This invention relates to an apparatus for exercising muscles, comprising a power arm, which is equipable at one end region with actuating elements and which is pivotable by the other end about a pivot shaft which is disposed on a holding element, to which power arm the one end region of a compression spring element is linked at a first articulation point, which first articulation point is adjustable along the power arm, while the other end region of the compression spring element is linked on the holding element at a second articulation point.
Such apparatuses for exercising muscles are known in various designs. Thus, for example, the document U.S. Pat. No. 4,618,140 A shows such an apparatus in which the first articulation point, at which the one end region of the compression spring element is linked to the power arm, is adjustable along the power arm. To achieve this, a series of bores are made on the power arm, the end region of the compression spring element is provided with a fastener which surrounds the power arm. Inserted into this fastener is a shaft which is pressed, via a spring, into the respective bore on the power arm, whereby the end region of the compression spring element is fixed on the power arm. For adjustment, the spring-loaded shaft must be pulled out of the bore. The fastener on the end region of the compression spring element can be shifted along the power arm. In the desired position the shaft is once again pressed into the respective bore, via the spring, and the exercising can continue, whereby the force to be overcome on the power arm is greater or lesser, depending upon the setting.
With this apparatus, the adjustment of the force which the operation of the power arm works against, is complicated. In particular the position of the end region of the compression spring element on the power arm must be precisely set during adjustment so that the shaft is able to penetrate into the bore. In particular there exists the risk that the shaft is not correctly inserted into the bore, so that during movement of the power arm an undesired shifting can take place of the articulation point of the compression spring element along the power arm, which can be unpleasant for the person who is operating the power arm.
The object of the present invention thus consists in providing an apparatus for exercising muscles in which the articulation point of the compression spring element can be adjusted in a simple way along the power arm, and with which it is ensured that the linking of the compression spring element on the power arm takes place correctly. A space-saving and easy-to-operate apparatus for exercising muscles should be created.
This object is achieved according to the invention in that the one end region of the compression spring element is provided with a first joint surface, which has a first curvature, and disposed along the power arm over an adjustment zone is a series of second joint surfaces, which each have a second curvature, which is designed complementary to the first curvature, so that the one end region of the compression spring element with the first joint surface is able to be brought into operative connection to one of the second joint surfaces, and the power arm is pressable, via a further spring element, toward the one end region of the compression spring element, in such a way that the two joint surfaces in operative connection are kept in contact.
By means of this inventive design of the apparatus for exercising muscles, to adjust the force which the operation of the power arm counteracts, the power arm can be lifted, against the active force of the further spring element, from the joint surface of the end region of the compression spring element. The compression spring element can be adjusted. The further spring element pulls the power arm again toward the end region of the compression spring element. The first joint surface of the one end region of the compression spring element comes into engagement with one of the second joint surfaces on the power arm. The adjustment of the force is thereby achieved in the simplest way. The first joint surface will be led in any case into a second joint surface in each case. A faulty manipulation is thereby avoidable. Furthermore the configuration of the individual elements and of the power arm makes possible a compact construction, which above and beyond this offers leeway for an aesthetic design of the apparatus for exercising muscles.
Preferably the curvature of the first joint surface is designed concave and the curvatures of the second joint surfaces are designed convex, whereby an optimal operative connection is achieved.
Preferably the first joint surface and the second joint surfaces are designed cylindrical, and the respective cylinder axes are aligned parallel to the pivot shaft, which results in a simple construction and an optimal functioning of the adjustment device.
Preferably the second joint surfaces are formed by cylindrical shafts, which are disposed in a row and spaced apart from one another over the adjustment zone on the power arm, and the first joint surface are <sic. is> formed in the root of a fork, which is placed at the one end region of the compression spring element. This results in an apparatus simple in structure and in an optimal functioning of the adjustment zone of the apparatus. The first joint surface is thereby held reliably on the second joint surface.
The cylindrical shafts are placed in two crosspieces opposite one another and disposed along the zone of the power arm, which makes possible a simple manufacture of the adjustment zone.
Preferably the compression spring element is a gas pressure spring, which can be inserted in a simple way in the apparatus.
Preferably the further spring element is designed as pull spring, which can be installed in a simple way in the apparatus for exercising muscles. The compression spring element and the pull spring engage in the same end region on the holding element and thus allow a space-saving construction.
Another advantageous embodiment of the invention consists in the pull spring being an elastic band, whose one end region is attachable on the holding element in the area of the second articulation point and whose other end region is detachably attached to the power arm. This results in an optimal functioning. Achieved through the possibility of the release of the elastic band from the power arm can be that the power arm is pivoted away from the compression spring element and can be brought into a stretched position with respect to the holding element, so that during non-use of this apparatus, the apparatus can be put away in a space-saving manner.
Preferably provided on the power arm along the adjustment zone is a scale, whereby, for example, it is ascertainable visually what the force is which the operation of the power arm is working against.
The holding element can be attached to a supporting frame, so that, for example, the alignment of the apparatus and the height adjustment can also be carried out in an optimal way.
An embodiment of the invention will be explained more closely in the following, by way of example, with reference to the attached drawings.
As can be seen from
For exercising muscles, the power arm 2 can be pivoted about the pivot shaft 5, whereby the gas pressure spring 13 generates a counter force to the operating force and presses the power arm 2 back into the original position again, which is obtained with the reaching of the completely driven-out gas pressure spring 13.
As can be seen from
As can be seen from
As can be seen in particular from
The first joint surface 14 is formed in the root 20 of a fork 21, which fork 21 is attached at one end region 8 of the compression spring element 9. Through this design the first joint surface 14 has a concave shape, while the second joint surfaces 16 are designed convex. The axes of the cylindrical shafts 19 are aligned parallel to the pivot shaft 5, about which the power arm 2 is pivotable with respect to the holding element 6.
As has already been mentioned, the power arm 2 is pressed via the further spring element 18 toward the compression spring element 9. Thereby achieved is that the first joint surface 14 and the respective second joint surface 16, which are only led into one another, remain in contact with one another. By means of this adjustment zone 10, the articulation point 7 can be adjusted with respect to the pivot shaft 5. When the power arm 2 is in the position in which the compression spring element 9, which is designed as gas pressure spring 13, is in the completely driven-out position, the power arm 2 can be pivoted further against the spring force of the further spring element 18. The fork 21 with the second joint surface 16 moves out of the cylindrical shaft 19 and the first joint surface 14. The one end region 8 of the compression spring element 9 can be moved together with the fork 21 along the series of cylindrical shafts 19 and allows itself, through the pivoting back of the power arm 2, to be moved again into the desired position on the corresponding cylindrical shaft 19, whereby once again the further spring element 18 causes the first joint surface 14 and the newly selected second joint surface 16 of the corresponding cylindrical shaft 19 to remain again in contact. The spacing of the first articulation point 2 <sic. 7> to the pivot shaft 5 can thereby be adjusted in a simple way. The force to be applied to the power arm can thus be accordingly adjusted.
Ensured through the width of the fork 21 and the spacing of the individual cylindrical shafts 19 with respect to one another is that no malfunctions can occur during adjustment. The fork 21 will always be in engagement with a cylindrical shaft 19, whereby safe operation is guaranteed. Even with incorrect clicking into place, the fork 21 of the compression spring element 9 under load automatically jumps onto the nearest cylindrical shaft 21.
The further spring element 18 is preferably designed as elastic band 22, whose one end region 23 (
Visible from the sectional representation according to
Visible from
As can be learned from
The holding element 6 and thus the apparatus 1 for exercising muscles can also be fixed in a known way to a supporting frame (not shown). The holding element 6 and thus the apparatus 1 for exercising muscles can then be adjusted with respect to this supporting frame, for example with respect to the height from the floor or also with respect to an angular position to this supporting frame.
As can also be seen from
With this inventive solution, with an apparatus for exercising muscles having a power arm able to be actuated, the force to be applied to the power arm can be adjusted in a simple way, so that the force to be applied to the power arm can have differing magnitudes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/077606 | 12/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/091330 | 6/16/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3858873 | Jones | Jan 1975 | A |
3912261 | Lambert, Sr. | Oct 1975 | A |
4275882 | Grosser | Jun 1981 | A |
4426077 | Becker | Jan 1984 | A |
4796881 | Watterson | Jan 1989 | A |
4811944 | Hoff | Mar 1989 | A |
5336142 | Dalebout | Aug 1994 | A |
5356360 | Johns | Oct 1994 | A |
6036622 | Gordon | Mar 2000 | A |
7645215 | Gordon | Jan 2010 | B2 |
7833134 | Gordon | Nov 2010 | B2 |
8517899 | Zhou | Aug 2013 | B2 |
9358420 | Funk | Jun 2016 | B2 |
9713738 | Schrag | Jul 2017 | B2 |
20070037667 | Gordon | Feb 2007 | A1 |
20070129222 | Kolomeir | Jun 2007 | A1 |
20080132391 | Edeker | Jun 2008 | A1 |
20100144496 | Schmidt | Jun 2010 | A1 |
20100152001 | Gordon | Jun 2010 | A1 |
20140296042 | Snyder | Oct 2014 | A1 |
20160016033 | Schrag | Jan 2016 | A1 |
Entry |
---|
International Search Report and Written Opinion issued in corresponding international application No. PCT/EP2014/077606 dated Aug. 6, 2015, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20170340914 A1 | Nov 2017 | US |