The invention relates to an apparatus for the treatment of strand-like textile material in the form of a continuous material rope which is circulated during at least part of its treatment.
So-called long storage machines are widely used in discontinuous single piece finishing for finishing and generally treating synthetic strand-like textile material, in particular. These long storage machines comprise an elongated, substantially tubular treatment container and a transport nozzle array arranged therein, to which transport nozzle array can be applied a liquid and/or gaseous transport medium flow. Adjoining the transport nozzle array is a transport section that terminates at a material rope inlet side in a storage section of the treatment container accommodating a folded rope pile. The storage section comprises a gliding bottom extending at a distance above the container wall located below, said gliding bottom extending from the material rope inlet side of the storage section to a material rope outlet side near the transport nozzle array.
Examples of such long storage machines are described in publications DE 2 207 679 A, DE 36 13 364 C2, DE 10 2007 036 408 B3 and FR 2 681 364, to mention only a few examples. As a rule, these machines are processed in a floating manner at a relatively high bath ratio (1:8 to 1:2) in the treatment bath. The material rope drive comprises a reel and a transport nozzle. In many cases the reel is a source of material damage resulting in dragging points or fabric displacement. This is due to low contact forces between the material rope and the reel as well as due to smooth reel surfaces; and, due to a fluid film between the material rope and the reel, the pulling action of the reel is frequently more likely rather minimal. Furthermore, the coordination of the material rope velocity generated by the transport nozzle and the reel circumferential speed is a problem in many cases. With the use of reels that are freely moving in material rope transport direction, it is attempted to reduce surface damage to the treated textile material caused by the decelerating effect of the reel.
A long storage machine is also known from publication U.S. Pat. No. 5,850,651, wherein a reel is omitted in one embodiment and the drive of the circulating material rope is achieved by air or an air/fluid mixture as the transport medium with which a transport nozzle can be loaded. A design of a long storage machine that, in principle, is similar is known from publication JP 07 305261 A. This machine also operates without a reel. The material transport is accomplished by a transport nozzle array that is optionally operated with gaseous and/or fluid transport media. Machines having this design can do with a relatively low draw-off height, along the length of which the material rope must be lifted at the outlet of the material storage section up to its entry into the transport nozzle. In so doing, the pulling forces exerted on the circulating material rope are appropriately lower in this region, this being advantageous in the treatment of sensitive textile materials.
In the elongated substantially tubular treatment container of long storage machines, there is provided, adjoining the material rope inlet, a storage section accommodating the folded rope pile. As a rule, the storage section comprises a gliding bottom for the material rope pile at a distance from the container wall located below, in which case—between the gliding bottom and the transport section—folding means for the material rope may also be arranged, as has been described in the aforementioned DE 10 2007 036 408 B3. The gliding bottom that comes into contact with the upper side of the material rope pile and is preferably configured so as to be friction-minimizing is inclined obliquely downward—at least in sections—from the folding means on the materials rope inlet side toward the material rope outlet side of the storage section in order to achieve a force of gravitation promoting the transport of the folded material rope.
However, in the course of a treatment the coefficient of friction of a textile material and thus of a material rope pile experiences changes that are caused, e.g., by the temperature, the material velocity and by different dyes, chemicals and auxiliary agents in the treatment bath. Thus, a decreasing coefficient of friction frequently causes the material pile compression toward the other end of the sliding bottom acting as the material pile slide to become increasingly greater and to finally be potentially up to 30%. As of a certain compression the material pile pressure can become so great that the textile material escapes upward in the direction out of the material rope pile and is pushed up. This behavior results in unfavorable draw-off properties at the draw-off point upstream of the material rope transport system. In order to remedy this, the sliding bottom was already configured in a concavely arcuate manner—at least in some regions—in longitudinal direction of the gliding bottom, in which case different profile forms have become known that, however, as a rule, are more or less well-suitable for only one specific type of material. Certain textile materials that contain, for example, cotton, polyamide, nylon, etc., have—depending on type of make, material composition and the like—coefficients of friction that may be within an entire band width with the result that also the material rope movement through the storage section of the machine may become problematic. It may occur that material rope loops are folded over and that material rope twists or material rope knots may form. Also, the packing density on the gliding bottom in the event of articles with increased inclination may lead to disadvantageous results due to temperature-related fold or crease formation.
It is the object of the invention to remedy this and provide a long storage machine that is uniformly suitable for the treatment of textile materials, i.e., substrates exhibiting different coefficients of friction and, consequently, make possible their use in a broad spectrum of applications of various textile material articles.
In order to achieve this object, the long storage machine according to the invention exhibits the features of patent claim 1.
The new long storage machine comprises means for changing the inclination of the gliding bottom from its material rope inlet side toward its material rope outlet side. This may be accomplished in such a manner that the gliding bottom inside the treatment container can be adjusted regarding its inclination. However, in a preferred embodiment the arrangement is such that the treatment container is supported so as to be rotatable about an axis of rotation and that it is allocated adjustment means by means of which said container can be locked in the respective angular position.
As a result of this, the inclination of the gliding bottom is no longer fixed at a defined value due to design specifications in the storage section of the treatment container but is adjustable, thus allowing easy consideration of the coefficients of friction of different textile materials.
The adjustment range of inclination of the gliding bottom and thus the height of the gliding angle specified for the material rope pile placed on the gliding bottom is—as a rule—between 6 to 14 degrees; however, larger angular ranges are also conceivable.
In order to facilitate passage of the material rope through the storage section of the treatment container and to increase the options of use of the machine, it is expedient for the gliding bottom to be configured in the manner of an elongated tub whose bottom is concavely curved—at least in some regions. In so doing, the bottom may be curved—at least in some regions—in the form of a circular arc or of a catenary line.
During the treatment of certain, highly sensitive textile materials the compressive pressure occurring in the material rope pile at the lower end, i.e., at the material rope outlet of the inclined gliding bottom, may already be too high with an otherwise common inclination of the gliding bottom so that folds, creases or other surface impairments occur. Considering this group of materials, the inclination of the gliding bottom may be reduced to such an extend that the tub formed by the gliding bottom is oriented essentially in horizontal direction. If at least the part of the tub over which the material rope glides is filled with treatment fluid, the textile material is treated in a floating manner; in other words, the treatment is performed as in a trough or tub in which the material floats in the fluid.
The new long storage machine works without reel, so that a very small draw-off height results for the material rope on the path from the material rope outlet of the storage section to the venturi transport nozzle array. This distance may be less than 0.5 meters and less which, in conjunction with a low fluid load of the material rope, results in low tensile stress on the material rope when it is being drawn off out of the storage section and thus results in an extremely gentle treatment of the textile material. This low tensile stress on the textile material results in a reduced elongation and thus in improved shrinkage values. An inward rolling of the material edges as occasionally occurs in elastane-containing articles is largely avoided.
Additional advantageous features and embodiments of the invention are the subject matter of dependent claims. The drawings show exemplary embodiments of the subject matter of the invention. They show in
The long storage machine shown in
The machine comprises an elongated, substantially tubular treatment container 1 that consists of a longer cylindrical tubular section 2 and a shorter, likewise cylindrical, tubular section 3 having the same diameter, these being connected to each other via a wedge-shaped intermediate tubular piece 4 and being closed on the end sides with bottoms, for example torispherical ends or basket elbow ends 5, 6. The removably mounted basket elbow end 6 is provided with a loading door 7 leading into the interior of the container. The axes of the two tubular sections 2, 3 include between them an oblique angle of 165 degrees. On its front end, the treatment container 1 is supported by two feet 8 mounted to opposite sides on the tubular section 3, said feet being supported by stationary bearing brackets 10 so that it can be pivoted about a horizontal axis of rotation 9.
On the back end of the treatment container 1, there is provided lifting device that is schematically represented at 11 and is in contact with the outside of the longer tubular section 2, said lifting device working with a not specifically illustrated lifting spindle or with likewise not illustrated lifting cylinders and forming adjustment means for the treatment container 1. By means of the lifting device 11, it is possible to pivot the treatment container 1 about its axis of rotation 9, so that the inclination of the treatment container is changed relative to the horizontal, for example, between the position as in
As a rule, the inclination of the treatment container 1 is adjustable by appropriate pivoting about the axis of rotation 9 within a range of 6 degrees to 14 degrees; however, in the event of special cases of use, other, in particular larger, adjustment ranges are also conceivable. In its respectively set position of inclination, the treatment container 1 can be locked by adjustment means of the lifting device 11 as is indicated by catches 13. The adjustment of the inclination of the treatment container 1 may also be done in a continuous manner.
In the treatment container 1, as is particularly obvious from
The gliding bottom 16 extends in the treatment container 1 at a distance above the container wall 21 located below and is firmly supported by holders 22 mounted to the container wall. If the inclination of the treatment container is changed by being pivoted about the axis of rotation 9, consequently also the inclination of the gliding bottom 16 is correspondingly changed relative to the horizontal. Alternatively, other embodiments are also conceivable, wherein also the gliding bottom 16 in the treatment container 1 is supported by holders 22 that are height-adjustable and thus allow a changing of the inclination of the gliding bottom 16 relative to the container wall 21, while the treatment container 1 itself maintains its once-set inclination.
The tub-shaped gliding bottom 16, which is provided on its inside walls facing the passing-through material rope pile 19 and displays a low coefficient of friction relative to the material rope pile and is coated—for example with Teflon—or provided with special gliding elements or rollers, is made of two walls with a fluid-impermeable outside wall 23 and—at a distance therefrom—an inside wall 24 that is perforated in a section 24a extending from the material rope inlet side 18 and in a section 24b leading to the material rope outlet side 20 and is fluid-impermeable in a wall section 24c located in between. The perforated sections 24a, 24b are highlighted in black in
A filling pipe 260 terminates in the tub-shaped gliding bottom 16 and allows filling of the gliding bottom in the course of a treatment container adjustment as in
The gliding bottom 16 is curved concavely along is length that accommodates the material rope pile 19, preferably consistent with an arc of a circle having a large radius (for example 20 meters) or consistent with a catenary line. In so doing, the discharge opening 27 is arranged at the lowest point of the gliding bottom 16 with the gliding bottom being oriented horizontally. Adjoining this concavely curved section, the gliding bottom 16 is highly arched on the material rope inlet side 18 and on the material rope outlet side 20 at 16a and 16b, respectively, in which case the high arch 16a extends into the region of the center axis of the treatment container. The adjoining bordering edge of the lateral wall of the tub-shaped gliding bottom 16 is indicated at 30.
The transport section 15 above the gliding bottom 16 in the treatment container 1 comprises a transport tube 31, the details of which can be seen in
Feeding of the material rope on the back side of the material rope depositing zone 330 over the height of approximately 150 mm to 200 mm—together with the boundary wall 34—imparts a pulse to the material rope 17 moving into the gliding bottom 16, said pulse causing the material rope to be deposited at the beginning of the storage section in super-imposed layered folds in such a manner that the material rope 17 on the material rope outlet side 20 is always drawn off the uppermost layer 17a of the material rope pile as is illustrated in
On entering the material rope depositing zone 330 the material rope 17 is folded across the width of the tub-shaped gliding bottom 16 such that the material rope outlet elbow 32 is imparted with an oscillating uniform movement via the transport tube 31. For this purpose, the transport tube is supported so that it can be pivoted together with the transport nozzle array 14 about an axis of rotation 340 (
Due to the relatively great length of the transport tube 31, the material rope outlet elbow 32 leads to a uniform, almost linear movement across the width of the depositing zone 330 during the material rope depositing process. As a result of this, a very gentle deposition of the material rope in the depositing zone 330 is achieved, which is of advantage with highly sensitive textile materials, in particular. This is in contrast with such known embodiments of folding arrangements wherein a material rope outlet elbow is imparted with a rotary movement about the axis of the transport tube that causes a corresponding twisting of the material rope that passes through, thus potentially resulting in difficulties affecting a variety of sensitive textile materials.
The oscillating pivoting motion is applied to the transport tube 31 by a drive motor 38 (
As a result of the fact that the entire transport section 15 is arranged together with the transport nozzle array 14 inside the treatment container 1, there results the advantage that the transport tube 31 does not need to be pressure-resistant and thus can be manufactured in a relatively simple and cost-effective manner. As can be learned from
With its tubular section 31a having a constant square cross-section along its length, the transport section 15 is connected to a transport nozzle 40 of the transport nozzle array 15, the precise design of which can be inferred from
Attached to the tubular section 31a is a cylindrical housing panel 41 that is peripherally shiftable in an axially delimited manner and is moved sealed in a fluid-tight manner by gaskets 42 in a housing ring flange 43 of a nozzle housing 44. The ring flange 43 has an inlet opening 45 for the treatment fluid that can flow via a tubular elbow 460 of the treatment fluid supply line 470 (
Between the nozzle elements 46 having the semi-cylindrical cross-section and surrounding the nozzle inlet opening 47 and the outlet part 48, there is delimited a nozzle gap 52 via which the treatment fluid fed through the treatment fluid supply line enters into the tubular section 31a of the transport tube 31. Due to the cylindrical form of the nozzle elements 46 and the configuration of the material rope outlet opening of the outlet part 47 adapted so said form, an essentially eddy-free introduction of the treatment fluid through the conical nozzle gap 52 into the nozzle inlet opening 47 is achieved. In contrast with the conditions of a design of the nozzle gap delimited by more or less parallel surfaces or the abrupt embodiment of the nozzle gap, in this case largely laminar flow conditions are achieved that—even at high treatment temperatures—avoid cavitations or similar phenomena that are detrimental to the transport of the material rope.
The opening width of the nozzle gap 52 can be adjusted in that, in the embodiment as in
The adjustment lever 56 may be manually actuated or via a not specifically illustrated actuator of a control device. It allows the selective changing of the nozzle gap 52 that tapers conically toward the outlet opening from the nozzle housing 44. In this manner, it is possible to change the intensity of the treatment of the passing material rope with the treatment fluid between a more intensive treatment (narrow nozzle gap) and a more gentle treatment (large nozzle gap).
In an alternative embodiment illustrated by
The long storage machine described so far operates as follows:
In the known long storage machines, most textile materials are treated at a relatively long bath ratio of, e.g., 1:8 to 1:15, which necessitates great expenses and effort in view of energy, chemicals and reactive dyes.
As opposed to this, the hydraulically operating long storage machine is designed for the smallest possible bath ratios that are on the order of 1:3 for synthetic materials and of 1:4 for cotton materials.
The material rope 17 to be treated is introduced in a customary manner—with the treatment door 7 open—into the treatment container that is designed as a pressure-resistant vat and, in so doing, said material rope is sucked through the materials rope inlet elbow 49 by the transport nozzle array 14. The transport nozzle array 14 is loaded with treatment fluid that, among other things, is optionally evacuated by a pump 60 via a drain line 59 (
After the ends of the rope have been sewn to each other and after closing the loading door 7, the material rope 17 may be treated in the—optionally pressurized—treatment container 1 with the treatment fluid that has been brought to the required temperature. In so doing, the long storage machine allows the operation—depending on the requirements of the textile material—in wet mode, in semidry mode or in dry mode.
The material rope is circulated by the transport nozzle array 14, transported through the transport section to the material rope inlet side 18 into the treatment container 1 and introduced there into the tub-shaped gliding bottom 16 via the material rope outlet elbow 32 in the depositing zone 330, where said material rope is stored in the storage section in the form of the material rope pile 19 and conveyed to the material rope outlet side 20. Here, it is again sucked into the transport nozzle array 14 after having passed through the so-called draw-off height.
Downstream of the transport nozzle 40 of the transport nozzle array 14, the material rope first moves through the tube piece 31a having a constant cross-section and a length approximately five to ten times the width of the nozzle inlet opening 47. In this zone, the pulse of the treatment agent jet is applied at a high degree of efficiency to the textile material of the material pile. The pulling forces generated by the jet of the treatment fluid act on the passing material pile over a length of approximately 600 to 1000 mm with the result that a highly gentle treatment of the textile material with low pulling forces can be achieved.
Adjoining this intensive zone in the tube piece 31a, the transport tube 31 widens conically in its tube section 31b. In this tube section, the remaining flow energy of the treatment medium is transmitted to the material rope. At the same time, the textile material is opened through the conical expansion to the outlet width of the transport channel. The intensive zone in the tube section 31a and the conical expansion in the tube section 31b result in a very good pulling effect of the material rope transport system to act on the material rope. The low speed of the treatment fluid at the end of the transport section prevents impairments of the conveyed textile material, to which also contributes the circumstance that the pulling forces are transmitted to the material rope over a relatively long path of the transport section. The transport of the textile material in the transport tube 31 occurs in a floating manner. The transport section 15 is provided with an incline in order to bring the textile material to the upper position of the gliding bottom 16 and to the material slide created thereby. The cross-section of the transport tube 31 is rectangular which, compared with a cylindrical tube, provides the advantage that the textile material is not compressed on the tube bottom where it is supported, as is true of a cylindrical tube.
After passing through the transport tube 31, the textile rope enters the upper end of the perforated rectangular material rope outlet elbow 32 arranged on the upper end of the transport tube 31. Due to the centrifugal force and due to the residual pressure of the treatment agent, a large portion of the treatment agent carried along by the material rope is separated from the material rope and enters the back part of the treatment container 1. As the material rope velocity increases, a disproportionately large amount of the treatment agent is separated from the material rope. The released treatment agent splashes from the treatment outlet elbow 32 against the adjacent walls in the back part of the treatment container 1 and causes the cleaning of these walls in this manner. As a rule, the percentage of the thusly separated treatment fluid is at approximately 30 to 70%.
Below the perforated material rope outlet elbow 32, the material rope 17 enters the material rope depositing zone 330. This is relatively narrow and causes, in the already described manner, a controlled deposition of the material rope. Due to the special configuration of the walls and the boundary wall 34, the material rope is turned in such a manner while it is being deposited that, as already mentioned, the material rope is drawn off the uppermost fold 17a located at the lower end of the gliding bottom 16 on the material rope outlet side 20.
Treatment fluid that is still carried along is removed from the material rope pile 19 pushed forward on the gliding bottom 16 is discharged through the perforation in the gliding bottom sections 24a, 24b and allowed to flow off into the treatment container 1 with the flaps 26 open.
Combined with the short draw-off height of the material rope on the material rope outlet side 20, this low treatment fluid load of the material rope also results in a minimal pulling strength stress on the material rope on the way between the gliding bottom and the transport nozzle array 14. Inasmuch as the transport nozzle array 14 is not arranged in the ascending part of the material rope circulation path, i.e., adjoining the gliding bottom 16 and downstream of the material rope inlet elbow 49, but in the continuation of the straight tube section 31a of the transport section 14, highly favorable circulation conditions result for the material rope that is treated in a particularly gentle manner.
The textile material layer, i.e., the height of the material rope pile 19 on the gliding bottom 16, as a rule, ranges between 10 and 15 cm. In this manner, the compressive pressure acting at the lower end of the inclined gliding bottom 16 on the lowermost material rope fold is relatively low. As a result of the already described option of letting the free treatment fluid drop off, there is only the treatment fluid remaining in the loops or fabric interstices due to capillary action and adhesive forces. Therefore, the largest group of textile materials by far can be treated in the treatment container in the elevated position as in
Referring to a particular group of textile materials (e.g., acetate) the compression of the material rope pile on the gliding bottom 16 is already too high when the treatment container is adjusted as in
Of course, all the functions of the new long storage machines, including the adjustment of the nozzle gap 52, can be automatically controlled by a control device. This is advantageous in commission dyeing and allows the new long storage machine to treat almost all virtually occurring groups and areas of different textile materials within a large spectrum.
As a rule, the nominal loading weights for a long storage machine are not reached with light-weight textile materials. In order to reach the nominal treatment weight and keep the material rope circulation time within acceptable limits the machine may be equipped with several transport tubes 31. in this case, a transport tube 31 as described hereinabove is equipped with a transport nozzle 40 having an adjustable nozzle gap 52, whereas the other transport tubes 31 can be dimensioned—optionally without adjustment—for lighter-weight textile materials; however, this is not absolutely necessary.
The new long storage machine was described hereinabove as a hydraulic machine, wherein the transport of the material rope 17 is performed solely by the treatment fluid, and wherein the associate transport nozzle array is configured accordingly. Basically however, it is also possible to apply the principle of the machine to long storage machines that operate pneumatically and/or mixed pneumatically/hydraulically. In these cases, the transport nozzle array 14 comprises transport nozzle means that can be charged either with a transport gas and/or with a transport gas as well as with a transport fluid, in which case treatment agents in a suitable form, for example atomized, may be added to the transport gas, as has been known per se.
An apparatus for the treatment of strand-like textile material in the form of a continuous rope which is circulated during at least part of its treatment comprises an elongated substantially tubular treatment container 1 having a storage section which holds a folded rope pile 19. The storage section. contains a gliding bottom 16 and means 11 for changing the incline of the gliding bottom 16 from its rope inlet side 18 to its rope outlet side.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 110 491.6 | Sep 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/070063 | 9/20/2014 | WO | 00 |