The present principles relate generally to apparatus for use in electronic equipment.
Manufacturing electronic equipment typically involves fastening components together. For example, electronic equipment typically includes components that generate heat such as integrated circuits and other power-consuming components that may be mounted on a circuit board such as a printed circuit board (PCB). The design of electronic equipment typically includes components such as heat sinks and/or heat spreaders to dissipate excessive heat and maintain desired operating temperatures of the equipment. A component intended to dissipate heat from a device such as an integrated circuit (IC) must be positioned in proximity to the device, thermally coupled to the device to ensure efficient conduction of heat from the device to the heat-dissipation component, and fastened in position to ensure thermal coupling and continued heat removal.
Fastening may involve a fastener such as a screw that passes through the component to be held in place, e.g., a heat spreader, and into a threaded hole or opening, e.g., in a structure or assembly to which the heat dissipation component is to be fastened. To provide a reliable and rigid connection, the screw and the threaded hole receiving the screw may be constructed of metal. The action of inserting and tightening a metal fastener such as a screw against the threads of a threaded metal hole may create debris such as small slivers or pieces of metal that break away from the screw and/or the threaded hole. These slivers of metal are conductive. If the pieces fall onto other components, devices or structures of the electronic equipment, such as an IC or a printed circuit board (PCB) they may cause a short circuit resulting in a failure of the electronic equipment. The slivers may be created during production but not cause a failure of the equipment initially, e.g., during testing. Then, subsequent movement of the electronic equipment, e.g., during installation, may dislodge the slivers of metal causing them to move within the electronic equipment and cause a failure at that time. The result is reduced reliability of the electronic equipment.
These and other drawbacks and disadvantages of the prior art are addressed by the present principles.
In accordance with an aspect of the present principles, an embodiment of apparatus comprises a structure configured for use in an electronic device and having an opening for receiving a fastener, and a cap mounted on an underside of a portion of the structure at a position beneath the opening, wherein the cap is configured to capture and retain a conductive particle created by insertion of the fastener into the opening.
In accordance with another aspect, an embodiment of apparatus as described herein may include a cap having a body portion and first and second extension portions extending away from opposite sides of the body portion.
In accordance with another aspect, an embodiment of apparatus as described herein including a structure and a cap having first and second extension portions may be configured to have the first and second extension portions fit within respective first and second slots of the structure to retain the cap in a position beneath an opening of the structure.
In accordance with another aspect, an embodiment of apparatus as described herein including a structure having first and second slots may be configured to form the first and second slots from respective first and second tabs of a planar portion of the structure bent away from the planar portion into respective first and second positions proximate the opening.
In accordance with another aspect, an embodiment of apparatus as described herein including a structure and a cap may be configured to include a recessed portion in the cap wherein the recess portion is positioned beneath an opening in the structure to capture and retain a conductive particle.
In accordance with another aspect, an embodiment of apparatus as described herein including a structure having an opening may be configured such that the opening includes a perimeter having a threaded portion to receive a threaded shaft of a fastener.
In accordance with another aspect, an embodiment of apparatus as described herein may include a cap comprising a non-conductive material.
In accordance with another aspect, an embodiment of apparatus as described herein may include a cap comprising a compressible elastic material.
In accordance with an aspect of the present principles, an embodiment comprises apparatus including a shielding cover configured for attachment to a circuit board to cover and reduce an electromagnetic emission from an electronic component mounted on the circuit board;
a first region of the shielding cover having an opening allowing an end of a fastener to pass through the shielding cover for fastening a thermal dissipation component to an upper side of the shielding cover; a second region of the shielding cover on a lower side of the shielding cover and including a portion extending away from the second side in an area proximate to the opening to form a retaining member; and a cap of non-conductive material configured to be held in a position on the lower side of the shielding cover by the retaining member and cover the opening in the first region of the shielding cover.
In accordance with another aspect, an embodiment of a cap included in apparatus as described herein comprises an elastic material configured to capture a metallic particle created by insertion of the fastener into the opening during assembly of the apparatus, thereby preventing the metallic particle from falling on to the PC board.
In accordance with another aspect, an embodiment of apparatus as described herein may include a shielding cover having a retaining member configured to include first and second slots formed from respective first and second tabs of a planar portion of the shielding cover bent away from the planar portion into respective first and second positions proximate an opening in the shielding cover.
In accordance with another aspect, an embodiment of apparatus as described herein may include a cap having a rectangular body portion and first and second extension portions extending away from opposite sides of the body portion.
In accordance with another aspect, an embodiment of apparatus as described herein including a shielding cover and a cap may include having first and second extension portions of the cap configured to fit within respective ones of first and second slots formed in the shielding cover to retain the cap in a position beneath an opening in the shielding cover.
In accordance with another aspect, an embodiment of apparatus as described herein including a shielding cover having first and second slots and a cap having first and second extension portions may include the cap comprising an elastic material and include the first and second extension portions being formed from the elastic material and compressing to fit into the first and second slots.
In accordance with another aspect, an embodiment of apparatus as described herein including a shielding cover and a cap may include the cap being configured to have a recessed portion positioned beneath an opening in the shielding cover to capture and retain a metallic particle created by insertion of the fastener into the opening during assembly of the apparatus, thereby preventing the metallic particle from falling on to a circuit board.
These and other aspects, features and advantages of the present principles will become apparent from the following detailed description of exemplary embodiments, which is to be read in connection with the accompanying drawings.
The present principles can be readily understood by considering the following detailed description in conjunction with the accompanying drawings in which:
It should be understood that the drawings are for purposes of illustrating exemplary aspects of the present principles and are not necessarily the only possible configurations for illustrating the present principles. To facilitate understanding, throughout the various figures like reference designators refer to the same or similar features.
The present principles are directed to apparatus providing increased reliability for electronic equipment and, as will be apparent to one skilled in the art, may be applied to other situations. While one of ordinary skill in the art will readily contemplate various applications to which the present principles can be applied, the following description will focus on exemplary embodiments of the present principles applied to electronic equipment such as set top boxes (STB), gateway devices, digital televisions, modems, display devices, power supplies, etc. that include at least one printed circuit board (PCB) as described herein. However, one of ordinary skill in the art will readily contemplate various other embodiments of the present principles. It is to be appreciated that the preceding listing of potential applications of the present principles is merely illustrative and not exhaustive.
As a further example of a potential application of the present principles, active components such as digital integrated circuits (ICs), e.g., microprocessors, microcontrollers, system-on-a-chip (SOC), etc., typically operate with digital signals at high frequencies. Such signals may generate high frequency noise that could propagate within an electronic device and interfere with the operation of other components. To limit noise propagation, high frequency components such as microprocessors may be positioned within a conductive shield. For example, one part of a shield may be positioned on a circuit board such as a printed circuit board (PCB) in the form of a conductive wall or frame surrounding a region where a noise-generating component is to be mounted on the PCB. The conductive frame is coupled to a reference potential, e.g., ground. During production, the noise-generating component is mounted to the PCB within the shield region formed by the frame. After the component is mounted to the PCB, a structure or assembly such as a conductive lid or cover is placed over the shielded region and fastened to the frame enclosing the noise-generating component in a grounded, conductive box or container comprising the frame and the cover that effectively prevents high-frequency noise from propagating beyond the container. One approach to fastening the cover to the frame comprises a sequence of conductive clips around a perimeter of the cover that engage the frame when the cover is placed in position and pushed on to the frame during assembly. The clips hold the cover to the frame, thereby holding the cover in place, coupling the cover to the reference potential, and forming a shielding container for the noise-producing component or components within the container.
It may be necessary to provide for removing heat produced by the device within the container. One approach is to provide an opening in the cover over the device and thermally couple a heat sink or heat spreader to the device through the opening in the cover. A heat sink or heat spreader is typically metallic to effectively conduct heat away from a heat-generating device and placing a metallic heat spreader or heat sink over the opening in the container cover maintains the shielding effect of the container. The heat sink or heat spreader may be fastened to the cover of the container by inserting fasteners, e.g., screws, through openings or holes in the heat spreader or heat sink and into openings or holes in the cover of the container. However, if the screws are metallic and they are inserted through holes in the metallic heat sink or heat spreader and into threaded openings or holes in the metallic cover of the container then there is a possibility of creating slivers of metal that, as described above, may fall onto the PCB within the container and/or onto components on the PCB, thereby introducing the possibility of a short circuit causing a failure of the electronic equipment as explained above.
Referring now to
The views of container cover 150 shown in
For additional clarity,
The description provided herein illustrates the present principles. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the present principles and are included within its spirit and scope. For example, the arrangement or pattern of features included in region 220 of
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the present principles and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. For example, use in the description when referring to the drawings of “top”, “bottom”, “left”, “right” and other such terms indicating an orientation or relative relationship between areas of the Figures are illustrative only and not limiting as to the present principles.
Moreover, all statements herein reciting principles, aspects, and embodiments of the present principles, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Reference in the specification to “one embodiment” or “an embodiment” of the present principles, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well as any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
Although the illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present principles are not limited to those precise embodiments, and that various changes and modifications may be effected therein by one of ordinary skill in the pertinent art without departing from the scope or spirit of the present principles. All such changes and modifications are intended to be included within the scope of the present principles as set forth in the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/104353 | 9/29/2017 | WO | 00 |