Apparatus for the uniform deposition of particulate material in a substrate

Information

  • Patent Grant
  • 6267575
  • Patent Number
    6,267,575
  • Date Filed
    Wednesday, October 20, 1999
    24 years ago
  • Date Issued
    Tuesday, July 31, 2001
    22 years ago
Abstract
An apparatus for forming a substantially uniform distribution of particulate material within the cross direction of a fibrous web includes a conveying mechanism for providing a gas entrained supply of the particulate material. A transferring mechanism directs the particulate into a delivery gas stream to provide a flow volume of the particulate material a delivery conduit and a delivery nozzle into a web forming chamber. A fiberizing mechanism provides a flow of a selected fibrous material into the web forming chamber, and a directing mechanism controls the flow of particulate material from the delivery conduit and the delivery nozzle into the web forming chamber. A foraminous forming layer is disposed within the web forming chamber for receiving the fibrous material and the particulate material to produce a fibrous web which includes a substantially uniform distribution in the cross direction of the particulate material therein.
Description




THE FIELD OF THE INVENTION




The present invention relates to an apparatus for forming a substantially uniform distribution of particulate material within a fibrous web. More particularly, the present invention relates to an apparatus for forming a substantially uniform distribution of superabsorbent polymer particles within the cross direction of an absorbent pad composed of hydrophilic fibers.




BACKGROUND OF THE INVENTION




Absorbent articles, such as disposable infant diapers, feminine care products, incontinence garments and the like, have included high absorbency superabsorbent polymers to increase the absorbent capacity of the article and to reduce the bulkiness of the article.




Various devices and processes have been employed to manufacture absorbent article designs. Air forming techniques for forming webs of hydrophilic fibers, such as woodpulp fibers, are well known in the art. In addition, it is well known that superabsorbent polymers may be mixed with the hydrophilic fibers during an airlaying process to form an absorbent web. For example, see the Sanyo Technical Bulletin entitled “SAP SHEET”, dated October 1982.




Various methods and apparatus have been employed to manufacture absorbent articles. For example, U.K. Patent Application, No. GB 2,150,033 A published Jun. 26, 1985, describes a suction drum apparatus for making an absorbent pad wherein an integrated shell of flocculent material surrounds an internal absorbent layer. U.S. Pat. No. 4,087,508 issued May 2, 1978 to Cook et al. describes a method which includes applying hydrocolloid polymer particles onto the surface of a central zone of a moving web, and distributing the applied particles into the body of the moving web by air-pressure means. International Patent Application No. WO 88/04165 published Jun. 16, 1988 describes a method and apparatus for forming a nonwoven pad consisting of fibrous material in which highly moisture-absorbent particles are intermixed with the fibrous material throughout a predetermined portion of the thickness of the nonwoven pad. It further describes a spray gun or an extension thereof positioned within the chamber relative to the fibrous material atop a conveyor and that is operated to discharge moisture-absorbent material at a predetermined velocity, such that the moisture-absorbent material is intermixed with the fibrous material throughout a central layer of the thickness of the nonwoven pad while forming boundary layers on either side of the center layer which are substantially free of moisture-absorbent material. Additionally, the spray gun preferably operates intermittently to form spaced, sharply defined areas along the length and width of the nonwoven pad wherein each area has moisture absorbent material interspersed throughout a portion of the thickness thereof.




Conventional apparatus, such as those described above, have not been sufficiently satisfactory. For example, the devices may be overly complex and expensive and may not provide desired substantially uniform deposition for particulate materials, such as superabsorbent granules. The rate of delivery of the superabsorbent particles may not be adequately controlled, and the systems may be excessively sensitive to changing bulk densities in the particulate material.




BRIEF DESCRIPTION OF THE INVENTION




The present invention provides an apparatus for forming a substantially uniform (zoned or otherwise) distribution of particulate material within a fibrous web. Generally stated, an apparatus of the invention comprises conveying means for providing a gas entrained supply stream of the particulate material. The transferring means directs the particulate material into a delivery gas stream to provide a constant or intermittent flow of a selected quantity of particulate material, a delivery conduit, and a delivery nozzle into a web forming chamber. The fiberizing means provides a flow of a selected fibrous material into the web forming chamber, and directing means controls the flow of the particulate material from the delivery conduit, through the delivery nozzle, into the web forming chamber. A foraminous forming layer is disposed within the web forming chamber for receiving the fibrous material and the particulate material to form a fibrous web having a substantially uniform distribution of the particulate material. Such a distribution may include zoned regions having selected, different amounts of the particulate material therein.




Another aspect of the present invention is a distinctive absorbent article comprising a substantially unitary web composed of a mass of hydrophilic fibers, and a quantity of superabsorbent polymer particles substantially uniformly located in the cross direction of the fibrous mass. The superabsorbent particles may have a distinctive, non-uniform distribution along a longitudinal, length dimension of the web. The weight percentage of superabsorbent (per unit weight of the combined particles and fiber) also may be non-uniformly distributed along the length dimension. In particular aspects of the present invention, the absorbent article can also include a longitudinal, length-wise particle distribution that is substantially configured in the form of two or more stepped stages.




The present invention can advantageously provide an apparatus which, when compared to conventional devices, can more efficiently substantially uniformly distribute the particulate material within the cross direction of a fibrous web, and can position the particulate material in a manner which is generally independent of the flow of fibrous material employed to form the web. In the present invention, the apparatus provides a substantially uniform cross-direction particulate distribution within the fibrous web. A further advantage of the present invention is that the apparatus can operate at high speeds. The apparatus also prevents the non-uniform distribution of the particulate material in the cross directional cross section of the absorbent article wherein the absorbent article includes zoned superabsorbent application in the machine direction. It has been noted that using a circular cross section apparatus causes a non-uniform distribution of the particulate material in the cross directional cross section of the absorbent pad.




The distinctive absorbent article of the present invention can advantageously provide a more efficient use of the absorbent material and provide a more effective, localized placement of superabsorbent particles within a web or pad composed of hydrophilic fibers.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be more fully understood and further advantages will become apparent when reference is made to the following detailed description of the invention and the drawings, in which:





FIG. 1

representatively shows a schematic system diagram of the invention;





FIG. 2

representatively shows a schematic system diagram of the invention;





FIG. 3

representatively shows a front view of a current delivery nozzle;





FIG. 4

representatively shows a cross section view of a fibrous web;





FIG. 5

is a photograph of a cross section view of an absorbent body with the superabsorbent material in a swollen and stained state;





FIG. 6

representatively shows a side view of a delivery nozzle of the present invention;





FIG. 7

representatively shows a top view of a delivery nozzle of the present invention;





FIG. 8

representatively shows a side view of a delivery nozzle of the present invention;





FIG. 9

representatively shows a front view of a delivery nozzle of the present invention;





FIG. 10

representatively shows a side view of a delivery nozzle of the present invention;





FIG. 11

is a photograph of a cross section of an absorbent body with the superabsorbent material in a swollen and stained state;





FIG. 12

representatively shows a front view of a delivery nozzle of the present invention;





FIG. 13

representatively shows a side view of a delivery nozzle of the present invention;





FIG. 14

is a photograph of a cross section of an absorbent body with the superabsorbent material in a swollen and stained state;





FIG. 15

representatively shows a side view of a delivery nozzle of the present invention;





FIG. 16

representatively shows a top view of a delivery nozzle of the present invention;





FIG. 17

representatively shows a front view of a delivery nozzle of the present invention;





FIG. 18

representatively shows a front view of a delivery nozzle of the present invention;





FIG. 19

representatively shows a side view of a delivery nozzle of the present invention;





FIG. 20

is a photograph of a cross section of an absorbent body with the superabsorbent material in a swollen and stained state; and





FIG. 21

representatively shows an absorbent diaper-type article which incorporates an absorbent body of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The following detailed description will be made in the context of depositing particulate material


10


, such as superabsorbent particles within a fibrous web


42


employed to construct an absorbent body


240


for use in a disposable absorbent article


210


such as a disposable diaper. It should be understood, however, that the present invention may also be employed to incorporate other types of particulate material within a mass of hydrophilic or hydrophobic fibers. In addition, it should be readily understood that the present invention may also be employed to produce absorbent bodies


240


for other types of absorbent articles, such as feminine care products, incontinence articles and the like. All of such alternative configurations are contemplated as being within the scope of the present invention.




The present invention is an apparatus I that is particularly useful for depositing particulate material


10


, such as organic or inorganic high absorbency material (e.g. superabsorbent), within a fibrous web


42


. Suitable inorganic high-absorbency materials include, for example, absorbent clays and silica gels. Organic high-absorbency materials can include natural materials, such as agar, pectin, guar gum and peat moss, as well as synthetic materials, such as synthetic hydrogel polymers. Such hydrogel polymers include, for example, carboxymethylcellulose, alkali metal salts of polyacrylic acids, polyacrylamides, polyvinyl ethers, hydroxypropyl cellulose, polyvinyl morpholinone, polymers and copolymers of vinyl sulfonic acid, polyacrylates, polyacrylamides, polyvinyl pyridine and the like. Other suitable polymers include hydrolyzed acrylonitrile grafted starch, acrylic acid grafted starch, and isobutylene maleic anhydride copolymers, and mixtures thereof. The hydrogel polymers are preferably lightly cross-linked to impart desired levels of water insolubility to the material. Crosslinking may, for example, be by irradiation or by covalent, ionic, Van der Waals, or hydrogen bonding. Suitable materials are available from various commercial vendors, such as Dow Chemical Company, Hoechst Celanese Corporation, Allied-Colloid, and Stockhausen. Typically, the high-absorbency material is capable of absorbing at least about 15 times its weight in water, and preferably is capable of absorbing at least between about 25 and about 100 times its weight in water.




The particulate material


10


, such as high absorbency superabsorbent particles, may have regular shapes or irregular shapes, such as elongated forms. For example, the particulate material


10


may be configured in the form of granules, flakes, fibers, or the like. The particulate material


10


typically measure from about 50 to about 1000 micrometers in size, preferably measure from about 100 to about 800 micrometers, and more preferably measure from about 200 to about 600 micrometers in size to provide improved processability through the apparatus


1


of the present invention.




With reference to

FIG. 1

, a representative apparatus


1


of the present invention is configured to form a substantially uniform distribution of particulate material


10


, such as particles of a superabsorbent polymer material (SAM), within the cross direction of a fibrous web


42


, such as a fibrous web


42


comprising woodpulp fluff fibers


40


. A conveying means


15


, such as a mechanism composed of the particle feeder device


14


and the conveying blower


16


, provides a gas entrained supply stream


18


of the particulate material


10


through a delivery conduit


30


and delivery nozzle


36


into a web forming chamber


32


.




The fiberizing means


33


, such as the hammermill


34


provides a flow of a selected fibrous material


40


, such as woodpulp fluff fibers, into the web forming chamber


32


. A directing means


35


, such as the delivery nozzle


36


, controls the flow (intermittent or otherwise) of the particulate material


10


from the delivery conduit


30


and through the delivery nozzle


36


into web forming chamber


32


, and a foraminous forming layer


38


is moveable and disposed within the web forming chamber


32


to receive the fluff fibers


40


and the particulate material


10


thereon to form the fibrous web


42


. The fibrous web


42


may include distinctive, zoned regions having selected, different amounts of particulate material


10


therein as disclosed in U.S. Pat. No. 5,102,585 issued to Pieper et al. on Apr. 7, 1992 and U.S. Pat. No. 5,028,224 issued to Pieper et al. on Jul. 2, 1991 incorporated herein by reference. The apparatus


1


of the present invention can advantageously operate at high speeds.




The feeder device


14


includes a particulate regulating means


19


for providing a selected mass flow rate of the particulate material


10


, such as high absorbency particles composed of superabsorbent hydrogel polymer, into a conveying gas stream


46


provided by the conveying blower


16


. It should be readily understood that the amount of particulate material


10


delivered into the conveying gas stream


46


is dependent upon the forming rate of the fibrous web


42


and the weight percent of the particulate material


10


desired to be contained within the fibrous web


42


. In the illustrated embodiment, the particulate regulating means


19


is constructed and configured to provide a particulate mass flow rate which is within the range of about 6- about 400 gm/sec. Various types of feeder mechanisms, such as a feeder device


14


, may be employed with the present invention. This feeder device


14


can thereby help control the delivery of the desired amounts of particulate material


10


into the fibrous web


42


. In the shown embodiment, the feeder device


14


may be a LWF3-35 feeder manufactured by the K-tron Corp., a company located in Pitman, N.J. Other equivalent feeder devices


14


may also be employed with the present invention.




Various types of commercially available blower devices may be employed with the present invention. In the shown embodiment, conveying blower


16


may be a VB-019 blower manufactured by Spencer Turbine, a company located in Windsor, Conn.




In particular embodiments of the present invention, the conveying blower


16


is configured to supply a conveying gas flow velocity of not less than about 5 m/sec (about 1000 ft/min), and preferably provides a gas velocity of not less than about 9 m/sec (about 1800 ft/min). In other embodiments of the present invention, the conveying blower


16


is configured to provide a gas velocity in the conveying gas stream


46


of not more than about 35 m/sec (about 7000 ft/min), and preferably provides a velocity of not more than about 45 m/sec (about 8500 ft/min) to provide improved performance. A suitable conveying conduit


17


is employed to transport the particle/gas mixture


18


composed of the particulate material


10


entrained in the moving stream of the conveying gas


46


.




The proper flow of the conveying gas


46


is dependent on the particulate material


10


being conveyed. In addition to the velocity ranges given, it is desirable to maintain the “solids loading ratio” (mass flow rate of material divided by the mass flow rate of conveying gas) below about 5. Preferably, the solids loading ratio is maintained below about 3. At these ratios, the resultant two-phase flow is typically classified as the “lean phase”. The lean phase flow is desirable to minimize short-term weight variability.





FIG. 1

provides a detailed illustration of the web forming chamber


32


. The web forming chamber


32


includes a fiber delivery means


39


, such as the fiberizer hammermill


34


, which provides a flow of the fibrous material


40


within the web forming chamber


32


. The foraminous forming layer


38


, which is located in the web forming chamber


32


and movable therein, is configured to receive a deposit of the fibrous material


40


thereon. Piping means, such as the delivery conduit


30


, and one or more of the delivery nozzles


36


, supply a flow of dispersed bodies of the particulate material


10


, such as the superabsorbent polymer particles. This flow of particulate material


10


enters the web forming chambers


32


and intermixes with the flow of the fibrous material


40


therein. The flow regulating means


20


, such as the flow angle adjuster


126


, controls the flow vector of the delivery gas stream


28


of the particulate material


10


within the fibrous material


40


deposited onto the forming layer


38


to form the fibrous web


42


.




The web forming chamber


32


includes the side walls


115


and the end walls


116


and


118


which are constructed and arranged to define a generally enclosed volume. The end walls


116


and


118


have suitable entrance and exit openings formed therethrough to allow the entry of the forming layer


38


and the removal of the air-formed fibrous web


42


from the web forming chamber


32


.




The hammermill


34


may comprise any one of a number of types of conventional fiberizing devices. The sheets of selected fibrous material


40


are typically fed into the hammermill


34


, and are disintegrated into a plurality of the individual fibers


40


which are injected or otherwise introduced into the web forming chamber


32


. The fibers


40


are typically composed of absorbent, woodpulp fibers commonly referred to as fluff. The fibers


40


may also be composed of staple fibers, polymeric fibers, cellulosic fibers and mixtures thereof, as well as mixtures of absorbent fibers with generally hydrophobic fibers. The fibrous material


40


may optionally be treated to impart desired levels of hydrophilicity, employing techniques well known in the art.




The web forming chamber


32


of the present invention may further include vacuum means


132


, such as a conventional blower mechanism, for creating a selected pressure differential through the web forming chamber


32


and past the forming layer


38


. The vacuum means


132


is typically located underneath the forming layer


38


to create an air flow through the web forming chamber


32


which is generally directed from the hammermill


34


and past the forming layer


38


. This airflow helps to direct and control the deposit of the fibers


40


and the particulate material


10


onto the forming layer


38


.




The forming layer


38


, for example, may comprise a foraminous forming screen configured as an endless belt which moves about the support rollers


162


and


164


. A suitable driving means, such as an electric motor


166


, is operably connected to move the forming layer


38


through the web forming chamber


32


at a selected speed along the machine direction


168


. The fibers


40


and the particulate material


10


deposits onto the portion of the forming layer


38


within the web forming chamber


32


to form the fibrous web


42


, which eventually develops into an absorbent body


240


within an absorbent article


210


. Since forming layer


38


moves generally from the end wall


116


toward the exit opening through the end wall


118


, the depth or thickness of the fibrous web


42


on any particular section of the forming layer


38


gradually increases as that section of the forming layer


38


traverses through the web forming chamber


32


. The fiber deposition rate onto the forming layer


38


and the movement speed of the forming layer


38


can be suitably adjusted to control the finally formed thickness of the air-formed fibrous web


42


.




In another aspect of the present invention, the forming layer


38


comprises a foraminous forming screen carrier on an outer circumferential surface of a rotatable drum. A suitable driving means, such as a motor, rotates the drum to move the forming layer


38


through the web forming chamber


32


.




The delivery nozzles


37


currently being used in the industry are typically circular structures as shown in FIG.


3


. As the center of the delivery nozzle


37


, as shown along the x-x line in

FIG. 3

, is larger than the side portion of the delivery nozzle


37


, as shown along line y-y in

FIG. 3

, more particulate material


10


is deposited on the corresponding central region of the forming layer


38


. (See

FIG. 4.

) As expected, the corresponding outer portion of the forming layer


38


receives lower amounts of the particulate material


10


. This non-uniform distribution of the particulate material


10


is shown in a swollen and stained state in FIG.


5


. The absorbent body


240


of the absorbent article


210


is caused to swell by placing the absorbent body


240


in a solution of 0.9% by weight of sodium chloride in water. In addition, the saline solution contains about 0.004 grams per liter of FD&C Blue #1 dye or, in the alternative, enough of the dye to provide the desired level of contrast. The particulate material


10


absorbs a greater amount of the saline solution, and therefore a greater amount of the dye than does the fibrous web


42


. As such, the particulate material


10


is a dark blue color as compared to the much lighter blue tint of the fibrous web


42


. The particulate material


10


is the darkened lump or bell curve shaped mass. This non-uniform distribution of the particulate material


10


results in poorer absorbency performance of the absorbent article


210


. In addition, as the particulate material


10


swells upon the absorption of fluid, the absorbent body


240


of the absorbent article


210


distorts and can become uncomfortable.




It is the geometric shape of the delivery nozzle


36


of the present invention that provides the substantially uniform distribution of the particulate material


10


in the cross direction of the fibrous web


42


. One such delivery nozzle


36




a


that provides a substantially uniform distribution of the particulate material


10


is shown in

FIGS. 6

,


7


, and


8


. The delivery nozzle


36




a


is circular in shape. Side portions of the delivery nozzle


36




a


have been removed, forming a pair of gaps


48


and


50


in the end edge


52


. The gaps


48


and


50


may be semi-circular as shown in

FIGS. 6 and 10

, or triangular shaped as shown in

FIG. 8

or any variation of these designs. The gaps


48


and


50


allow the particulate material


10


to spread out within the web forming chamber


32


, thereby avoiding an non-uniform (uneven) distribution of particulate material


10


. The delivery nozzle


36




a


containing the gaps


48


and


50


may also be oval in shape, having the a-a line parallel to the forming layer


38


as shown in FIG.


9


. The resulting substantially uniform (even) distribution of the particulate material


10


resulting from a circular shaped delivery nozzle


36




a


including gaps


48


and


50


shaped like half circles is shown in a swollen and stained state in FIG.


11


. The particulate material


10


is the darkened oval shaped mass. The end edge


52


of the delivery nozzle


36




a


may be flared out from the delivery conduit


30


as shown in FIG.


10


.




Another embodiment of the delivery nozzle


36




b


that provides a substantially uniform distribution of the particulate material


10


is shown in

FIGS. 12 and 13

. The delivery nozzle


36




b


is oval in shape, having the a′-a′ line of the delivery nozzle


36




b


parallel to the forming layer


38


. The end edge


52


of the delivery nozzle


36




b


may flare out from the delivery conduit


30


. (See

FIG. 13.

) The flaring of the end edge


52


further promotes the uniform distribution of the particulate material


10


within the web forming chamber


32


. The resulting substantially uniform distribution of the particulate material


10


resulting from an oval shaped delivery nozzle


36




b


including a flared end edge


52


is shown in a swollen and stained state in FIG.


14


. The particulate material is the darkened oval shaped mass.




Another embodiment of the delivery nozzle


36




c


that provides a substantially uniform distribution of the particulate material


10


is shown in

FIGS. 15

,


16


,


17


, and


18


. The delivery nozzle


36




c


is circular in shape. A wedge member


54


, as shown in

FIG. 16

, is positioned within the delivery nozzle


36




c


as shown in

FIGS. 15 and 16

. The wedge member


54


has front face


56


which faces into the web forming chamber


32


and a rear portion


58


that is positioned within the delivery nozzle


36




c


and may extend into the delivery conduit


30


. The wedge member


54


may be rotated through 180° as shown in

FIGS. 17 and 18

, and any position along the 180° rotation. The rear portion


58


may have a variety of shapes in addition to the shape shown in FIG.


16


. The wedge member


54


forces the particulate material


10


toward the sides of the delivery nozzle


36




c


, resulting in a substantially uniform distribution of particulate material


10


, as shown in a swollen and stained state in FIG.


20


. The particulate material


10


is the darkened oval shaped mass. The end edge


52


of the delivery nozzle


36




c


may be flared out from the delivery conduit


30


, as shown in FIG.


19


.




The present invention may include a single delivery nozzle


36


or may include a multiple delivery nozzle


36


system.




Referring again to

FIG. 1

, the delivery nozzle


36


may protrude into the web forming chamber


32


a predetermined distance to adjust the distribution of particulate material


10


through the thickness of the fibrous web


42


. A larger amount of protrusion can, for example, reduce the amount of particulate material


10


deposited near the forming layer side of the fibrous web


42


. This design results in a non-uniform distribution of particulate material


10


in the z-direction (throughout the thickness dimension) of the fibrous web


42


. As shown in

FIG. 2

, the delivery nozzle


36


may end flush with the wall


116


of the web forming chamber


32


. Such a design results in a more substantially uniform distribution of particulate material


10


in the z-direction of the fibrous web


42


.




The delivery nozzle


36


can be suitably adjusted to a nonparallel angle slanted toward or away from the forming layer


38


. If the delivery nozzle


36


is angled toward the forming layer


38


, relatively more the particulate material


10


can be deposited near the forming layer side of the fibrous web


42


. If the delivery nozzle


36


is angled away from the forming layer


38


, relatively more the particulate material


10


can be deposited near the upper, free surface side of the fibrous web


42


. For example, in a particular aspect of the present invention, the delivery nozzle


36


is constructed and arranged to be pivotable within a range of approximately plus (upwardly) 45° to minus (downwardly) 60°, relative to a plane positioned generally parallel to the forming layer


38


. Preferably, the delivery nozzle


36


is pivotable within the range of about plus 10° and minus 45° relative to such plane, respectively away or toward the forming layer


38


.




The entry angle of the moving particulate material


10


can be adjusted by selectively orienting the delivery nozzle


36


, and velocities of the particulate material


10


can be appropriately regulated to impart desired, predetermined trajectories to the particulate material


10


. As a result, the particulate material


10


can travel different horizontal distances through the web forming chamber


32


in a direction generally parallel to the machine direction of the apparatus


1


. In the illustrated embodiment, the particulate material


10


moves along with the movement of the formed fibrous web


42


, but in alternative embodiments, the apparatus


1


can be configured to move the particulate material


10


counter to the movement of the fibrous web


42


. The difference in horizontal distances can cause differing amounts and/or differing weight percent concentrations of the particulate material


10


to be selectively placed at various desired levels through the thickness dimension of the fibrous web


42


.




Particular aspects of the present invention can include combinations of the various, different types of systems for delivering the particulate material


10


into the web forming chamber


32


.




With reference to

FIG. 21

, an integral garment absorbent article


210


, such as a disposable diaper, generally delimits a front waistband panel-section


212


, a rear waistband panel-section


214


, and an intermediate section


216


which interconnects the front and rear waistband panel-sections


212


and


214


. The absorbent article


210


comprises a substantially fluid impermeable backsheet layer


220


, a liquid permeable topsheet layer


230


positioned in facing relation with the backsheet layer


220


, and an absorbent body


240


is located between the backsheet layer


220


and the topsheet layer


230


. For reference purposes, the absorbent article


210


has a longitudinal direction


142


, a cross-direction


144


and a longitudinal centerline


146


.




The marginal portions of the absorbent article


210


, such as the marginal sections of the backsheet


220


, may extend past the terminal edges of the absorbent body


240


which includes the fibrous web


242


. In the illustrated embodiment, for example, backsheet


220


extends outwardly beyond the terminal marginal edges of the absorbent body


240


to form the garment side margins


226


and


228


and the garment end margins


222


and


224


. The topsheet


230


is generally coextensive with the backsheet


220


, but may optionally cover an area which is larger or smaller than the area of the backsheet


220


, as desired.




The absorbent article


210


may be of various suitable shapes. For example, the absorbent article


210


may have an overall rectangular shape, T-shape or an approximately hour-glass shape. In the shown embodiment, the absorbent article


210


has a generally I-shape.




The various components of the absorbent article


210


are integrally assembled together employing various types of suitable attachment means, such as adhesive, ultrasonic bonds, thermal bonds, and the like, and combinations thereof. In the shown embodiment, for example, the topsheet


230


and the backsheet


220


are assembled to each other and to the absorbent body


240


with lines and patterns of adhesive, such as a hot melt, pressure-sensitive adhesive. Similarly, other absorbent article


210


components, such as the elastic members


260


,


262


,


264


, and


266


and the fastening members


236


, may be assembled into the absorbent article


210


by employing the above-identified attachment mechanisms.




The illustrated embodiment of the absorbent article


210


includes the ear portions


248


, which extend laterally along the absorbent article cross-direction


144


and are positioned at least at one waistband section of the absorbent article


210


, preferably at the rear waistband section


214


. The ear portions


248


may also be located at the front waistband section


212


of the absorbent article


210


. The ear portions


248


may be integral with backsheet layer


220


, or may comprise separate sections, which are composed of the same or different material than the backsheet layer


220


and are suitably assembled and attached to the backsheet layer


220


. The ear sections


248


typically provide extensions of the absorbent article waistband suitable for completely encircling the waist of the wearer during use.




The fastening means


236


, such as adhesive tapes, are employed to secure the absorbent article


210


on a wearer. Alternatively, other fastening means, such as buttons, pins, snaps, hook-and-loop fasteners, mushroom-and-loop fasteners, or the like, may be employed.




To provide an improved fit and to help reduce leakage of body exudates from absorbent article


210


, the side margins


226


and


228


and the end margins


222


and


224


may be elasticized with the suitable elastic members


260


and


262


, such as single or multiple strands of elastic. The elastic members


260


and


262


may be composed of natural, synthetic rubber, or other elastomeric materials, and may optionally be heat-shrinkable or heat-elasticizable. The elastic members


260


and


262


are constructed to operably gather and shirr the side margins


226


and


228


to provide elasticized leg bands which can closely fit around the legs of the wearer to reduce leakage and provide improved comfort and appearance. Similarly, the waist elastic members


264


and


266


can be employed to elasticize the end margins


222


and


224


to provide elasticized waistbands. The waist elastics


264


and


266


are configured to operably gather and shirr the waistband sections to provide a resilient, comfortably close fit around the waist of the wearer.




The backsheet layer


220


is composed of a substantially liquid impermeable material, which is also gas impermeable but may optionally be gas/vapor permeable. In the illustrated embodiment, the backsheet layer


220


is substantially impermeable to water and water vapor. An example of a suitable backsheet material is a polymer film composed of polyethylene, polypropylene, or the like. Typically, the polymer film has a thickness within the range of about 0.0004-about 0.002 inch (0.0010-0.0051 cm). The backsheet layer


220


may alternatively be composed of a nonwoven fibrous web constructed to provide the desired levels of fluid impermeability. For example, a nonwoven web composed of spunbonded or meltblown polymer fibers may be selectively treated with a water repellent coating, or laminated with a fluid impermeable, polymer film.




In alternative embodiments of the present invention, the backsheet layer


220


may comprise a nonwoven web composed of a plurality of randomly deposited hydrophobic thermoplastic meltblown fibers which are sufficiently bonded or otherwise connected to one another to provide a substantially vapor impermeable and substantially liquid impermeable web. The backsheet layer


220


may also comprise a vapor permeable nonwoven layer which has been partially coated or otherwise configured to provide liquid impermeability only in selected areas, leaving the remaining areas vapor permeable.




The topsheet


230


is typically composed of a liquid permeable, substantially hydrophobic fibrous material, such as a spunbonded web composed of synthetic polymer filaments. Alternatively, the topsheet


230


may comprise a meltblown web or a bonded-carded-web composed of synthetic polymer filaments. Suitable synthetic polymers include, for example, polyethylene, polypropylene and polyesters. In a particular aspect of the invention, the polymer filaments have a denier within the range of about 1.5 to about 7 d and preferably have a denier within the range of about 1.5 to about 3 d to provide improved performance. The filaments are arranged to form a layer having a basis weight within the range of about 8 to about 34 gm/m2 (gsm), and preferably are arranged to have a basis weight of about 27 gsm.




The topsheet


230


may optionally be treated with surfactants to adjust its degree of hydrophobicity and wettability. It can also be selectively embossed or apertured with discrete slits or holes


232


extending therethrough.




The absorbent body


240


comprises an integral mass of hydrophilic material which is typically configured to form a fibrous absorbent pad layer. The hydrophilic fibers can, for example, be composed of a fibrous cellulosic material commonly referred to as woodpulp fluff, and can be air-formed to form an integral fibrous pad. Other fibers, such as cotton and synthetic polymer fibers, may also be employed to form the pad. Conventional absorbent pads can have a density ranging from about 0.05 to about 0.5 grams/cc, preferably 0.08 to about 0.3 grams/cc, more preferably about 0.12 to about 0.20 grams/cc, and are sufficiently flexible to readily conform to the body shape of the wearer. In particular arrangements, the fibrous material comprising the absorbent body


240


may be non-uniformly distributed over the pad length and width. For example, see U.S. Pat. No. 4,585,448, “Disposable Garment Having High-Absorbency Area”, issued Apr. 29, 1986 to Enloe.




To increase the absorbent capacity of the absorbent body


240


, it has been desirable to add quantities of relatively high-absorbency material to the fibers comprising the absorbent body


240


. Such high-absorbency materials are capable of holding, on a weight basis, at least about 15 parts of water per part of high-absorbency material. Preferably, the high absorbency material is capable of holding at least about 100 parts of water per part of high-absorbency material.




The absorbent body


240


should include an effective amount of the high-absorbency material to operably enhance the absorptive capacity of the absorbent body


240


. For example, the absorbent body


240


can contain between about 5 to about 95 weight percent high-absorbency material, and preferably includes between about 10 to about 50 weight percent of the high-absorbency material to provide more efficient performance.




The high-absorbency material has typically been distributed or otherwise incorporated into the absorbent body


240


by employing various techniques. For example, the high-absorbency material can be incorporated into a separate carrier sheet which is layered with a body of air-formed cellulosic fibers. Alternatively, the high-absorbency material may be substantially substantially uniformly distributed in the z-direction and mixed within the mass of fibers comprising the absorbent body


240


. The material can also be non-uniformly distributed in the z-direction among the fibers to form, for example, a generally continuous gradient with either an increasing or decreasing concentration of high-absorbency material, as determined by observing the concentration moving from the body-side of the absorbent body


240


toward the outer-side of the absorbent body


240


. The high-absorbency material may also be substantially unmixed with the fibrous material of the absorbent body


240


, and may comprise one or more discrete layers or strips selectively segregated from the fibrous material.




Optionally, a substantially hydrophilic tissue wrap


242


may be employed to help maintain the integrity of the air-formed fibrous structure of the absorbent body


240


. The tissue wrap


242


is typically placed about the absorbent body


240


over at least the two major facing surfaces thereof, and composed of an absorbent cellulosic material, such as creped wadding or a high wet-strength tissue.




In a particular aspect of the present invention, the absorbent body


240


has the structural configuration of a concurrently air-formed mixture of hydrophilic fibers and particulate material


10


. The fibers and particulate material


10


are concurrently formed into a substantially integral web layer while the fibers and particulate material


10


are intermingled with each other. In such structure, the particulate material


10


is not substantially isolated in a discrete superabsorbent layer. The resultant absorbent body


240


can include a distinctive, selectively varied distribution of the particulate material


10


along the longitudinal length dimension


142


of the absorbent body


240


. For example, the average weight percentage of particulate material


10


can be non-uniformly distributed along said length dimension.




The intermixed configuration of the particulate material


10


and fibrous material is desirable because it can provide an advantageous combination of capillarity, interfiber void volume and total absorbent capacity. The fibrous material contributes to the capillarity and interfiber void volume, while the particulate material


10


contributes to the total absorbent capacity. The fiber capillarity helps provide a rapid movement and wicking of liquid through the absorbent body


240


and the interfiber void volume helps provide a rapid rate of liquid uptake into the absorbent body


240


. In addition, the intermingled configuration of the particulate material


10


and fibrous material helps improve the mechanical integrity of the total structure.




The apparatus


1


of the present invention for forming a substantially uniform distribution of particulate material


10


within a fibrous web


42


comprising a conveying means


15


for providing a gas entrained supply stream


18


of the particulate material


10


, transferring means


24


for directing the particulate material


10


into a delivery gas stream


28


to provide a flow of the particulate material


10


through a delivery conduit


30


and a delivery nozzle


36


including an end edge


52


and having an oval shape into a web forming chamber


32


, a fiberizing means


22


for providing a flow of a selected fibrous material


40


into the web forming chamber


32


, and a foraminous forming layer


38


disposed within the web forming chamber


32


for receiving the fibrous material


40


and the particulate material


10


to form a fibrous web


42


.




The delivery nozzle


36


b may be positioned to provide a non-uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


. The end edge


52


of the delivery nozzle


36




b


may flare out from the delivery conduit


30


. The delivery nozzle


36


including the flared end edge


52


is positioned to provide a non-uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


40


. The apparatus


1


further comprises a directing means


35


for controlling the flow of the particulate material


10


from the delivery conduit


30


and the delivery nozzle


36




b


into the web forming chamber


32


. The conveying means


15


generates a conveying gas stream


46


for entraining the particulate material


10


and includes a flow regulating means


20


for providing the conveying gas stream


46


with a gas flow velocity within the range of about 5 to about 45 m/sec. The apparatus


1


of the present invention may also include a particulate regulating means


19


for providing a selected mass flow rate of the particulate material


10


within the supply stream


18


.




Another embodiment of the apparatus


1


of the present invention for forming a substantially uniform distribution of particulate material


10


within a fibrous web


42


comprises a conveying means


15


for providing a gas entrained supply stream


18


of the particulate material


10


, a transferring means


24


for directing the particulate material


10


into a delivery gas stream


28


to provide a flow of the particulate material


10


through a delivery conduit


30


and a delivery nozzle


36




a


including an end edge


52


and having a circular shape including gaps


48


and


50


on the end edge


52


into a web forming chamber


32


, a fiberizing means


22


for providing a flow of a selected fibrous material


40


into the web forming chamber


32


, and a foraminous forming layer


38


disposed within the web forming chamber


32


for receiving the fibrous material


40


and the particulate material


10


to form a fibrous web


42


.




The delivery nozzle


36




a


may be positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


. The end edge


52


of the delivery nozzle


36




a


may flare out from the delivery conduit


30


. The delivery nozzle


36




a


having a flared end edge


52


may be positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


. The apparatus


1


may further comprise a directing means


35


for controlling the flow of the particulate material


10


from the delivery conduit


30


and the delivery nozzle


32


into the web forming chamber


32


. The gaps


48


and


50


in the end edge


52


of the delivery nozzle


36




a


may be semi-circular in shape. The delivery nozzle


36




a


may be positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


. The end edge


52


of the delivery nozzle


36




a


may be flared out from the delivery conduit


30


. Where the end edge


52


is flared, the delivery nozzle


36




a


is positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


.




The gaps


48


and


50


in the end edge


52


of the delivery nozzle


36




a


may be triangular in shape. Such a delivery nozzle


36




a


may be positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


. Where the end edge


52


of such a delivery nozzle


36


flares out from the delivery conduit


30


. Such a delivery nozzle


30


is positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


.




The said conveying means


15


generates a conveying gas stream


46


for entraining the particulate material


10


and includes a flow regulating means


20


for providing the conveying gas stream


46


with a gas flow velocity within the range of about 5 to about 45 m/sec. The apparatus


1


may further comprise a particulate regulating means


19


for providing a selected mass flow rate of the particulate material


10


within the supply stream


46


.




Another embodiment of the present invention is the apparatus


1


for forming a substantially uniform distribution of the particulate material


10


within a fibrous web


42


which comprises a conveying means


15


for providing a gas entrained supply stream


46


of the particulate material, a transferring means


24


for directing the particulate material


10


into a delivery gas stream


28


to provide a flow of the particulate material


10


through a delivery conduit


30


and a delivery nozzle


36




c


, including an end edge


52


and a wedge member


54


where the delivery nozzle


36




c


is circular shaped, into a web forming chamber


32


, a fiberizing means


22


for providing a flow of a selected fibrous material


40


into the web forming chamber


32


, a foraminous forming layer


38


disposed within the web forming chamber


32


for receiving the fibrous material


40


and the particulate material


10


to form a fibrous web


42


.




The delivery nozzle


36




c


is positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


. The end edge


52


of the delivery nozzle


36




c


may flare out from the delivery conduit


30


. Such a delivery nozzle


36




c


is positioned to provide a substantially uniform distribution of the particulate material


10


in the cross direction


144


of the fibrous web


42


.




Another embodiment of the apparatus


1


of the present invention may further comprise a directing means


35


for controlling the flow of the particulate material


10


from the delivery conduit


30


and the delivery nozzle


36




c


into the web forming chamber


32


. The conveying means


15


generates a conveying gas stream


46


for entraining the particulate material


10


and includes a flow regulating means


20


for providing the conveying gas stream


46


with a gas flow velocity within the range of about 5 to about 45 m/sec.




The apparatus


1


of the present invention may further comprise a regulating means


19


for providing a selected mass flow rate of the particulate material


10


within the supply stream


46


.




Having thus described the invention in rather full detail, it will be readily apparent to a person having ordinary skill in the art that various changes and modifications can be made without departing from the spirit of the invention. All of such changes and modifications are contemplated as being within the scope of the present invention, as defined by the subjoined claims.



Claims
  • 1. An apparatus for forming a uniform distribution of particulate material within a fibrous web, comprising:conveying means for providing a gas entrained supply stream of said particulate material; transferring means for directing particulate material into a delivery gas stream to provide a flow of said particulate material through a delivery conduit and a delivery nozzle, including an end edge and having an oval shape, into a web forming chamber; fiberizing means for providing a flow of a selected fibrous material into said web forming chamber; and a foraminous forming layer disposed within said web forming chamber for receiving said fibrous material and said particulate material to form said fibrous web.
  • 2. An apparatus as recited in claim 1, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 3. An apparatus as recited in claim 1, wherein said end edge of said delivery nozzle flares out from said delivery conduit.
  • 4. An apparatus as recited in claim 3, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 5. An apparatus as recited in claim 1, further comprising:directing means for controlling said flow of said particulate material from said delivery conduit and said delivery nozzle into said web forming chamber.
  • 6. An apparatus as recited in claim 1, wherein said conveying means generates a conveying gas stream for entraining said particulate material and includes a first flow regulating means for providing said conveying gas stream with a gas flow velocity within the range of about 5 to about 45 m/sec.
  • 7. An apparatus as recited in claim 1, further comprising:means for supplying said delivery gas stream; and second flow regulating means for providing said delivery gas stream with a velocity of gas flow within the range of about 5 to about 45 m/sec.
  • 8. An apparatus as recited in claim 1, further comprising particulate regulating means for providing a selected mass flow rate of said particulate material within said supply stream.
  • 9. An apparatus for forming a uniform distribution of particulate material within a fibrous web, comprising:conveying means for providing a gas entrained supply stream of said particulate material; transferring means for directing particulate material into a delivery gas stream to provide a flow of said particulate material through a delivery conduit and a delivery nozzle, including an end edge and having a circular shape including gaps on the end edge, into a web forming chamber; fiberizing means for providing a flow of a selected fibrous material into said web forming chamber, and a foraminous forming layer disposed within said web forming chamber for receiving said fibrous material and said particulate material to form said fibrous web.
  • 10. An apparatus as recited in claim 9, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 11. An apparatus as recited in claim 9, wherein said end edge of said delivery nozzle flares out from said delivery conduit.
  • 12. An apparatus as recited in claim 11, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 13. An apparatus as recited in claim 9, further comprising:directing means for controlling said flow of said particulate material from said delivery conduit and said delivery nozzle into said web forming chamber.
  • 14. An apparatus as recited in claim 9, wherein said gaps in said end edge of said delivery nozzle are semi-circular in shape.
  • 15. An apparatus as recited in claim 14, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 16. An apparatus as recited in claim 14, wherein said end edge of said delivery nozzle flares out from said delivery conduit.
  • 17. An apparatus as recited in claim 16, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 18. An apparatus as recited in claim 9, wherein said gaps in said end edge of said delivery nozzle are triangular in shape.
  • 19. An apparatus as recited in claim 18, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 20. An apparatus as recited in claim 18, wherein said end edge of said delivery nozzle flares out from said delivery conduit.
  • 21. An apparatus as recited in claim 20, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 22. An apparatus as recited in claim 9, wherein said conveying means generates a conveying gas stream for entraining said particulate material and includes a first flow regulating means for providing said conveying gas stream with a gas flow velocity within the range of about 5 to about 45 m/sec.
  • 23. An apparatus as recited in claim 9, further comprising:means for supplying said delivery gas stream; and second flow regulating means for providing said delivery gas stream with a velocity of gas flow within the range of about 5 to about 45 m/sec.
  • 24. An apparatus as recited in claim 9, further comprising particulate regulating means for providing a selected mass flow rate of said particulate material within said supply stream.
  • 25. An apparatus for forming a uniform distribution of particulate material within a fibrous web, comprising:conveying means for providing a gas entrained supply stream of said particulate material; transferring means for directing particulate material into a delivery gas stream to provide a flow of said particulate material through a delivery conduit and a delivery nozzle, including an end edge and a wedge member wherein said delivery nozzle is circular shaped, into a web forming chamber; fiberizing means for providing a flow of a selected fibrous material into said web forming chamber; and a foraminous forming layer disposed within said web forming chamber for receiving said fibrous material and said particulate material to form said fibrous web.
  • 26. An apparatus as recited in claim 25, wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 27. An apparatus as recited in claim 25, wherein said end edge of said delivery nozzle flares out from said delivery conduit.
  • 28. An apparatus as recited in claim 27 wherein said delivery nozzle is positioned to provide a uniform distribution of said particulate material in the cross direction of said fibrous web.
  • 29. An apparatus as recited in claim 25, further comprising:directing means for controlling said flow of said particulate material from said delivery conduit and said delivery nozzle into said web forming chamber.
  • 30. An apparatus as recited in claim 25, wherein said conveying means generates a conveying gas stream for entraining said particulate material and includes a first flow regulating means for providing said conveying gas stream with a gas flow velocity within the range of about 5 to about 45 m/sec.
  • 31. An apparatus as recited in claim 25, further comprising:means for supplying said delivery gas stream; and second flow regulating means for providing said delivery gas stream with a velocity of gas flow within the range of about 5 to about 45 m/sec.
  • 32. An apparatus as recited in claim 25, further comprising particulate regulating means for providing a selected mass flow rate of said particulate material within said supply stream.
Parent Case Info

This application claims priority from U.S. Provisional Application No. 60/111,882 filed on Dec. 11, 1998.

US Referenced Citations (15)
Number Name Date Kind
3669831 Dupasquier Jun 1972
3792943 Helgesson Feb 1974
4087508 Slaughter et al. May 1978
4432835 Waris et al. Feb 1984
4551191 Kock et al. Nov 1985
4585448 Enloe Apr 1986
4927346 Kaiser et al. May 1990
4927582 Bryson May 1990
5028224 Pieper et al. Jul 1991
5102585 Pieper et al. Apr 1992
5248524 Soderlund Sep 1993
5350597 Pelley Sep 1994
5429788 Ribble et al. Jul 1995
5567472 Siegfried et al. Oct 1996
5879751 Bogdanski Mar 1999
Foreign Referenced Citations (5)
Number Date Country
3417700 A1 Nov 1985 DE
0 072 654 A2 Feb 1983 EP
0443113 A2 Aug 1991 EP
2 150 033 Jan 1987 GB
WO 8804165 A1 Jun 1988 WO
Non-Patent Literature Citations (1)
Entry
Sanyo Technical Bulletin, “SAP Sheet,” Oct. 1982, pp. 1-3.
Provisional Applications (1)
Number Date Country
60/111882 Dec 1998 US