a proppant supply station positioned adjacent to a portion of the track, a proppant discharge station positioned adjacent to another portion of the track, a container transport pathway extending in spaced relationship to the track, and a crane having a portion adjacent to the proppant discharge station and another portion adjacent to the container transport pathway. The container-hauling trolley can be movable along the track to a location adjacent to the proppant supply station. In addition, the container-trolley can be movable along the track to a location adjacent to the proppant discharge station. The crane is suitable for moving a proppant container from the proppant discharge station toward the container transport pathway.
In system embodiments, the crane can be a gantry crane having one portion located directly above the proppant discharge station and another portion located above the container transport pathway. The container transport pathway can be either a railroad track or a road. A container transport vehicle is movably positioned on the railroad track or the road. The container transport vehicle is movable between a location adjacent to the crane and a location at a well that uses the proppant from the proppant container. The proppant supply station can be a silo that is positioned above the track. The silo is suitable for gravity discharge of proppant from the silo into the container on the container-hauling trolley.
In the example shown in
The side walls 4 and 5 and the end walls 6 and 7 define a rectangular configuration. A frame 10 is configured around the exterior surfaces of the side walls 4 and 5 and the end walls 6 and 7. The frame 10 includes horizontal members 11a and vertical members 11b. The horizontal members 11a and the vertical members 11b form a cross-hatched configuration with respect to the side walls 4 and 5 and the end walls 6 and 7. In particular, the horizontal members 11a and the vertical members 11b were in the nature of square tubing that will bear against the outer surfaces of the respective walls. As such, the frame 10 contributes to structural integrity to the apparatus 1. It can be seen that there are corner posts 12, 13, 14, and 15 that are located at the corners between the side walls and the end walls. These corner posts 12, 13, 14, and 15 enhance the structural integrity of the container 2 at the corners thereof.
The container 12 includes a bottom 16. The bottom 16 is in the nature of a rectangular structure. Suitable horizontal structural members extend between the corner posts 12, 13, 14, and 15 at the bottom 16.
In
In
The end plates and the side plates form a funnel adjacent to the bottom 16 of the container 12. This funnel is directed toward a bottom discharge opening 24 at the bottom 16. The angle of the side plates and end plates helps to assure that the entire contents within the interior of the container 12 discharge through the bottom discharge opening 24 while, at the same time, assuring that a maximum amount of proppant can be contained within the interior volume of the container 12. In embodiments, this volume will be between 45,000 pounds and 48,000 pounds of proppant. In particular, the angle defined by the surfaces 21 and 22 of gussets 19 and 20 for the support of the end plates, can be at an angle of greater than 25° with respect to the horizontal. In particular, the pair of end plates can extend in an angle of less than 37° with respect to the horizontal. In an embodiment the present invention, the end plates extend at an angle of approximately 31° with respect to horizontal. Similarly, the side plates 23 also can extend at an angle of greater than 25° with respect to horizontal. The pair of side plates can extend at an angle of greater than 30° with respect to horizontal. In an embodiment the present invention, each of the pair of side plates extends at an angle of 38° with respect to the horizontal. It was found that this configuration serves to assure that all of the proppant is discharged from the interior of the container. In
The structure in
In
As was stated previously, the angle of the side plates and end plates contributes to avoiding the problems of retaining proppant within the interior of the container while, at the same time, allowing a maximum amount of proppant to be received within the container. In an embodiment the present invention, the container 2 will have a length of 118 inches and a width of 96 inches. The apparatus 1 is particularly configured so as to be placed upon a railcar or on a trailer, though one skilled in the art, after reading this specification, will understand that other modes of transportation are permissible as well. In order to transport the apparatus 1 on highways, certain weight restrictions (as recited hereinabove) must be addressed. In order to comply with weight restrictions on roads, the container 2 should contain no more than 48,000 pounds of proppant. Ultimately, the total weight of the container 2 and the proppant therein should be no greater than 52,000 pounds. As such, it is necessary to configure the bottom structure, along with the end plates and side plates, such that approximately 48,000 pounds of proppant can be contained within the container. Experiments with various configurations and orientations of side plates and end plates have been carried out to determine the configuration of such side plates and end plates.
Experiments were conducted with a container in which the side plates had an angle of 30° and the end plates had an angle of 37°. The container had a tare weight of 5,560 pounds. The container was filled with proppant such that the gross weight of the container and the proppant was 43,460 pounds. As such, the total capacity of such container was 37,900 pounds. If the sand was “hand-packed”, then the total capacity of sand is 43,900 pounds. The container had an internal cubic capacity of 512 cubic feet.
During experiments, it was found that this orientation of side plates and end plates effectively discharged approximately all of the proppant from the container. Generally, however, the container was capable of transporting only 37,900 pounds of sand. As such, the capacity of the container was substantially less than optimal. Because the maximum amount of proppant is desired for every container, it was found that this configuration and orientation of side plates and end plates was insufficient.
The container was modified so that the side plates extended at a 20° angle to horizontal and the end plates extended at 25° angle of the horizontal. The total weight of such container was 5,420 pounds. The internal cubic capacity of such container was 554 cubic feet. As such, only an insufficient amount of proppant could be received in such a container. During experiments with such a configuration, it was found that 4,120 pounds of proppant remained within the container. As such, this orientation of side plates and end plates was found to be ineffective in discharging all of the contents from the container. As a result, less than desired amount of proppant was available for use.
Another test was carried out on a container in which the side plates were oriented at a 20° angle with respect to horizontal and the end plates were at a 25° angle with respect to horizontal. The total weight of the container was 5,380 pounds. The gross weight of the container and the sand therein was 46,900 pounds. The container had the capacity of 41,520 pounds. The internal cubic capacity of such a container was 554 feet. It was found that this orientation of such side plates and end plates resulted in less than necessary amount of proppant being contained.
In a further test conducted, the side plates were oriented at a 25° angle with respect to horizontal and the end plate was arranged at a 31° angle with respect to horizontal. This resulted in an internal cubic capacity of the container of 536 cubic feet. The total weight of the container was 5,480 pounds. Unfortunately, this orientation of relatively steep plates minimized the capacity of the container. As such, substantially less than 41,000 pounds of proppant could be included in the container.
The container was modified such that the side plate extended at an angle of 38° to horizontal and the end plate extended at an angle of 31° to horizontal. The total weight of such container was 6,200 pounds. A gross weight of the container with the sand therein was 52,000 pounds. As such, the amount of sand within the container was 46,500 pounds. The internal cubic capacity of the container was 600 cubic feet. In experiments with this configuration, it was found that all the proppant was discharged from the interior of the container, as desired. Additionally, the amount of proppant within the container (i.e. 46,500 pounds) was optimal. In other words, this amount of proppant satisfied that needs for proppant delivery while, at the same time, assured that the equipment used to transport such equipment complied with highway regulations. As such, it was discovered that this arrangement of end plates and side plates optimized the discharge of proppant while, at the same time, enhanced the capacity of the container to transport proppant.
A receptacle 76 is positioned at or adjacent to the top surface 64. The actuator 78 is affixed to the frame 62 and extends to the receptacle 76. As can be seen, the receptacle 76 has a slot formed in the top end thereof. The slot of the receptacle 76 is suitable for receiving one of the pins 48 and 58 of the gate 44 of the container 10. Once the receptacle 76 receives the pin 48 therein, the actuator 78 can be actuated so as to move the receptacle (and its received pin) from the first position 80 to a second position 82. When the receptacle 82 (along with the pin received therein) is moved to the second position 82, the gate 44 will be opened so that the proppant can be discharged through the bottom discharge opening 24 of the container 2. Since pins 48 and 58 are symmetrically placed, and since the container 2 is rather symmetrical, the support structure 60 is particularly adapted to the variety of orientations with the container 2 can be placed upon the top surface 64.
In
As can be seen in
In embodiments, the container 2 is manufactured as a single unit. The gate 44 of the container 2 is specifically engineered to align with the actuator 78 located on the conveying system, as will be discussed more thoroughly below. The actuator is hydraulically controlled and accepts the pin 48 which is attached to the gate 44. When the actuator 70 is activated, the gate 44 moves horizontally so as to allow for the discharge of proppant therefrom.
In embodiments, the container can be specifically applied for transport via rail. In particular, the railcar can be designed so as to accommodate up to four containers 2. As such, the railcar can carry approximately 180,000 pounds of proppant when the four containers are placed on the railcar. The railcar can be similar to current inter-modal railcars that carry twenty foot, forty foot and fifty-three foot inter-modal containers. The railcar would include typical inter-modal load-locks which are evenly spaced down to chassis of the railcar. The container should be constructed of materials wide enough to keep the overall loaded weight of the container under currently regulated railroad weight guidelines. Additionally, it must be strong enough to bear the load of the loaded container. This development allows sand mines to load proppant directly into a container 2 to speed up the loading process. It also eliminates the need to build a silo storage at the mine site. Once the container arrives at its designated location or region, trans-load processes to pneumatic trailers, silos or flat storage, are thus eliminated.
In addition, embodiments of the invention include improved delivery system that can be used at the well-site. The support structure 60 includes a fabricated steel frame upon which multiple containers can be positioned. The containers lock into receptacles that secure the containers to the frame. The container will then sit above a conveying system that delivers the proppant from the container as the gate is opened to a master-conveying belt. The cradle is outfitted with a hydraulic system which can control the opening and closing of the gates. The containers of embodiments of the present invention can be combined as an attachment or cartridge compatible with existing devices known as SAND KINGS™, SAND CHIEFS™ and SAND DRAGONS™. By replacing existing hoppers on these devices with the removable containers of the present invention, even greater efficiencies can be attained in the proppant delivery process.
The conveying system of embodiments of the present invention is an alternative method of delivering proppant from the container to the blender belt for the mixing unit once delivered to the well-site. The conveying system of the present invention provides all of the functionality commonly seen in the SAND MASTER™, SAND KING™, SAND DRAGON™, SAND MOVE™, etc. As such, embodiments allow the flow of sand to be metered onto the conveyor belt through a hydraulic system of flow gates. The container first is lifted into position onto the support structure. The bottom flow gate is received by the receptacle of the hydraulic actuator so as to create a lock between the pin of the gate and the hydraulic system. The hydraulic system then opens the flow gate and the proppant so as to gravity-feed into a hopper located on the support structure. Another set of flow gates associated with the hopper system are then opened by way of another hydraulic system. This allows the proppant to be metered and to flow onto a conveyor belt. The conveyor belt then can deliver the proppant to the blender or the T-Belt. The proppant then can be mixed with other materials in the blender.
Currently, expensive pneumatic bulk trucks are utilized in the delivery of proppant to a well-site. Once on-site, the trucker employs a power take-off unit to “blow” the sand into the sand storage devices. This delivery often takes over one (1) hour to complete. By delivering sand to the well in the ten-foot containers of the present invention, the use of expensive pieces of specialized equipment is eliminated. The container can ride on a standard flatbed, step-deck, low-boy, or other more commonly-used trailer. As such, the embodiment methods are able to tap into a much larger universe of available trucking capacity. This can reduce the transportation costs to the well. While pneumatic trailer deliveries are priced in “round trip” miles, the delivery of the container by a more common piece of equipment (capable of getting a “back-haul”) significantly reduces the overall transportation cost. As an example, there is a great need for parts, tools and other wellhead equipment to be taken off the well-site for repair or return to a manufacturer or rental company. The flatbed trailer, now empty, has the ability to accept that load while it is on-site rather than calling in another trucking company to provide that service. The reduced need for “hot-shot” service is another significant value to the service company and ultimately the exploration and production company.
In terms of returning empty containers to the sand distribution facilities, a total of four (4) empty containers can be returned by a single flatbed trailer. This provides a 4:1 level of efficiency in removing the containers from the well-site. Additionally, a forty foot container chassis can be used in the movement of both empty and full containers. The support structure, just like the containers, can be delivered to the well-site by a typical flatbed truck. The support structure could be towed via truck to the site in manner similar to any other trailer.
In addition, because embodiments of the invention employ the ten-foot ISO containers, there is a small footprint for the ISO containers relative to the capacity of sand that they can store. When the containers are stacked three high, the containers can store approximately 135,000 pounds in a footprint of eighty square feet. The available space at the wellhead, and in potential proppant trans-loading facilities, can be extremely limited. As such, embodiments lessen the footprint that is required for a given amount of proppant at such a location.
Because environmental and safety concerns surrounding well-site operations is becoming an increasing concern, it is relevant that embodiments reduce the amount of particulate matter that is released into the air. Proppant currently is delivered to the frac site via pneumatic trailers. Pneumatic pressure is used to pressurize the trailer and then “blow” the material into a sand storage unit. This process creates an immense amount of particulate matter than can then be inhaled by personnel at the frac-site. Additionally, while blowing the sand into the sand storage facility, the sand storage facility must vent the pressurized air to the atmosphere. This creates an even greater exposure to particulate matter. The constant need to take delivery of proppant on-site creates a constant environment of dust and small particles in the air. Because embodiments eliminate pneumatic deliveries, methods significantly reduce the amount of particulate matter at the frac site. The gravity-feed delivery method from the container to the blender greatly improves the safety of well-site personnel. Moreover, embodiments reduce trucking emissions by reducing the amount of trucks that are being used or waiting. The safety at the wellhead is improved by reducing such truck traffic.
Additional Details on Spine Cars
Shown in a side view in
Further provided on the containers 310 are vertical support ribs 324 shown extending along the outer surfaces of the sidewalls 322 between the upper and lower joists 316, 318; ribs 324 are laterally spaced apart from one another and the posts 320. Horizontal support ribs 326 are depicted that horizontally extend between adjacent posts 320 and that are vertically spaced apart from one another. In the example of
A lower end of the frame 314 includes a girder 328, which includes a series of elongate members that are joined end-to-end to form a generally rectangular assembly. The lower ends of the posts 320 connect to the girder 328 at corners of the girder 328 defined where the members are joined. As shown in
Still referring to
In one example, the containers 310 have sides with a length of about 310 feet in length and are about 10 feet in height. Alternatively, the railcar 312 has a gross rail load of 263,000 pounds. An example design specification of the railcar 312 is provided in “AAR Specifications for Design, Fabrication, and Construction of Freight Cars, M-1001”, which is incorporated herein in its entirety. In an alternative, limiting dimensions are designed to AAR Plate B. Optionally, the railcar 312 is designed to comply with AAR Interchange Rules and D.O.T. requirements and hast light weighing and stenciling requirements of AAR Interchange Rule 70. In an example, parts of the railcar 312 are made and assembled using gauges and templates for interchangeability. The following are optional dimensions, length over end sills—45′-10½″; width over end sills—8′-6½″, extreme width over end handgrabs—9′-5½″; length over coupler pulling faces—49′-2″; length over strikers—46′-6½″; truck gauge—4′-8½″; length center to center of bolsters (truck centers)—32′-2″; truck wheel base—5′-10″; total wheel base—38′-0″; height top of rail to top of end ladder stile—6′-3½″; extreme height to top of sand container—13′-1¼″; height top of rail to center of couplers—2′-10½″; gross rail load—263,000 pounds; load limit (4×55,000 lb containers)—220,000 pounds; light weight of car (estimated) 43,000 pounds; curve negotiability radius: uncoupled—150′; coupled to like car—151′; coupled to 40′ base car—175′. Truck castings can be 110-ton, 16″ center bowl, and spring grouping suitable for a 286,000 pound gross rail load in accordance with AAR M-976. However, trucks can be sprung for 263,000 pound gross rail load. Side frames can be AAR M-201 Grade B+ cast steel in accordance with AAR Specifications M-203 and M-210. The side frames can be narrow pedestal type and have integral unit brake beam guides. Column guides can have wear plates secured with SAE J429 Grade 8 fasteners. Bolsters can be AAR M-201 Grade B+ cast steel in accordance with AAR Specification M-202 and M-210, with 1¾ inch×16 inch finished bowl, with 2 inch welded steel vertical wear ring, designed for loose manganese steel or polymer horizontal wear plate. The center plate bearing surface can be machined. Roller bearing adapters can be for 6½″×9″ Class K bearings and narrow pedestal side frames. Examples exist without heat indicators. The thrust shoulders can be hardened. Roller bearings can be NFL type for 6½″×9″ journals. Axles can have a nominal 100-ton capacity with 6½″×9″ journals, in accordance with AAR Specification M-101, latest revision, Class K, Grade F. Wheels in an example are 36″, AAR H-36 or CH-36, one wear, Class C. Side bearings can be constant contact metal cap long travel type, and optionally attached to bolster with SAE J429 Grade 8 bolts and IFI-100 Grade C locknuts. Center pins in an example are 1¾″ diameter A36 steel.
In a further optional embodiment, the center sill is a fishbelly box type with the bottom cover plate at the center is ½ inch ASTM A572 GR50 steel with Charpy V-notch 15 ft-lb at −20° F. The bottom cover plate at the ends can be ¾ inch ASTM A572 GR50 steel with Charpy V-notch 15 ft-lb at −20° F. The top cover can be ⅞ inch ASTM A572 GR50 steel from striker to striker. In an embodiment, the webs at the ends are ⅝ inch ASTM A572 GR60 steel with Charpy V-notch 15 ft-lb at −20° F.; and the webs in the center are 5/16 inch ASTM A572 GR50 steel. Center sill separators at pedestals can be ½ inch ASTM A572 GR50 steel plate. Body bolsters in one example are built-up welded design consisting of double webs of ⅜ inch ASTM A572 GR50. Top cover plates are optionally ⅜ inch ASTM A572 GR60 steel with a Charpy V-Notch value of 15 ft-lb at −20° F. and extend just past the truck side bearings. Alternatively, bottom cover plates are of ⅜ inch ASTM A572 GR50. Bolster tie plates can be ASTM A572 GR50 steel, welded to bottom cover plates and center sill flanges. In an alternative, web stiffeners are ASTM A572 GR50 steel located at critical changes in section on bolsters. Pedestals, can be at three locations per car, are built-up weld design, with 5/16 inch ASTM A572 GR50 steel pedestal webs welded to center sill and pedestal end plate. Pedestals are optionally cantilevered off of the center sill. In an example, pedestal top cover plates are ⅜ inch ASTM A572 GR50 steel and extend from pedestal end plate to center sill top cover plate and are welded to pedestal webs and top of center sill. Pedestal bottom cover plates can be ⅜ inch ASTM A572 GR50 steel and extend from center sill web to pedestal end plates and are welded to crossbearer webs. Pedestal Top cover plate can be reinforced with ⅝ inch ASTM A572 GR50 in the area where the IBC connectors connect the container to the pedestal. In one example, crossties two per car are provided that are fabricated from 3/8 ASTM A572 GR50 steel extending from center sill web to end sill, and which are welded to center sill and end sill webs and flanges. End sills can be formed from 5/16 inch ASTM A572 GR50 steel and are welded to center sill and crossties. Body side bearings are optionally provided that are 5 inch wide of forged steel to Brinell hardness 277-341 and are secured to steel fillers and bolster bottom cover plates with two (2) ¾ inch Grade 8 square neck plow bolts, ASTM F-436 hardened washers and ASTM A563 Grade C hex nuts, torqued to 300 ft-lbs. Nut can be tack welded to bolt after torquing. Pedestals can be reinforced for jacking fully loaded car off the trucks. Couplers can be bottom operating AAR EF511CE Reduced Slack of Grade E steel. In an example, coupler release rigging is standard for bottom operating coupler, and yokes can be SY45AE of Grade E steel. Draft gear carriers can be lockbolted to center sill, and draft gears can be AAR M-901E with Y44 followers. In an example, design and installation of the brake system is in accordance with AAR Standards S-400, S-401, S-475 and AAR Field Manual Rule 88 A.2.r; and can be tested in accordance with AAR Standard S-486. The car can be equipped with one 40% empty load device with downstream proportioning valve. Extra strong steel pipe may be used for all piping except for short nipples which are Sch 40. Piping can be secured to underframe of car with wedge type pipe anchors. In an example, maximum unsupported span is 8′-0″. Individual pipes can be formed to accurate shape before application to car. Pipe connections can be made with either adjustable (swivel) socket welded fittings or all welded couplings. In angle cock embodiments, connections can be screw type. Branch pipe tee can be an all-welded application for 1¼″ pipe and bolted flange fitting for 1″ pipe. Braking ratio can be in accordance with D.O.T. requirements and AAR Interchange Rules. Optionally included is an AAR 1993 Group N handbrake that is vertical wheel, non-spin, quick release type (long handle) with 1966 bell crank. Ten inch by twelve inch (10″×12″) cylinder piston travel for the brake can be in accordance with Rule 3 of the AAR Interchange Rules. Group E double acting slack adjuster with double jaws can be applied. Example brake shoes are two inch (2″) high-friction composition type, AAR H-4 designation. Example brake beams are AAR Standard No. 24, angle corrected, with metal shoe rejection lugs. In an embodiment, brake pins are C1050 steel turned or drop forged and induction hardened to Rockwell C60-63 to a depth of 0.080″-0.100″, where minimum diameter of pins can be 1 3/32″. Brake pins can be secured with ⅜″ standard cotter keys. Brake shoe keys can be forged steel spring type.
Further example embodiments include truck levers and connections that are forged steel design. Body levers can be fabricated by car builder from 1″ flame cut ASTM A36 steel. Example brake rods are ⅞ inch diameter ASTM A36 steel and brake rod supports can be the closed loop design equipped with non-metallic wear protectors. An example stainless steel badge plate is provided at one per car, showing brake lever dimensions and cylinder size is applied to car in a visible location near air brake cylinder. Ball type angle cocks can be used that are threaded onto a nipple which is secured to brake pipe with a socket weld by screwed coupling. An example release rod has a ½ inch diameter ASTM A36 steel with closed loop ends and arranged for in-line operation of the brake cylinder release valve. Brake reservoir can be an all welded fabricated design. Brake beam wear plates can be all metal type UW-116. Safety appliances can comply with AAR and FRA requirements and the first car may be inspected by an FRA inspector. Handholds can be ¾″ round bar forgings of ASTM A576 GR1015 steel. Ladders can have handholds fastened to L2×2×3/16 ASTM A36 steel stiles with ⅝ inch fasteners. Ladder assemblies can be fastened to car body with lockbolts or threaded bolts and nuts as applicable. Sill steps can be ½ inch×2 inch ASTM A36 steel and optionally located at each corner of car and fastened to side sill with ⅝ inch fasteners. End platforms are in one example 19½″×100″ and are mounted on both ends of the car. Steel surfaces can be cleaned free of rust, scale, dirt, grease, and moisture. The sides, ends, and underframes can be blasted to a commercial quality finish (SSPC SP-6) before painting. Air valves, hand brakes, slack adjusters, etc., are optionally not removed during blasting but are adequately protected. Metal-to-metal lap joints or surfaces which are inaccessible and open to the atmosphere after assembly can be painted with weldable primer before assembling. Exterior surfaces of sides and ends can be painted with waterborne acrylic emulsion, four mils minimum dry-film thickness. All paints can be lead free in accordance with Gunderson paint specifications for all railcars. The reporting marks and car numbers can be steel stamped on the BL side of the center sill inboard of the no. 2 axle and on the side sill at the BR corner of the car. Stenciling can be in accordance with AAR Manual of Standards and Recommended Practices, Section “L”, and the customer's requirements and can be based on 263,000 pound gross rail load. Adhesive backed decals can be manufactured in accordance with AAR Specification M-947. Trucks, as received from truck manufacturer, can have one (1) coat of primer and can be stenciled with customer's reporting marks and car number on the right hand tension member of the side frames. Route card boards, two per car, can be all metal type welded to the car side. Route card boards can be painted same color as exterior car body. Railcar 12 can be equipped with two (2) AEI (Automatic Equipment Identification) tags. Bolts and nuts can be threaded to coarse thread series in accordance with the Unified Screw Thread Standard Class 2A External and Class 2B Internal Threads for Class 2 fit of the American Standard for Screw Threads. Bolt heads can be in accordance with American Standard Regular Hexagon. Nuts can be American Standard per ASTM Specification A563 GR A or stronger, unless otherwise specified. High-strength bolts can be ASTM Specification A325 or stronger, unless otherwise specified. Self-locking nuts meeting AAR Specification M-922 can be used on bolts securing control valve, combined reservoirs, brake cylinder, retainer valve, and angle cock “U” bolts to car body supports. Self-locking cap screws meeting AAR Specification M-922 can be used for securing all flanged pipe fittings on reservoir, ABDW valve, brake cylinder and retainer valve. Riveting and lock bolting applications can be in accordance with Chapter V of the AAR Manual of Standards and Recommended Practices, Section C—Part II. Welding practice can be in accordance with Chapter V of the AAR Manual of Standards and Recommended Practices, Section C—Part II.
Additional Details on Transportation
Referring to
In the exemplary embodiment of
The container transport pathway is illustrated in
The proppant supply station 216 includes a plurality of silos 232, 234 and 236 that are arranged above a loading bay 238. The loading bay 238 is positioned over the track 212. Various trolleys 214 are illustrated as passing through the interior of the loading bay 238. Each of the trolleys 214 includes a plurality of containers thereon. Each of the containers on the trolleys 214 will open at the upper end thereof. As such, proppant in the silos 232, 234 and 236 can be directed, by gravity discharge, into each of the proppant containers on the trolleys 214.
A conveyor 240 can extend from a location away from the track 212 toward the upper end of each of the silos 232, 234 and 236. As such, conveyor 240 can be utilized so as to deliver bulk amounts of dry proppant into the silos. As such, the proppant can be stored in the silo for as long as required. When a demand for proppant is required, then the trolley 214 can move along the track 212 so as to move into the loading bay 238. The silos 232, 234 and 236 can then be opened so as to deliver proppant into each of the containers on the trolleys. After the containers are filled, they can move along the track 212 toward the proppant discharge station 218. Typically, the conveyor 240 will transfer the dried proppant from a drying process and a grain separation process toward the silos. As such, the processes proppant is rapidly containerized so as to avoid any damaging exposure to the elements.
It can be seen in
The truck 226 is utilized for the delivery of empty proppant containers. As such, there is an empty container 230 located on a forward portion of the bed of the chassis of the truck 226 and empty container 252 located on a rearward portion of the chassis of the truck 226. Because the containers 230 and 256 are empty, the truck 226 can be utilized so as to haul a pair of containers, and possibly more containers. Once the container is filled, however, the truck 228 will have the container 258 positioned forward of the rear wheels of the bed of the chassis of the truck 228. As such, truck 228 can be utilized so as to deliver a filled container to a well site. The chassis of truck 228 can be of a type described in U.S. Design Pat. Nos. D694,670 and D688,597. This chassis was further described in co-pending U.S. patent application Ser. No. 13/854,405, to the present application.
These gantry cranes 224 and 244 can span significant distances. As such, they can be configured so as to extend for the distance between the track 212 and the container transport pathway 20. Additionally, each of the gantries 224 and 244 is supported on wheels. As such, they can be suitably moved so as to grasp any of the containers in the stacks 248 and 250 therebelow. If necessary, the gantry 244 can be utilized so as to remove and stack empty containers into the stack 250. The gantry 224 can be utilized so as to move filled containers into the inventory stack 248. The gantry 224 can further be utilized so as to remove a filled container from the trolley 214 at the discharge station 218 and to move the container from the trolley 214 to the inventory stack 248 of filled containers. The gantry 224 could also be utilized so as to remove an empty container 230 from the chassis of the truck 226 so as to place such a container on the inventory stack 250 of empty containers. Also, each of the gantries 224 and 244 can be configured or interchanges so as to carry out any or all of the above operations. In fact, in the concept of the present invention, a single gantry could be utilized for all of the purposes intended herein.
In
In embodiments, the container transport pathway 220 can be utilized for either the delivery of empty proppant containers and/or for the delivery of filled proppant containers to the well site. If necessary, separate pathways could be utilized for the purpose of delivery of the empty proppant containers and for the delivery of filled containers. Similarly, the railroad tracks 60 can be utilized either for the delivery of empty proppant containers or delivery of filled proppant containers to the well site. Additionally, or alternatively, a separate rail line 60 could also be used for these alternate purposes.
In
In
If necessary in embodiments, each of the gantries 224 and 244, or only one of the gantries 224 and 244, can be utilized so as to deliver an empty proppant container from a vehicle on the roadway 220 directly to the trolley 214. Also, each of the gantries 224 and 244 could be utilized so as to deliver a filled container of proppant from the trolley 214 directly onto the bed of the chassis of the truck or the bed of the railroad car. This situation would occur when supplies of the inventory containers are exhausted.
In embodiments, the gantries 224 and 244 are intermodal gantry cranes that are used to manipulate empty and full proppant containers. These proppant containers can be moved to and from truck beds, railcars, trolley cars, full inventory stacks, and empty inventory stacks. The track 212 is a small loop track that guides the trolleys carrying the empty proppant containers into a loading bay to be loaded and then moves the filled proppant containers below the gantry cranes. As such, the full proppant containers are positioned so that they can be moved to the inventory stack of filled containers. The silos are used to hold the final product of proppant before the product is loaded into the proppant containers. Each of the railcars can be in the nature of a specialized railcar for a specific use in transporting four or more proppant containers on each railroad car. The trailers can be specialized chassis trailers that can be each utilized for transporting two or more empty proppant containers or a single full proppant container. The proppant containers described herein are of a type shown in U.S. Design Pat. Nos. D688,772, D688,351, D688,349, and D688,350. This type of container is also shown in U.S. Pat. Nos. 8,622,251 and 8,505,780, all to the present applicant.
In embodiments, as the empty proppant containers arrive back from the field by either railcar or by truck, the railcars or trucks are positioned on the track or road that runs underneath the gantry cranes. The cranes remove the empty containers from the trucks or railcars to the empty inventory stack. Once the empty containers are removed from the railcars or trucks, the gantry cranes will begin to reload the railcars or trucks from the inventory stack of full containers. The train or trucks will depart from the proppant mine once they are completely reloaded. The filling of the proppant containers by the use of the trolleys can occur simultaneous to the above-described process. A constant flow of empty proppant containers are guided into the loading bay that are filled with proppant from the silos. Once filled, the proppant containers exit the loading bay, and then travel around the trolley track until they are positioned underneath the gantry cranes. These filled proppant containers are then removed from the trolley cars, placed onto the inventory stack of filled containers, and then replaced by empty proppant containers from the inventory stack of empty containers. The replacement empty containers are sent to the loading bay along the track and the trolleys so as to repeat the process.
Embodiments of methods and systems are illustrated at an exemplary well site 530 in
A flow gate 932 is positioned within tracks 933 located on the bottom 906 over or adjacent the opening or openings 924 of the inclined lower inner portions 922 of each respective container 900, as shown in
As can be seen in
The conveyor 1000, having a plurality of compartments 1002 adapted to receive containers 900, also can have a plurality of openings 1028 in the top surface 1020 of the conveyor 1000. The plurality of openings 1028 is positioned beneath the respective plurality of containers 900 on the conveyor 1000 such that proppant 538 flowing from each respective container 900 will pass through each respective opening 1028. Each opening 1028 has one or more forks 500 positioned above or adjacent the opening or openings 1028, the one or more forks 500 adapted to receive a handle 934 of a flow gate 932 of a container 900 to engage, contact, or communicate with the corresponding handle 934 of the flow gate 932 of the container 900, as shown in an embodiment depicted in
Embodiments of the conveyor 1000, for example, also can include a plurality of conveyor hoppers 600 positioned adjacent or beneath the plurality of openings 1028 in the top surface 1020 of the conveyor 1000. The plurality of conveyor hoppers 600 is positioned such that when containers 900 are placed onto the conveyor 1000, each respective conveyor hopper 600 is beneath the flow gate 932 of the one or more openings 924 of each respective container 900. As shown in
In the embodiments shown in the series from
As shown in
As shown in the embodiments of
As shown by the break-away portions of
In an embodiment, the conveyor belt 700 need not travel in an upward direction at the second end 1014 of the conveyor 1000, but rather, may stay level, or travel in a downward path, if the conveyor 1000, the one or more conveyor belts 700, or the chute 822, is positioned to deposit proppant 538 into a blender hopper 810 that is at or below the one or more conveyor belts 700, or if the chute 822 is positioned to deposit proppant 538 into a hole, for example. This embodiment of the present invention may include the one or more conveyor belts 700 traveling in a substantially level or downward path from the first end 1012 of the conveyor 1000 to the second end 1014, underneath the plurality of conveyor hoppers 600, and depositing the proppant 38 into a chute 822 or directly into a blender hopper 810 without passing through a shrouded portion 802. In this embodiment, the chute 822 or blender hopper 810 is adapted or positioned to remain lower to the ground than the top surface 702 of the conveyor belt 700 such that proppant 38 is deposited directly into either the chute 822 or the blender hopper 810 by gravity feed 812 as the conveyor belt 700 turns about around a roller 708. This embodiment, for example, provides that the one or more engines 710 and the controls 1017, if any, may need to be moved from the second end 1014 of the conveyor 1000 to the first end 1012 to accommodate the elimination of the shrouded portion 802 at the second end 1014. In this embodiment, the wheels 1016 of the conveyor 1000 may also move to the first end 1012 of the conveyor 1000. This embodiment may also include a blender hopper cover 1208 and a plurality of curtains 1200 to reduce the risk of production and release of silica dust 550 at the well site 530.
This application claims the benefit of, and is a divisional of U.S. patent application Ser. No. 14/738,485, filed Jun. 12, 2015, titled “Apparatus for the Transport and Storage of Proppant,” which is a continuation-in-part of U.S. patent application Ser. No. 13/768,962, filed Feb. 15, 2013, titled “Support Apparatus for Moving Proppant from a Container in a Proppant Discharge System,” now U.S. Pat. No. 9,771,224, issued Sep. 26, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 13/628,702, filed Sep. 27, 2012, titled “Proppant Discharge System and a Container for Use in Such a Proppant Discharge System,” which is a continuation-in-part of U.S. patent application Ser. No. 13/555,635, filed Jul. 23, 2012, titled “Proppant Discharge System Having a Container and the Process for Providing Proppant to a Well Site,” now U.S. Pat. No. 9,718,610, issued Aug. 1, 2017, all of which are incorporated herein by reference in their entireties. U.S. patent application Ser. No. 14/738,485 further claims priority to and the benefit of U.S. Provisional Application No. 62/012,153, filed Jun. 13, 2014, titled “Process and System for Supplying Proppant from a Mine to a Transport Vehicle,” U.S. Provisional Application No. 62/012,165, filed Jun. 13, 2014, titled “Apparatus for the Transport and Storage of Proppant,” and U.S. Provisional Application No. 62/139,323, filed on Mar. 27, 2015, titled “Spine Car for Transporting Proppant Containers,” all of which are incorporated herein by reference in their entireties.
Referring to
This application claims the benefit of, and is a divisional of U.S. patent application Ser. No. 14/738,485, filed Jun. 12, 2015, titled “Apparatus for the Transport and Storage of Proppant,” which is a continuation-in-part of U.S. patent application Ser. No. 13/768,962, filed Feb. 15, 2013, titled “Support Apparatus for Moving Proppant from a Container in a Proppant Discharge System,” now U.S. Pat. No. 9,771,224, issued Sep. 26, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 13/628,702, filed Sep. 27, 2012, titled “Proppant Discharge System and a Container for Use in Such a Proppant Discharge System,” which is a continuation in part of U.S. patent application Ser. No. 13/555,635, filed Jul. 23, 2012, titled “Proppant Discharge System Having a Container and the Process for Providing Proppant to a Well Site,” now U.S. Pat. No. 9,718,610, issued Aug. 1, 2017, all of which are incorporated herein by reference in their entireties. U.S. patent application Ser. No. 14/738,485 further claims priority to and the benefit of U.S. Provisional Application No. 62/012,153, filed Jun. 13, 2014, titled “Process and System for Supplying Proppant from a Mine to a Transport Vehicle,” U.S. Provisional Application No. 62/012,165, filed Jun. 13, 2014, titled “Apparatus for the Transport and Storage of Proppant,” and U.S. Provisional Application No. 62/139,323, filed on Mar. 27, 2015, titled “Spine Car for Transporting Proppant Containers,” all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
137871 | Worsley | Apr 1873 | A |
150894 | Safely | May 1874 | A |
384443 | Hoover | Jun 1888 | A |
448238 | Johnson | Mar 1891 | A |
710611 | Ray | Oct 1902 | A |
711632 | Johnson | Oct 1902 | A |
917649 | Otto | Apr 1909 | A |
1143641 | McGregor | Jun 1915 | A |
1331883 | Stuart | Feb 1920 | A |
1344768 | Messiter | Jun 1920 | A |
1434488 | Forsythe et al. | Nov 1922 | A |
1520560 | Burno | Dec 1923 | A |
1506936 | Lea | Sep 1924 | A |
1526527 | Butler | Feb 1925 | A |
1573664 | Wetherill | Feb 1926 | A |
1807447 | Smith | May 1931 | A |
1850000 | Fernand | Mar 1932 | A |
1932320 | Steward | Oct 1933 | A |
1973312 | Hardinge | Sep 1934 | A |
2020628 | Woodruff | Nov 1935 | A |
2233005 | Garlinghouse | Feb 1941 | A |
2255448 | Morris | Sep 1941 | A |
2293160 | Miller et al. | Aug 1942 | A |
2368672 | McNamara | Feb 1945 | A |
2381103 | Frank | Aug 1945 | A |
2385245 | Willoughby | Sep 1945 | A |
2413661 | Stokes | Dec 1946 | A |
2423879 | De Frees | Jul 1947 | A |
2563470 | Kane | Aug 1951 | A |
2564020 | Mengel | Aug 1951 | A |
2603342 | Martinson | Jul 1952 | A |
2616758 | Meyers | Nov 1952 | A |
2622771 | Tulou | Dec 1952 | A |
2652174 | Shea et al. | Sep 1953 | A |
2670866 | Glesby | Mar 1954 | A |
2678145 | Ejuzwiak et al. | May 1954 | A |
2693282 | Sensibar | Nov 1954 | A |
2700574 | Tourneau | Jan 1955 | A |
2792262 | Hathom | Apr 1955 | A |
2774515 | Johansson et al. | Dec 1956 | A |
2791973 | Dorey | May 1957 | A |
2801125 | Page et al. | Jul 1957 | A |
2808164 | Glendinning | Oct 1957 | A |
2812970 | Martinson | Nov 1957 | A |
2837369 | Stopps | Jun 1958 | A |
2865521 | Fisher et al. | Dec 1958 | A |
2873036 | Noble | Feb 1959 | A |
2894666 | Campbell, Jr. | Jul 1959 | A |
2988235 | Ronyak | Jun 1961 | A |
2994460 | Matthews | Aug 1961 | A |
3041113 | Sackett | Jun 1962 | A |
3049248 | Heltzel et al. | Aug 1962 | A |
3064832 | Heltzel | Nov 1962 | A |
3083879 | Coleman | Apr 1963 | A |
3090527 | Rensch | May 1963 | A |
3109389 | Karlsson | Nov 1963 | A |
3122258 | Raymond | Feb 1964 | A |
3134606 | Oyler | May 1964 | A |
3135432 | McKinney | Jun 1964 | A |
3163127 | Gutridge et al. | Dec 1964 | A |
3187684 | Ortner | Jun 1965 | A |
3198494 | Curran et al. | Aug 1965 | A |
3199585 | Cronberger | Aug 1965 | A |
3248026 | Kemp | Apr 1966 | A |
3255927 | Ruppert et al. | Jun 1966 | A |
3265443 | Simas | Aug 1966 | A |
3270921 | Nadolske et al. | Sep 1966 | A |
3281006 | Tonchung | Oct 1966 | A |
3294306 | Areddy | Dec 1966 | A |
3318473 | Jones et al. | May 1967 | A |
3326572 | Murray | Jun 1967 | A |
3343688 | Ross | Sep 1967 | A |
3353599 | Swift | Nov 1967 | A |
3354918 | Coleman | Nov 1967 | A |
3378152 | Warner | Apr 1968 | A |
3387570 | Pulcrano et al. | Jun 1968 | A |
3396675 | Stevens | Aug 1968 | A |
3397654 | Snyder | Aug 1968 | A |
3406995 | McCarthy | Oct 1968 | A |
3407971 | Oehler | Oct 1968 | A |
3425599 | Sammarco et al. | Feb 1969 | A |
3455474 | Truncali | Jul 1969 | A |
3476270 | Cox et al. | Nov 1969 | A |
3483829 | Barry | Dec 1969 | A |
3486787 | Campbell | Dec 1969 | A |
3499694 | Coppel | Mar 1970 | A |
3508762 | Pratt | Apr 1970 | A |
3524567 | Coleman | Aug 1970 | A |
3528570 | Pase | Sep 1970 | A |
3561633 | Morrison et al. | Feb 1971 | A |
3587834 | Dugge | Jun 1971 | A |
3596609 | Ortner | Aug 1971 | A |
3601244 | Ort et al. | Aug 1971 | A |
3602400 | Cooke | Aug 1971 | A |
3650567 | Danielson | Mar 1972 | A |
3653521 | Bridge | Apr 1972 | A |
3661293 | Gerhard et al. | May 1972 | A |
3692363 | Tenebaum et al. | Sep 1972 | A |
3704797 | Suykens | Dec 1972 | A |
3721199 | Hassenauer | Mar 1973 | A |
3729121 | Cannon | Apr 1973 | A |
3734215 | Smith | May 1973 | A |
3738511 | Lemon et al. | Jun 1973 | A |
3752334 | Robinson, Jr. | Aug 1973 | A |
3752511 | Racy | Aug 1973 | A |
3777909 | Rheinfrank | Dec 1973 | A |
3785534 | Smith | Jan 1974 | A |
3800712 | Krug, Jr. | Apr 1974 | A |
3802584 | Sackett | Apr 1974 | A |
3817261 | Rogge | Jun 1974 | A |
3820762 | Bostrom et al. | Jun 1974 | A |
3827578 | Hough | Aug 1974 | A |
3840141 | Allom et al. | Oct 1974 | A |
3854612 | Snape | Dec 1974 | A |
3861716 | Baxter et al. | Jan 1975 | A |
3883005 | Stevens | May 1975 | A |
3904105 | Booth | Sep 1975 | A |
3909223 | Schmidt | Sep 1975 | A |
3913933 | Visser et al. | Oct 1975 | A |
3933100 | Dugge | Jan 1976 | A |
3963149 | Fassauer | Jun 1976 | A |
3970123 | Poulton et al. | Jul 1976 | A |
3986708 | Heltzel et al. | Oct 1976 | A |
3997089 | Clarke et al. | Dec 1976 | A |
3999290 | Wood | Dec 1976 | A |
4003301 | Norton | Jan 1977 | A |
4004700 | Empey | Jan 1977 | A |
4019635 | Boots | Apr 1977 | A |
4049135 | Glassmeyer | Sep 1977 | A |
4057153 | Weaver | Nov 1977 | A |
4058239 | Van Mill | Nov 1977 | A |
4059194 | Barry | Nov 1977 | A |
4063656 | Lambert | Dec 1977 | A |
4073410 | Melcher | Feb 1978 | A |
4125195 | Sasadi | Nov 1978 | A |
4138163 | Calvert et al. | Feb 1979 | A |
4178117 | Brugler | Dec 1979 | A |
4204773 | Bates | May 1980 | A |
4210273 | Hegele | Jul 1980 | A |
4210963 | Ricciardi et al. | Jul 1980 | A |
RE30358 | Sensibar | Aug 1980 | E |
4222498 | Brock | Sep 1980 | A |
4227732 | Kish | Oct 1980 | A |
4232884 | DeWitt | Nov 1980 | A |
4239424 | Pavolka | Dec 1980 | A |
4245820 | Muryn | Jan 1981 | A |
4247228 | Gray et al. | Jan 1981 | A |
4247370 | Nijhawan et al. | Jan 1981 | A |
4258953 | Johnson | Mar 1981 | A |
4265266 | Kierbow et al. | May 1981 | A |
4278190 | Oory et al. | Jul 1981 | A |
4280640 | Daloisio | Jul 1981 | A |
4282988 | Hulbert, Jr. | Aug 1981 | A |
4287921 | Sanford | Sep 1981 | A |
4287997 | Rolfe et al. | Sep 1981 | A |
4289353 | Merritt | Sep 1981 | A |
4299597 | Oetiker et al. | Nov 1981 | A |
4306895 | Thompson et al. | Dec 1981 | A |
4329106 | Adler | May 1982 | A |
4350241 | Wenzel | Sep 1982 | A |
4359176 | Johnson | Nov 1982 | A |
4363396 | Wolf et al. | Dec 1982 | A |
4395052 | Rash | Jul 1983 | A |
4397406 | Croley | Aug 1983 | A |
4398653 | Daloisio | Aug 1983 | A |
4402392 | Fabian et al. | Sep 1983 | A |
4407202 | McCormick | Oct 1983 | A |
4408886 | Sampson et al. | Oct 1983 | A |
4410106 | Kierbow et al. | Oct 1983 | A |
4420285 | Loyer et al. | Dec 1983 | A |
4427133 | Kierbow et al. | Jan 1984 | A |
4428504 | Bassett et al. | Jan 1984 | A |
4449861 | Saito et al. | May 1984 | A |
4453645 | Usui et al. | Jun 1984 | A |
4474204 | West | Oct 1984 | A |
4475672 | Whitehead | Oct 1984 | A |
4478155 | Cena et al. | Oct 1984 | A |
4483462 | Heintz | Nov 1984 | A |
4513755 | Baroni | Apr 1985 | A |
4525071 | Horowitz | Jun 1985 | A |
4526353 | Stomp | Jul 1985 | A |
4532098 | Campbell et al. | Jul 1985 | A |
4534869 | Seibert | Aug 1985 | A |
4552573 | Weis | Nov 1985 | A |
4569394 | Sweatman et al. | Feb 1986 | A |
4570967 | Allnut | Feb 1986 | A |
4571143 | Hellerich | Feb 1986 | A |
4588605 | Frei et al. | May 1986 | A |
4608931 | Ruhmann et al. | Sep 1986 | A |
4619531 | Dunstan | Oct 1986 | A |
4624729 | Bresciani et al. | Nov 1986 | A |
4626155 | Hlinsky et al. | Dec 1986 | A |
4626166 | Jolly | Dec 1986 | A |
4628825 | Taylor et al. | Dec 1986 | A |
4639015 | Pitts | Jan 1987 | A |
4648584 | Wamser | Mar 1987 | A |
4660733 | Snyder et al. | Apr 1987 | A |
4701095 | Berryman et al. | Oct 1987 | A |
4714010 | Smart | Dec 1987 | A |
4715754 | Scully | Dec 1987 | A |
4724976 | Lee | Feb 1988 | A |
4738774 | Patrick | Apr 1988 | A |
4741273 | Sherwood | May 1988 | A |
4761039 | Hilaris | Aug 1988 | A |
4779751 | Munroe | Oct 1988 | A |
4798039 | Deglise | Jan 1989 | A |
4801389 | Brannon et al. | Jan 1989 | A |
4819830 | Schultz | Apr 1989 | A |
4836510 | Weber et al. | Jun 1989 | A |
4836735 | Dennehy | Jun 1989 | A |
4848605 | Wise | Jul 1989 | A |
4882784 | Tump | Nov 1989 | A |
4889219 | Key | Dec 1989 | A |
4901649 | Fehrenbach et al. | Feb 1990 | A |
4909378 | Webb | Mar 1990 | A |
4909556 | Koskinen | Mar 1990 | A |
4917019 | Hesch et al. | Apr 1990 | A |
4919583 | Speakman, Jr. | Apr 1990 | A |
4923358 | Van Mill | May 1990 | A |
4946068 | Erickson et al. | Aug 1990 | A |
4947760 | Dawson et al. | Aug 1990 | A |
4949714 | Orr | Aug 1990 | A |
4954975 | Kalata | Sep 1990 | A |
4956821 | Fenelon | Sep 1990 | A |
4964243 | Reiter | Oct 1990 | A |
4975205 | Sloan | Dec 1990 | A |
4975305 | Biginelli | Dec 1990 | A |
4988115 | Steinke | Jan 1991 | A |
4995522 | Barr | Feb 1991 | A |
5004400 | Handke | Apr 1991 | A |
5028002 | Whitford | Jul 1991 | A |
5036979 | Selz | Aug 1991 | A |
5042538 | Wiese | Aug 1991 | A |
5069352 | Harbolt et al. | Dec 1991 | A |
5080259 | Hadley | Jan 1992 | A |
5082304 | Preller | Jan 1992 | A |
5102281 | Handke | Apr 1992 | A |
5102286 | Fenton | Apr 1992 | A |
5105858 | Levinson | Apr 1992 | A |
5131524 | Uehara | Jul 1992 | A |
5167719 | Tamaki | Dec 1992 | A |
5190182 | Copas et al. | Mar 1993 | A |
5195861 | Handke | Mar 1993 | A |
5199826 | Lawrence | Apr 1993 | A |
5201546 | Lindsay | Apr 1993 | A |
5224635 | Wise | Jul 1993 | A |
5253746 | Friesen et al. | Oct 1993 | A |
5253776 | Decroix et al. | Oct 1993 | A |
5265763 | Heinrici et al. | Nov 1993 | A |
5277014 | White | Jan 1994 | A |
5280883 | Ibar | Jan 1994 | A |
5286158 | Zimmerman | Feb 1994 | A |
5286294 | Ebi et al. | Feb 1994 | A |
5290139 | Hedrick | Mar 1994 | A |
5317783 | Williamson | Jun 1994 | A |
5320046 | Hesch | Jun 1994 | A |
5324097 | DeCap | Jun 1994 | A |
5339996 | Dubbert | Aug 1994 | A |
5345982 | Nadeau et al. | Sep 1994 | A |
5358137 | Shuert et al. | Oct 1994 | A |
5373792 | Pileggi et al. | Dec 1994 | A |
5392946 | Holbrook et al. | Feb 1995 | A |
5402915 | Hogan | Apr 1995 | A |
5413154 | Hurst, Jr. et al. | May 1995 | A |
5429259 | Robin | Jul 1995 | A |
5441321 | Karpisek | Aug 1995 | A |
5465829 | Kruse | Nov 1995 | A |
5470175 | Jensen et al. | Nov 1995 | A |
5470176 | Corcoran et al. | Nov 1995 | A |
5493852 | Stewart | Feb 1996 | A |
5498119 | Faivre | Mar 1996 | A |
5507514 | Jacques | Apr 1996 | A |
5538286 | Hoff | Jul 1996 | A |
5549278 | Sidler | Aug 1996 | A |
5564599 | Barber et al. | Oct 1996 | A |
5570743 | Padgett et al. | Nov 1996 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5601181 | Lindhorst | Feb 1997 | A |
5602761 | Spoerre et al. | Feb 1997 | A |
5613446 | DiLuigi et al. | Mar 1997 | A |
5617974 | Sawyer | Apr 1997 | A |
5647514 | Toth et al. | Jul 1997 | A |
RE35580 | Heider et al. | Aug 1997 | E |
5667298 | Musil | Sep 1997 | A |
5687881 | Rouse et al. | Nov 1997 | A |
5690466 | Gaddis et al. | Nov 1997 | A |
5697535 | Coleman | Dec 1997 | A |
5706614 | Wiley et al. | Jan 1998 | A |
5718555 | Swalheim | Feb 1998 | A |
5722552 | Olson | Mar 1998 | A |
5722688 | Garcia | Mar 1998 | A |
5746258 | Huck | May 1998 | A |
5761854 | Johnson et al. | Jun 1998 | A |
5762222 | Liu | Jun 1998 | A |
5772390 | Walker | Jun 1998 | A |
5782524 | Heider et al. | Jul 1998 | A |
5785421 | Milek | Jul 1998 | A |
5803296 | Olson | Sep 1998 | A |
5806863 | Heger et al. | Sep 1998 | A |
5836480 | Epp et al. | Nov 1998 | A |
5845799 | Deaton | Dec 1998 | A |
5876172 | Di Rosa | Mar 1999 | A |
5878903 | Ung | Mar 1999 | A |
5906471 | Schwoerer | May 1999 | A |
5911337 | Bedeker | Jun 1999 | A |
5924829 | Hastings | Jul 1999 | A |
5927558 | Bruce | Jul 1999 | A |
5960974 | Kee | Oct 1999 | A |
5971219 | Karpisek | Oct 1999 | A |
5993202 | Yamazaki et al. | Nov 1999 | A |
5997099 | Collins | Dec 1999 | A |
6002063 | Bilak et al. | Dec 1999 | A |
6006918 | Hart | Dec 1999 | A |
6069118 | Hinkel et al. | May 2000 | A |
6077068 | Okumura | Jun 2000 | A |
6092974 | Roth | Jul 2000 | A |
6109486 | Lee | Aug 2000 | A |
6120233 | Adam | Sep 2000 | A |
D431358 | Willemsen | Oct 2000 | S |
6155175 | Rude et al. | Dec 2000 | A |
6186654 | Gunteret et al. | Feb 2001 | B1 |
6190107 | Lanigan et al. | Feb 2001 | B1 |
6192985 | Hinkel et al. | Feb 2001 | B1 |
6196590 | Kim | Mar 2001 | B1 |
6205938 | Foley et al. | Mar 2001 | B1 |
6210088 | Crosby | Apr 2001 | B1 |
6231284 | Kordel | May 2001 | B1 |
6247594 | Garton | Jun 2001 | B1 |
6263803 | Dohr et al. | Jul 2001 | B1 |
6269849 | Fields | Aug 2001 | B1 |
6273154 | Laug | Aug 2001 | B1 |
6283212 | Hinkel et al. | Sep 2001 | B1 |
6286986 | Grimland | Sep 2001 | B2 |
6296109 | Nohl | Oct 2001 | B1 |
6306800 | Samuel et al. | Oct 2001 | B1 |
6328156 | Ostman | Dec 2001 | B1 |
6328183 | Coleman | Dec 2001 | B1 |
6364584 | Taylor | Apr 2002 | B1 |
6374915 | Andrews | Apr 2002 | B1 |
6382446 | Hinkle et al. | May 2002 | B1 |
6390742 | Breeden | May 2002 | B1 |
6401983 | McDonald et al. | Jun 2002 | B1 |
6412422 | Dohr et al. | Jul 2002 | B2 |
6415909 | Mitchell et al. | Jul 2002 | B1 |
6416271 | Pigott et al. | Jul 2002 | B1 |
6422413 | Hall et al. | Jul 2002 | B1 |
6425725 | Ehlers | Jul 2002 | B1 |
6450522 | Yamada et al. | Sep 2002 | B1 |
6457291 | Wick | Oct 2002 | B2 |
6498976 | Ehlbeck et al. | Dec 2002 | B1 |
6505760 | Werner | Jan 2003 | B1 |
6508387 | Simon et al. | Jan 2003 | B1 |
6508615 | Taylor | Jan 2003 | B2 |
6523482 | Wingate | Feb 2003 | B2 |
6537002 | Gloystein | Mar 2003 | B2 |
6557896 | Stobart | May 2003 | B1 |
6575614 | Tosco et al. | Jun 2003 | B2 |
6660693 | Miller et al. | Dec 2003 | B2 |
6663373 | Yoshida | Dec 2003 | B2 |
6666573 | Grassi | Dec 2003 | B2 |
6675066 | Moshgbar | Jan 2004 | B2 |
6675073 | Kieman et al. | Jan 2004 | B2 |
6705449 | Wagstaffe | Mar 2004 | B2 |
6720290 | England et al. | Apr 2004 | B2 |
6772912 | Schall et al. | Aug 2004 | B1 |
6774318 | Beal et al. | Aug 2004 | B2 |
6776235 | England | Aug 2004 | B1 |
6783032 | Fons | Aug 2004 | B2 |
6811048 | Lau | Nov 2004 | B2 |
6828280 | England et al. | Dec 2004 | B2 |
6835041 | Albert | Dec 2004 | B1 |
6882960 | Miller | Apr 2005 | B2 |
6902061 | Elstone | Jun 2005 | B1 |
6915854 | England et al. | Jul 2005 | B2 |
6953119 | Wening | Oct 2005 | B1 |
6955127 | Taylor | Oct 2005 | B2 |
6964551 | Friesen | Nov 2005 | B1 |
6968946 | Shuert | Nov 2005 | B2 |
6974021 | Boevers | Dec 2005 | B1 |
7008163 | Russell | Mar 2006 | B2 |
7051661 | Herzog et al. | May 2006 | B2 |
7084095 | Lee et al. | Aug 2006 | B2 |
7104425 | Le Roy | Sep 2006 | B2 |
7140516 | Bothor | Nov 2006 | B2 |
7146914 | Morton et al. | Dec 2006 | B2 |
7201290 | Mehus et al. | Apr 2007 | B2 |
7214028 | Boasso | May 2007 | B2 |
7240681 | Saik | Jul 2007 | B2 |
7252309 | Eng Soon et al. | Aug 2007 | B2 |
7284579 | Elgan et al. | Oct 2007 | B2 |
7284670 | Schmid | Oct 2007 | B2 |
7316333 | Wegner | Jan 2008 | B2 |
7367271 | Early | May 2008 | B2 |
7377219 | Brandt | May 2008 | B2 |
7410623 | Mehus et al. | Aug 2008 | B2 |
7475796 | Garton | Jan 2009 | B2 |
7500817 | Furrer et al. | Mar 2009 | B2 |
7513280 | Brashears et al. | Apr 2009 | B2 |
7591386 | Hooper | Sep 2009 | B2 |
7640075 | Wietgrefe | Dec 2009 | B2 |
7695538 | Cheng | Apr 2010 | B2 |
7753637 | Benedict et al. | Jul 2010 | B2 |
7798558 | Messier | Sep 2010 | B2 |
7802958 | Garcia et al. | Sep 2010 | B2 |
7803321 | Lark et al. | Sep 2010 | B2 |
7837427 | Beckel | Nov 2010 | B2 |
7841394 | McNeel et al. | Nov 2010 | B2 |
7845516 | Pessin et al. | Dec 2010 | B2 |
7858888 | Lucas et al. | Dec 2010 | B2 |
7867613 | Smith | Jan 2011 | B2 |
7891304 | Herzog et al. | Feb 2011 | B2 |
7891523 | Mehus et al. | Feb 2011 | B2 |
7896198 | Mehus et al. | Mar 2011 | B2 |
7921783 | Forbes et al. | Apr 2011 | B2 |
7967161 | Townsend | Jun 2011 | B2 |
7980803 | Brandstätter et al. | Jul 2011 | B2 |
7997213 | Gauthier et al. | Aug 2011 | B1 |
7997623 | Williams | Aug 2011 | B2 |
8083083 | Mohns | Dec 2011 | B1 |
8201520 | Meritt | Jun 2012 | B2 |
8313278 | Simmons et al. | Nov 2012 | B2 |
8366349 | Beachner | Feb 2013 | B2 |
8375690 | LaFargue et al. | Feb 2013 | B2 |
8379927 | Taylor | Feb 2013 | B2 |
8387824 | Wietgrefe | Mar 2013 | B2 |
8393502 | Renyer et al. | Mar 2013 | B2 |
8424666 | Berning et al. | Apr 2013 | B2 |
8469065 | Schroeder et al. | Jun 2013 | B2 |
D688349 | Oren et al. | Aug 2013 | S |
D688351 | Oren | Aug 2013 | S |
D688772 | Oren et al. | Aug 2013 | S |
8505780 | Oren | Aug 2013 | B2 |
8544419 | Spalding et al. | Oct 2013 | B1 |
8545148 | Wanek-Pusset et al. | Oct 2013 | B2 |
8562022 | Nadeau et al. | Oct 2013 | B2 |
8573387 | Trimble | Nov 2013 | B2 |
8573917 | Renyer | Nov 2013 | B2 |
8585341 | Oren | Nov 2013 | B1 |
D694670 | Oren | Dec 2013 | S |
8616370 | Allegretti | Dec 2013 | B2 |
8622251 | Oren | Jan 2014 | B2 |
8636832 | Stutzman et al. | Jan 2014 | B2 |
8646641 | Moir | Feb 2014 | B2 |
8662525 | Dierks et al. | Mar 2014 | B1 |
8668430 | Oren | Mar 2014 | B2 |
D703582 | Oren | Apr 2014 | S |
8820559 | Beitler et al. | Sep 2014 | B2 |
8827118 | Oren | Sep 2014 | B2 |
8881749 | Smith | Nov 2014 | B1 |
8887914 | Allegretti | Nov 2014 | B2 |
8905266 | De Brabanter | Dec 2014 | B2 |
8915691 | Mintz | Dec 2014 | B2 |
9051801 | Mintz | Jun 2015 | B1 |
9052034 | Wegner et al. | Jun 2015 | B1 |
D740556 | Huber | Oct 2015 | S |
9162261 | Smith | Oct 2015 | B1 |
9267266 | Cutler et al. | Feb 2016 | B2 |
9296572 | Houghton et al. | Mar 2016 | B2 |
9309064 | Sheesley | Apr 2016 | B2 |
9410414 | Tudor | Aug 2016 | B2 |
D780883 | Schaffner et al. | Mar 2017 | S |
D783771 | Stegemoeller et al. | Apr 2017 | S |
D783772 | Stegemoeller, III et al. | Apr 2017 | S |
9624036 | Luharuka et al. | Apr 2017 | B2 |
9688492 | Stutzman et al. | Jun 2017 | B2 |
9796318 | Nolasco | Oct 2017 | B1 |
20010022308 | Epp et al. | Sep 2001 | A1 |
20010038777 | Cassell | Nov 2001 | A1 |
20010045338 | Ransil et al. | Nov 2001 | A1 |
20020011175 | Dohr | Jan 2002 | A1 |
20020134550 | Leeson et al. | Sep 2002 | A1 |
20020139643 | Peltier et al. | Oct 2002 | A1 |
20030006248 | Gill et al. | Jan 2003 | A1 |
20030024971 | Jones | Feb 2003 | A1 |
20030111470 | Fouillet et al. | Jun 2003 | A1 |
20030145418 | Ikeda et al. | Aug 2003 | A1 |
20030156929 | Russell | Aug 2003 | A1 |
20040065699 | Schoer et al. | Apr 2004 | A1 |
20040074922 | Bother et al. | Apr 2004 | A1 |
20040084874 | McDougall et al. | May 2004 | A1 |
20040206646 | Goh | Oct 2004 | A1 |
20040245284 | Mehus et al. | Dec 2004 | A1 |
20050158158 | Porta | Jul 2005 | A1 |
20050201851 | Jonkka | Sep 2005 | A1 |
20060012183 | Marchiori et al. | Jan 2006 | A1 |
20060027582 | Beach | Feb 2006 | A1 |
20060053582 | Engel et al. | Mar 2006 | A1 |
20060091072 | Schmid et al. | May 2006 | A1 |
20060151058 | Salaoras et al. | Jul 2006 | A1 |
20060180062 | Furrer et al. | Aug 2006 | A1 |
20060180232 | Glewwe et al. | Aug 2006 | A1 |
20060239806 | Yelton | Oct 2006 | A1 |
20060267377 | Lusk et al. | Nov 2006 | A1 |
20060277783 | Garton | Dec 2006 | A1 |
20060289166 | Stromquist et al. | Dec 2006 | A1 |
20070096537 | Hicks | May 2007 | A1 |
20070125543 | McNeel et al. | Jun 2007 | A1 |
20070194564 | Garceau et al. | Aug 2007 | A1 |
20080008562 | Beckel et al. | Jan 2008 | A1 |
20080029546 | Schuld | Feb 2008 | A1 |
20080029553 | Culleton | Feb 2008 | A1 |
20080058228 | Wilson | Mar 2008 | A1 |
20080179054 | McGough et al. | Jul 2008 | A1 |
20080179324 | McGough et al. | Jul 2008 | A1 |
20080213073 | Benedict et al. | Sep 2008 | A1 |
20080226434 | Smith et al. | Sep 2008 | A1 |
20080264641 | Slabaugh et al. | Oct 2008 | A1 |
20080277423 | Garton | Nov 2008 | A1 |
20080315558 | Cesterino | Dec 2008 | A1 |
20090003985 | Lanigan, Sr. | Jan 2009 | A1 |
20090038242 | Cope | Feb 2009 | A1 |
20090078410 | Krenek et al. | Mar 2009 | A1 |
20090223143 | Esposito | Sep 2009 | A1 |
20090278326 | Rowland et al. | Nov 2009 | A1 |
20100021258 | Kim | Jan 2010 | A1 |
20100037572 | Cheng | Feb 2010 | A1 |
20100038143 | Burnett et al. | Feb 2010 | A1 |
20100040446 | Renyer | Feb 2010 | A1 |
20100065466 | Perkins | Mar 2010 | A1 |
20100072308 | Hermann et al. | Mar 2010 | A1 |
20100080681 | Bain | Apr 2010 | A1 |
20100108711 | Wietgrefe | May 2010 | A1 |
20100129193 | Sherrer | May 2010 | A1 |
20100199668 | Coustou et al. | Aug 2010 | A1 |
20100207371 | Van Houdt et al. | Aug 2010 | A1 |
20100278621 | Redekop | Nov 2010 | A1 |
20100288603 | Schafer | Nov 2010 | A1 |
20100320727 | Haut et al. | Dec 2010 | A1 |
20110011893 | Cerny | Jan 2011 | A1 |
20110017693 | Thomas | Jan 2011 | A1 |
20110101040 | Weissbrod | May 2011 | A1 |
20110109073 | Williams | May 2011 | A1 |
20110121003 | Moir | May 2011 | A1 |
20110127178 | Claussen | Jun 2011 | A1 |
20110160104 | Wu et al. | Jun 2011 | A1 |
20110162838 | Mackenzie et al. | Jul 2011 | A1 |
20110168593 | Neufeld et al. | Jul 2011 | A1 |
20110222983 | Dugic et al. | Sep 2011 | A1 |
20110297702 | Hildebrandt et al. | Dec 2011 | A1 |
20120017812 | Renyer | Jan 2012 | A1 |
20120090956 | Brobst | Apr 2012 | A1 |
20120103848 | Allegretti et al. | May 2012 | A1 |
20120219391 | Teichrob et al. | Aug 2012 | A1 |
20120247335 | Stutzman et al. | Oct 2012 | A1 |
20120255539 | Kolecki | Oct 2012 | A1 |
20130004272 | Mintz | Jan 2013 | A1 |
20130022441 | Uhryn et al. | Jan 2013 | A1 |
20130164112 | Oren | Jun 2013 | A1 |
20130206415 | Sheesley | Aug 2013 | A1 |
20130209204 | Sheesley | Aug 2013 | A1 |
20130233545 | Mahoney | Sep 2013 | A1 |
20130284729 | Cook et al. | Oct 2013 | A1 |
20130309052 | Luharuka | Nov 2013 | A1 |
20130323005 | Rexius et al. | Dec 2013 | A1 |
20140020765 | Oren | Jan 2014 | A1 |
20140020892 | Oren | Jan 2014 | A1 |
20140023465 | Oren et al. | Jan 2014 | A1 |
20140034662 | Chalmers et al. | Feb 2014 | A1 |
20140044507 | Naizer et al. | Feb 2014 | A1 |
20140077484 | Harrell | Mar 2014 | A1 |
20140083554 | Harris | Mar 2014 | A1 |
20140093319 | Harris et al. | Apr 2014 | A1 |
20140097182 | Sheesley | Apr 2014 | A1 |
20140166647 | Sheesley | Jun 2014 | A1 |
20140202590 | Higgins | Jul 2014 | A1 |
20140203046 | Allegretti | Jul 2014 | A1 |
20140234059 | Thomeer | Aug 2014 | A1 |
20140305769 | Eiden et al. | Oct 2014 | A1 |
20140321950 | Krenek et al. | Oct 2014 | A1 |
20140377042 | McMahon | Dec 2014 | A1 |
20150004895 | Hammers et al. | Jan 2015 | A1 |
20150069052 | Allegretti et al. | Mar 2015 | A1 |
20150079890 | Stutzman et al. | Mar 2015 | A1 |
20150086307 | Stefan | Mar 2015 | A1 |
20150086308 | McIver et al. | Mar 2015 | A1 |
20150107822 | Tudor | Apr 2015 | A1 |
20150110565 | Harris | Apr 2015 | A1 |
20150115589 | Thiessen | Apr 2015 | A1 |
20150159232 | Zucchi et al. | Jun 2015 | A1 |
20150209829 | De Siqueira et al. | Jul 2015 | A1 |
20150284183 | Houghton et al. | Oct 2015 | A1 |
20160148813 | Rogers et al. | May 2016 | A1 |
20160177678 | Morris et al. | Jun 2016 | A1 |
20160185522 | Herman et al. | Jun 2016 | A1 |
20160273355 | Gosney et al. | Sep 2016 | A1 |
20160280480 | Smith et al. | Sep 2016 | A1 |
20170129721 | Harris et al. | May 2017 | A1 |
20170217353 | Vander Pol | Aug 2017 | A1 |
20170274813 | Eiden | Sep 2017 | A1 |
20180002119 | Heide | Jan 2018 | A1 |
20180009401 | Miller et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2037354 | May 1989 | CN |
2059909 | Aug 1990 | CN |
2075632 | Apr 1991 | CN |
1329562 | Jan 2002 | CN |
2517684 | Oct 2002 | CN |
1635965 | Jul 2005 | CN |
2913250 | Jun 2007 | CN |
201161588 | Dec 2008 | CN |
101823630 | Sep 2010 | CN |
102101595 | Jun 2011 | CN |
102114985 | Jul 2011 | CN |
203033469 | Jul 2013 | CN |
203580948 | May 2014 | CN |
4008147 | Sep 1990 | DE |
20317967 | Mar 2004 | DE |
0016977 | Oct 1980 | EP |
322283 | Jun 1989 | EP |
0997607 | May 2000 | EP |
1598288 | Nov 2005 | EP |
1795467 | Jun 2007 | EP |
1000621 | Aug 1965 | GB |
1333976 | Oct 1973 | GB |
2066220 | Jul 1981 | GB |
2204847 | Nov 1988 | GB |
S4871029 | Sep 1973 | JP |
S4876041 | Sep 1973 | JP |
S58161888 | Oct 1983 | JP |
11034729 | Feb 1999 | JP |
2007084151 | Apr 2007 | JP |
8105283 | Jun 1983 | NL |
2007057398 | May 2007 | NO |
2003024815 | Mar 2003 | WO |
2008012513 | Jan 2008 | WO |
2009087338 | Jul 2009 | WO |
Entry |
---|
Smith, Ryan E., Prefab Architecture, A Guide to Modular Design and Construction, John Wiley & Sons, Inc., 2010. |
OSHA-NIOSH, Hazard Alert: Worker Exposure to Silica during Hydraulic Fracturing, Jun. 2012. |
Tremoglie, Michael P., Legal NewsLine, OSHA, NIOSH issue tracking health alert (/stories/510527440-oshaniosh-issue-fracking-health-alert), Jun. 25, 2012. |
Beckwith, Robin, Proppants: Where in the World, Journal of Petroleum Technology, Apr. 2011. |
Final Office Action dated Feb. 27, 2018 for co-pending U.S. Appl. No. 15/143,942. |
Yergin, Daniel, The Quest: Energy, Security, and the Remaking of the Modern World, 2011. |
Gold, Russell, The Boom: How Fracking Ignited the American Energy Revolution and Changed the World, 2014. |
Yergin, Daniel, Stepping on the Gas, Wall Street Journal, Apr. 2, 2011. |
Raimi, Daniel et al., Dunn County and Watford City, North Dakota: A case study of the fiscal effects of Bakken shale development, Duke University Energy Initiative, May 2016. |
Local Economic Impacts Related to Marcellus Shale Development, The Center for Rural Pennyslvania, Sep. 2014. |
Eagle Ford Shale Task Force Report, Railroad Commission of Texas, Convened and Chaired by David Porter, Mar. 2013. |
Sandbox Logistics LLC et al v. Grit Energy Solutions LLC, 3:16-cv-00012, 73.Parties' P.R. 4-3 Joint Claim Construction and Prehearing Statement by Oren Technologies LLC, SandBox Enterprises LLC, SandBox Logistics LLC, Nov. 17, 2016. |
Beard, Tim, Fracture Design in Horizontal Shale Wells—Data Gathering to Implementation, EPA Hydraulic Fracturing Workshop, Mar. 10-11, 2011. |
Economic Impact of the Eagle Ford Shale, Center for Community and Business Research at the University of Texas at San Antonio's Institute for Economic Development, Sep. 2014. |
Kelsey, Timothy W. et al., Economic Impacts of Marcellus Shale in Pennsylvania: Employment and Income in 2009, The Marcellus Shale Education & Training Center, Aug. 2011. |
2006 Montana Commercial Vehicle Size and Weight and Safety Trucker's Handbook, Montana Department of Transportation Motor Carrier Services Division, Fifth Edition, Jun. 2010. |
Budzynski, Brian W., Never Meant to Take the Weight, Roads & Bridges, Apr. 2015. |
Interstate Weight Limits, 23 C.F.R. § 658, Apr. 1, 2011. |
VIN Requirements, 49 C.F.R. § 565, Oct. 1, 2011. |
Benson, Mary Ellen et al., Frac Sand in the United States—A Geological and Industry Overview, U.S. Department of the Interior, U.S. Geological Survey, 2015-2017. |
Beekman, Thomas J. et al., Transportation Impacts of the Wisconsin Fracture Sand Industry, Wisconsin Department of Transportation, Mar. 2013. |
U.S. Silica Company, Material Safety Data Sheet, Jan. 2011. |
Texas Transportation Code, Chapter 621, General Provisions Relating to Vehicle Size and Weight (Sec. 621.101 effective Sep. 1, 2005 and Section 621.403 effective Sep. 1, 1995). |
Garner, Dwight, Visions of an Age When Oil Isn't King, New York Times, Sep. 20, 2011. |
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/475,354. |
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/143,942. |
International Search Report and Written Opinion for PCT/US17/34603 dated Aug. 22, 2017. |
Non-Final Office Action dated Aug. 30, 2017 for co-pending U.S. Appl. No. 14/943,182. |
Non-Final Office Action dated Aug. 4, 2017 for co-pending U.S. Appl. No. 13/625,675. |
Randy Lafollette, Key Considerations for Hydraulic Fracturing of Gas Shales, May 12, 2010. |
Case No. 4:17-cv-00589, Plaintiffs' P.R. 3-1 and 3-2 Infringement Contentions and Disclosures, Jun. 8, 2017. |
Final Office Action dated Oct. 13, 2017 for co-pending U.S. Appl. No. 15/398,950. |
Non-Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 15/413,822. |
Non-Final Office Action dated Oct. 5, 2017 for co-pending U.S. Appl. No. 14/848,447. |
Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 14/922,836. |
Non-Final Office Action dated Sep. 27, 2017 for co-pending U.S. Appl. No. 14/996,362. |
Non-Final Office Action dated Sep. 28, 2017 for co-pending U.S. Appl. No. 13/628,702. |
Arrows Up, Inc., Jumbo BTS—Bulk Transport System, Aug. 1, 2014. |
Arrows Up, Inc., Reusable Packaging Association, Member Spotlight John Allegretti, President & CEO, Arrows Up, Inc., Jun. 23, 2016. |
Seed Today, Arrows Up, Inc. Bulk Transport System (BTS), Country Journal Publishing Co., Decatur, IL, Mar. 2, 2011. |
SeedQuest, Arrows Up, Inc. launches innovative bulk transport system for see, Barrington, IL, Mar. 2, 2011. |
Monster Tanks, Inc., Sand Monster Website, http://monstertanksinc.com/sandmonster.html, 2012. |
Solaris Oilfield Infrastructure, Mobile Sand Silo System, 2016. |
Final Office Action dated Sep. 27, 2016 for co-pending U.S. Appl. No. 13/555,635. |
Non-Final Office Action dated Mar. 23, 2016 for co-pending U.S. Appl. No. 13/555,635. |
Final Office Action dated Jul. 30, 2015 for co-pending U.S. Appl. No. 13/555,635. |
Non-Final Office Action dated Oct. 22, 2014 for co-pending U.S. Appl. No. 13/555,635. |
Final Office Action dated Jun. 21, 2016 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Feb. 23, 2016 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Sep. 22, 2015 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Jul. 28, 2015 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Mar. 24, 2015 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Sep. 18, 2014 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/831,924. |
Non-Final Office Action dated Feb. 16, 2016 for co-pending U.S. Appl. No. 14/831,924. |
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/923,920. |
Non-Final Office Action dated Feb. 9, 2016 for co-pending U.S. Appl. No. 14/923,920. |
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/943,111. |
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 14/943,111. |
Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 14/948,494. |
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/948,494. |
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/144,296. |
Non-Final Office Action dated Jul. 25, 2016 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Apr. 28, 2016 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Oct. 6, 2015 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Aug. 6, 2015 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Apr. 29, 2015 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Dec. 17, 2014 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Sep. 4, 2014 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Sep. 24, 2013 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated May 14, 2013 for co-pending U.S. Appl. No. 13/660,855. |
Non-Final Office Action dated Jul. 5, 2016 for co-pending U.S. Appl. No. 14/996,362. |
Non-Final Office Action dated Jul. 6, 2016 for co-pending U.S. Appl. No. 15/144,450. |
Final Office Action dated Sep. 29, 2016 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 13/768,962. |
Final Office Action dated Oct. 9, 2015 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated May 1, 2015 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 15/152,744. |
Non-Final Office Action dated Apr. 13, 2016 for co-pending U.S. Appl. No. 14/738,485. |
Non-Final Office Action dated Sep. 7, 2016 for co-pending U.S. Appl. No. 14/841,942. |
Final Office Action dated May 12, 2016 for co-pending U.S. Appl. No. 14/841,942. |
Non-Final Office Action dated Nov. 30, 2015 for co-pending U.S. Appl. No. 14/841,942. |
Non-Final Office Action dated Jul. 21, 2016 for co-pending U.S. Appl. No. 15/083,596. |
Non-Final Office Action dated Aug. 19, 2016 for co-pending U.S. Appl. No. 15/084,611. |
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/143,942. |
Final Office Action dated Sep. 1, 2016 for co-pending U.S. Appl. No. 14/848,447. |
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/848,447. |
Final Office Action dated Jan. 22, 2018 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Jan. 25, 2018 for co-pending U.S. Appl. No. 15/602,666. |
Final Office Action dated Feb. 6, 2018 for co-pending U.S. Appl. No. 15/475,354. |
Non-Final Office Action dated Feb. 9, 2018 for co-pending U.S. Appl. No. 15/587,926. |
Non-Final Office Action dated Feb. 15, 2018 for co-pending U.S. Appl. No. 14/922,836. |
Final Office Action dated Dec. 27, 2017 for co-pending U.S. Appl. No. 14/943,182. |
International Search Report for related International Application No. PCT/US2012/066639, dated Feb. 25, 2013. |
International Search Report for related International Application No. PCT/US2013/035442, dated Jun. 23, 2013. |
International Search Report for related International Application No. PCT/US2013/032819, dated May 23, 2013. |
International Search Report for related International Application No. PCT/US2013/049028, dated Mar. 4, 2014. |
International Preliminary Report on Patentability for PCT/US2012/066639, dated Feb. 26, 2013. |
International Preliminary Report on Patentability for PCT/US2013/032819, dated Sep. 23, 2014. |
International Search Report for PCT/US2015/012990, dated May 6, 2015. (15 pages). |
FS-35 Desert Frac-Sanders. NOV (National Oilwell Varco). Mar. 19, 2012. (https://web.archive.org/web/20120319070423/http://www.nov.com/Well_Service_and_Completion/Frac_Sand_Handling_Equipment/Frac_Sanders/FS-35.aspx). |
File History for U.S. Appl. No. 61/538,616, Robert A. Harris, filed Sep. 23, 2011. (21 pages). |
International Search Report for PCT/US2015/024810, dated Jul. 8, 2015. (13 pages). |
European Search Report for Application No. 15167039.5, dated Sep. 8, 2015. (7 pages). |
SandBox Logistics, “Mine to Wellhead Logistics,” Houston, TX, May, 2011. |
SandBox Logistics, LLC, screenshots from video made in Apr. 2013 and publicly shown in May 2013, Arnegard, North Dakota. |
International Search Report for PCT/US15/35635, dated Oct. 30, 2015. (12 pages). |
PCT International Search Report for PCT/US15/49074, dated Dec. 17, 2015. (11 pages). |
PCT International Search Report for PCT/US15/57601, dated May 6, 2016. (11 pages). |
SandBox Logistics, LLC, screenshots from video dated Sep. 19, 2013. |
SandBox Logistics, LLC, screenshots from video dated Aug. 22, 2014. |
SandBox Logistics, LLC, screenshots from video dated Oct. 11, 2011. |
SandBox Logistics, LLC, screenshots from video dated Apr. 10, 2011. |
Grit Energy Solutions, LLC, Fidelity, Screenshots from video dated May 16, 2014. |
Grit Energy Solutions, LLC, Gate, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack. |
Grit Energy Solutions, LLC, Screen, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack. |
Grit Energy Solutions, LLC, The Grit Stack System—Live Frac, Screenshots from video dated Jun. 15, 2015, https://www.youtube.com/user/gritstack. |
Grit Energy Solutions, LLC, The Grit Stack System, Screenshots from video dated Feb. 7, 2014, https://www.youtube.com/user/gritstack. |
Frac Sand Primer by Brian D. Olmen, Kelrick, LLC, from Hydraulic Fracturing by Michael Berry Smith and Carl Montgomery (CRC Press, Dec. 16, 2015), p. 384. |
Premier Silica LLC, Sands Application in the Energy Market, Irving, TX, Copyright 2016. |
Getty, John, Montana Tech; ASTM International, Overview of Proppants and Existing Standards and Practices, Jacksonville, FL, Jan. 29, 2013. |
Non-Final Office Action dated May 13, 2016 for co-pending U.S. Appl. No. 14/986,826. |
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/922,836. |
Non-Final Office Action dated Feb. 4, 2016 for co-pending U.S. Appl. No. 14/922,836. |
Final Office Action dated Aug. 25, 2016 for co-pending U.S. Appl. No. 14/927,614. |
Non-Final Office Action dated Mar. 1, 2016 for co-pending U.S. Appl. No. 14/927,614. |
Non-Final Office Action dated Apr. 29, 2016 for co-pending U.S. Appl. No. 14/943,182. |
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/882,973. |
Non-Final Office Action dated Feb. 11, 2016 for co-pending U.S. Appl. No. 14/882,973. |
Non-Final Office Action dated Aug. 11, 2016 for co-pending U.S. Appl. No. 13/625,675. |
Final Office Action dated Nov. 11, 2015 for co-pending U.S. Appl. No. 13/625,675. |
Non-Final Office Action dated Mar. 11, 2015 for co-pending U.S. Appl. No. 13/625,675. |
Non-Final Office Action dated Oct. 27, 2016 for co-pending U.S. Appl. No. 15/219,676. |
Non-Final Office Action dated Nov. 9, 2016 for co-pending U.S. Appl. No. 14/948,494. |
Final Office Action dated Nov. 4, 2016 for co-pending U.S. Appl. No. 14/738,485. |
Non-Final Office Action dated Dec. 28, 2016 for co-pending U.S. Appl. No. 13/628,702. |
Non-Final Office Action dated Jan. 13, 2017 for co-pending U.S. Appl. No. 14/923,920. |
Final Office Action dated Jan. 12, 2017 for co-pending U.S. Appl. No. 14/841,942. |
Non-Final Office Action dated Dec. 23, 2016 for co-pending U.S. Appl. No. 14/485,686. |
Non-Final Office Action dated Jan. 27, 2017 for co-pending U.S. Appl. No. 14/485,687. |
Non-Final Office Action dated Dec. 20, 2016 for co-pending U.S. Appl. No. 14/831,924. |
Final Office Action dated Jan. 19, 2017 for co-pending U.S. Appl. No. 13/660,855. |
Final Office Action dated Nov. 25, 2016 for co-pending U.S. Appl. No. 15/152,744. |
Non-Final Office Action dated Dec. 15, 2016 for co-pending U.S. Appl. No. 14/848,447. |
Non-Final Office Action dated Dec. 9, 2016 for co-pending U.S. Appl. No. 14/927,614. |
International Search Report for PCT Application No. PCT/US2016/050859 dated Dec. 9, 2016. |
Non-Final Office Action dated Feb. 24, 2017 for co-pending U.S. Appl. No. 14/943,182. |
Non-Final Office Action dated Feb. 14, 2017 for co-pending U.S. Appl. No. 14/943,111. |
Final Office Action dated Mar. 7, 2017 for co-pending U.S. Appl. No. 15/144,296. |
Non-Final Office Action dated Apr. 6, 2017 for co-pending U.S. Appl. No. 13/768,962. |
Non-Final Office Action dated Mar. 6, 2017 for co-pending U.S. Appl. No. 15/152,744. |
Non-Final Office Action dated Apr. 3, 2017 for co-pending U.S. Appl. No. 13/555,635. |
International Search Report and Written Opinion for PCT/US2017/012271, dated May 22, 2017. |
Non-Final Office Action dated Apr. 24, 2017 for co-pending U.S. Appl. No. 14/738,485. |
Final Office Action dated May 4, 2017 for co-pending U.S. Appl. No. 15/143,942. |
Final Office Action dated May 30, 2017 for co-pending U.S. Appl. No. 13/625,675. |
Final Office Action dated Apr. 19, 2017 for co-pending U.S. Appl. No. 15/219,640. |
Non-Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 15/219,640. |
Final Office Action dated May 2, 2017 for co-pending U.S. Appl. No. 15/219,676. |
Non-Final Office Action dated May 10, 2017 for co-pending U.S. Appl. No. 14/882,973. |
Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 13/628,702. |
Final Office Action dated Jul. 3, 2017 for co-pending U.S. Appl. No. 14/923,920. |
Non-Final Office Action dated Jun. 28, 2017 for co-pending U.S. Appl. No. 15/589,185. |
Final Office Action dated Jun. 7, 2017 for co-pending U.S. Appl. No. 14/848,447. |
Final Office Action dated Jun. 28, 2017 for co-pending U.S. Appl. No. 14/485,687. |
Final Office Action dated Jun. 6, 2017 for co-pending U.S. Appl. No. 14/927,614. |
Final Office Action dated Jun. 21, 2017 for co-pending U.S. Appl. No. 14/943,182. |
Non-Final Office Action dated Jul. 26, 2017 for co-pending U.S. Appl. No. 15/463,201. |
Final Office Action dated Jul. 27, 2017 for co-pending U.S. Appl. No. 14/738,485. |
Non-Final Office Action dated Aug. 3, 2017 for co-pending U.S. Appl. No. 15/219,676. |
Beckwith, Robin, Proppants: Where in the World, Proppant Shortage, JPT, Apr. 2011 (6 pages). |
Kullman, John, The Complicated World of Proppant Selection . . . , South Dakota School of Mines & Technology, Oct. 2011 (65 pages). |
Lafollette, Randy, Key Considerations for Hydraulic Fracturing of Gas Shales, BJ Services Company, Sep. 9, 2010 (53 pages). |
WW Trailers Inc., Model GN2040EZ datasheet, Portland, OR, Jan. 2007 (4 pages). |
WW Trailers Inc., Model GN204S9A datasheet, Portland, OR, Jan. 2007 (4 pages). |
Itsumi Nagahama, English translation of Japan Unexamined Application No. S4871029, Dec. 14, 1971. |
Non-Final Office Action dated Apr. 26, 2018 for co-pending U.S. Appl. No. 15/616,783. |
Final Office Action dated Apr. 23, 2018 for co-pending U.S. Appl. No. 14/848,447. |
Final Office Action dated Mar. 16, 2018 for co-pending U.S. Appl. No. 14/996,362. |
Final Office Action dated Mar. 14, 2018 for co-pending U.S. Appl. No. 15/144,450. |
ISO 1496-1: International Standard, Series 1 Freight Containers—Specification and Testing—Part 1, General Cargo Containers, Fifth Edition, Aug. 15, 1990. |
ISO 6346: International Standard, Freight Containers—Coding, Identification and Marking, Third Edition, Dec. 1, 1995. |
ISO/IEC 15416: International Standard, Information Technology—Automatic Identification and Data Capture Techniques—Bar Code Print Quality Test Specification—Linear Symbols, First Edition, Aug. 15, 2000. |
Hoel, Lester A., Giuliano, Genevieve and Meyer, Michael D., Portions of Intermodal Transportation: Moving Freight in a Global Economy, Copyright Eno Transportation Foundation, 2011. |
International Organization for Standardization, ISO 668:1995(E). |
International Organization for Standardization, ISO 668:1995(E)/Amd.1:2005(E). |
International Organization for Standardization, ISO 668:1995(E)/Amd.2:2005(E). |
International Organization for Standardization, ISO 1496-1:1990/Amd.1:1993(E). |
International Organization for Standardization, ISO 1496-1:1990/Amd.2:1998(E). |
International Organization for Standardization, ISO 1496-1:1990/Amd.3:2005(E). |
International Organization for Standardization, ISO 1496-1:1990/Amd.4:2006(E). |
International Organization for Standardization, ISO 1496-1:1990/Amd.5:2006(E). |
Rastikian, K. et al., Modelling of sugar drying in a countercurrent cascading rotary dryer from slationary profiles of temperature and moisture, Journal of Food Engineering 41 (1999). |
Number | Date | Country | |
---|---|---|---|
20180016095 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62012153 | Jun 2014 | US | |
62012165 | Jun 2014 | US | |
62139323 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14738485 | Jun 2015 | US |
Child | 15716648 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13768962 | Feb 2013 | US |
Child | 14738485 | US | |
Parent | 13628702 | Sep 2012 | US |
Child | 13768962 | US | |
Parent | 13555635 | Jul 2012 | US |
Child | 13628702 | US |