This invention relates generally to harvesting floatable material (e.g., in the form of seaweed and algae; or in the form of a floating, chemical/radioactive absorbent material such as wood chips, mesh polypropylene, straw, vermiculite, zeolite, composite titanate nanofibres). Particularly, in one instance, the system of the invention is used for harvesting beached seaweed and detached seaweed floating in the surf and, in another instance, for harvesting spent pollutant absorbent material floating on a body of water or on the beach after having been used to aid the cleanup of a chemical spill on that body of water or beach. In another instance, for harvesting titanate nanofibre material that has been used to absorb radiation, heavy metals, and isotopes from a nuclear disaster. Furthermore, an efficient disposal method of incinerating the chemical spill within the apparatus is disclosed, or, in the instance of seaweed, the organic matter is processed within the apparatus for preservation.
Eutrophication is the unnatural nutrient enrichment of our oceans, rivers, and lakes, causing a linear increase in algae and seaweed growth. This measurable scientific phenomenon is occurring globally through sewer, aquaculture, and farm run-off pollution, and as a result there is a large accumulation of seaweed on beaches, in particular after storm activity that tears the seaweed from the ocean floor. The amounts are sometimes staggering, leading to mass rotting and often the generation of hydrogen sulphide gas, which has been known to kill both humans and animals, as well as the direct release of methane into the atmosphere through anaerobic decomposition, where methane is commonly known to have 72 times the Global Warming Potential (GWP) over 20 years than carbon dioxide. Furthermore, although some of the seaweed provides beneficial decomposing matter as food for insects and worms that feed other species, the amounts of seaweed often far outweighs the benefit of the ecosystem, as it amounts to incredible masses of rotting vegetation similar to a massive landfill. There appears to be a direct correlation between the global jellyfish epidemic and eutrophication. Eutrophication is also for certain leading to the starvation and destruction of coral reef systems that are overwhelmed and suffocated by algae. In fresh water environments, eutrophication is starving fish of oxygen and ultimately destroying their natural habitat by overwhelming the habitat with biomass.
While overgrown or invasive, aquatic plants can be a nuisance as well as a hazard to the environment, those plants at the same time can present commercial opportunity. For example Irish Moss, also known as Chondrus crispus, Mastocarpus stellatus, or Mazaella japonica, is a type of storm-cast seaweed often found on beaches in certain areas. Alginates from Laminaria and Macrocystis also present commercial opportunity. The large amounts of seaweed can be a nuisance when it washes up on shore and begins to decay, causing a stench, releasing methane and hydrogen sulfide gases, and leaving the beach looking filthy. However, some seaweeds are high in carrageenan and alginates, which have significant commercial value in the food and cosmetic industry. It would therefore be beneficial to harvest this seaweed for its commercial value, while at the same time providing an effective removal service for the washed up seaweed on the beach.
Conventional methods of harvesting beached seaweed and other aquatic plants cast on or near shores of bodies of water include use of equipment such as all terrain vehicles and trailers on the shore. However, conventional methods do not address the difficulty of harvesting seaweed from shores where land access is unavailable. Furthermore, in sensitive beach environments, they can disturb the ground, causing the sea grass to die and the beach to erode, as well as promoting the destruction of clams and fish eggs by the use of tracked vehicles to access such beach areas.
Other methods of harvesting beached seaweed include accessing a shore with a large barge or landing craft. However, the waters near many shores have shallow areas where access would not be possible during low tide, as the barge would contact the ground and possibly damage clam beds and other sea life or ecology.
Another situation in which floatable material may need to be removed from the surface of a body of water or the beach is when floatable fibrous material are introduced to the surface of the water or beach, to aid in the clean up of a chemical such as petroleum. Many different apparatus that suction oil are known in the prior art. All of them have a limitation of rate and speed of pick up. Petroleum spills cause more damage to the environment the longer the oil spill is present. A situation in which non-organics may be used near a body of water is to aid in the clean up after a nuclear disaster near/within water, such as the use of titanate nanofibres or zeolite material to absorb radiation and radioactive isotopes.
Therefore, there remains a need for an efficient and environmentally sound system for harvesting seaweed from the shore and intertidal zone of a body of water and a need for a system for collecting floating fibrous material used in absorbing chemicals or radioactive isotopes spilled on a given body of water.
In brief, a floatable material (e.g., seaweed; fibrous material used in oil-spill clean up or a nuclear disaster) harvester is disclosed, including a vacuum source, a transport hose, and a floatable-material receiver. In one embodiment, the transport hose has at least one air inductor/intake along its length, which allows air to enter the transport hose to accelerate its contents, by negative pressure air induction. The air inductor may have a valve controlled by an air meter. In another embodiment, a plurality of air inductors is shown. In some embodiments, a plurality of valves is shown. In another embodiment, a transport hose has at least one floatable-material thruster along its length, comprised of at least one nozzle, which provides pressurized fluid (e.g., air or water) in the direction of the flow of the harvested floatable material by positive pressure induction. In some embodiments, a plurality of floatable-material thrusters is shown. In some embodiments, the directed flow of fluid may also produce a strong Venturi effect, which draws product in through the floatable-material input of the thruster. A method is disclosed whereby the floatable-material harvester is used to harvest a chemically absorbent material (e.g., wood chips, straw, perlite, vermiculite, polypropylene mesh, zeolite) that has absorbed chemicals (e.g., oil or solvent) spilled in water. In another example, the apparatus is used to remove chemicals from a beach by use of sorbent material that is picked up by a vehicle configured to pick up floatable material. In some embodiments, the absorbent material may be floatable titanate nanofibres material and radioactive heavy metals/chemicals may be absorbed by this material. Zeolite and in particular some synthetic zeolites, are also suitable for absorbing radioactive material or isotopes. For the purpose of describing this invention, chemicals and radioactive material/isotopes may be referred to simply as pollutants.
Zeolite is any of a large group of minerals consisting of hydrated aluminosilicates of sodium, potassium, calcium, and barium. They can be readily dehydrated and rehydrated, and are used as cation exchangers and molecular sieves.
Disclosed is a floatable-material harvester, including a vacuum source having an input, a transport hose having an input at one end and an output connected to the vacuum source input, and having at least one air inductor/intake, and a floatable-material receiver, connected to the input of the transport hose. Also disclosed is a process, for when the floatable material is specifically seaweed, for treating and preserving the seaweed by washing, sterilizing, refrigerating, and oxygenating the seaweed.
In a related embodiment and improvement to the vacuum system, the at least one air inductor is replaced with at least one floatable-material thruster, which is a device designed to provide pressurized fluid in the direction of the flow of seaweed or other floatable material (whether natural or synthetic) to be collected, through at least one nozzle pointed in the relative direction of flow of the floatable material. The fluid, namely air or water, in some embodiments is provided by a pump connected to a high pressure hose that runs at least partially parallel to the transport hose and connects to the at least one floatable-material thruster. In some embodiments, at least one pump is connected to the at least one floatable-material thruster.
In a related embodiment, the floatable-material harvester further includes a trommel washer connected to the collection area. The trommel washer has a refrigeration unit to lower the temperature of the wash water to lower the temperature of the seaweed for preservation. In another embodiment, refrigeration is provided by circulating refrigerated air through the seaweed as it enters the storage container. In another embodiment, refrigeration is provided inside the storage container. The trommel washer also has an ozonator or other sterilizer such as bromine or chlorine, where ozone both sterilizes and oxygenates the seaweed. In another embodiment, the seaweed is passed by a UV-C (i.e., an Ultraviolet-C) light to sterilize the seaweed. In another embodiment, radiation is used to sterilize the seaweed. In another embodiment, the transport hose has at least one flotation device to promote the buoyancy thereof.
In an additional embodiment, at least one air inductor has at least one air control valve regulating the flow of air through the at least one air inductor. An air inductor is an air intake that allows a controlled amount of air to enter the transport hose by negative pressure. In some embodiments, a plurality of air inductors is shown. In still another embodiment, the floatable-material harvester includes a microprocessor coupled to the at least one air control valve and configured to control the at least one air control valve. The at least one air inductor may further include an airflow meter, in another embodiment. A plurality of air inductors may assist material in traveling a greater distance than a single air inductor.
In yet another embodiment, the least one air inductor includes a snorkel to help ensure that air and not water is intaken by placing the level of the air intake a distance above the normal water level, while being high enough of a distance to minimize take on water from waves. Another embodiment of the floatable-material harvester includes an airtight hose section filled with air, through which the transport hose passes, with the airtight hose section interior being connected to the interior of the transport hose by the at least one air inductor.
In another embodiment, the at least one air inductor is replaced with or possibly supplemented by at least one floatable-material thruster connected to a pump. A floatable-material thruster is a device designed to inject high pressure fluid into the transport hose from a fluid input and through at least one nozzle. In some embodiments, the floatable-material thruster operates in the same manner as a conventional air conveyor, comprised of a fluid input that connects to an outer plenum that is pressurized with fluid, connected to a ring of nozzles that injects the fluid into the direction of the flow of the floatable material through the inner passage. Air conveyors also may have a slightly smaller passage diameter than the connecting hose, causing a Venturi effect to occur on the inlet and thrust on the outlet of the floatable-material thruster. In some embodiments, the floatable-material thruster is provided fluid through at least one flow control valve. In other embodiments, the flow control valve is controlled by a microprocessor. In some embodiments, at least one flow meter is connected in series with the at least one flow control valve and controls the at least one flow valve. In some embodiments, at least one pressure sensor provides pressure information from inside the transport hose to a microprocessor, which for the purposes of the present disclosure could, by way of example only, be part of a personal computer or a computer network or may be a stand-alone programmable logic circuit (PLC). In some embodiments, the microprocessor also receives information from the at least one flow meter. In another embodiment, the pressure sensor controls at least one of the flow valve, pressure regulator, and the speed or thrust of the pumps by an analog electrical connection. In another embodiment, the at least one pressure sensor is located on the high pressure hose and/or the high pressure tank. In another embodiment, an air inductor may operate in the opposite flow direction to function as a gas escape mechanism, where it is positioned in such a manner as to relieve gas pressure produced in the transport hose by the floatable-material thruster. A filter screen may be placed over the air output, as to prevent the solid contents of the transport hose from plugging the gas escape mechanism.
In yet other embodiments, the microprocessor uses the information from the at least one pressure sensor and the at least one flow meter to control the at least one flow valve and the speed of the high pressure pump. In another embodiment, the microprocessor also controls the speed of the vacuum source or of a centrifugal or other type of water pump. The water pump and vacuum source each may have its speed and/or power controlled, for example, by the rpm (i.e., revolutions per minute) of an engine, by pulsation, or by otherwise providing continuous flow or bursts of energy by combustion, electrical, or waste steam from an incinerator connected to the apparatus.
According to another embodiment, the floatable-material receiver further includes a hopper having an outlet coupled to the input of the transport hose. In an additional embodiment, the hopper also includes an agitator, which vibrates to assist in the flow of floatable material. In another embodiment of a feeder mechanism, the floatable-material receiver includes a paddle wheel placed within the floatable-material receiver so as to stir its contents into the transport hose. In still another embodiment, the floatable-material receiver includes a nozzle placed within the floatable-material receiver, so as to propel the floatable-material receiver's contents with a water jet into the transport hose. The nozzle is connected to a water pump that receives water from a water source and drives the water into the nozzle to produce the water jet. The water jet may propel the floatable material into a funneling element and into the transport hose, or the water jet may propel the floatable material directly into the transport hose. In some embodiments, a water jet or nozzle is submerged into the floatable material within the beach or surf, propels the material onto a mechanic device that picks up floatable material, such as a conveyor belt. In another embodiment, the nozzle simply propels material in the surf or on the beach into the floatable-material receiver. In another embodiment, the nozzle is fluidly connected to an air compressor and instead provides an air jet.
Another embodiment of the floatable-material harvester includes a flotation device supporting the floatable-material receiver in order to keep the floatable-material receiver approximately near the level of the water in which it is operating. In a related embodiment, the flotation device further includes buoyancy control to allow the floatable-material receiver to be lowered into the water. In another embodiment, the flotation device additionally includes a propulsion system. In yet another embodiment, the flotation device has a rudder. The flotation device further includes an anchoring system, in another embodiment. In a related embodiment, the anchoring system is automated.
A method is also included for harvesting beached and/or near-shore floatable material. The method involves dispersing sorbent material designed or suitable for absorbing petroleum or other chemicals and radiation/radioactive material while repelling water. The method may involve dispersing said material with an apparatus comprised of a storage area, feeder mechanism, floatable material receiver, and a transport hose comprised of at least on floatable material thruster. The method involves providing a floatable-material harvester as described above, activating the vacuum source or high pressure pump, supplying floatable material to the floatable-material receiver, and emptying harvested floatable material from the collection area. In the case of petroleum, the method further includes incinerating at least some of the collected floatable-material within the harvesting apparatus. The method then includes using the waste heat from the incinerator to provide power for the harvest apparatus. That power may be provided by way of steam to turbine and/or impeller. The same method includes using an air inductor along the length of the transport tube and a vacuum source, that both may replace or supplement the floatable-material thruster and high pressure pump.
In some embodiments, collected seaweed is metered into and through a mesh belt dryer, which is a well known apparatus for drying seaweed. This dryer provides air flow through a layer of seaweed that is several inches deep on a conveyor belt. The seaweed is often stirrated or flipped over as it moves down the conveyor belt to cause even distribution of air and drying. In some embodiments, instead of drying, the mesh belt dryer has an air intake that is fitted with a refrigeration unit, so that cold air is circulated through the seaweed, lowering its temperature to around −2 degrees Celsius as it moves down the conveyor belt. In some embodiments, an apparatus that cools the seaweed by cold air is used instead of the refrigeration unit in the seaweed washer. In some embodiments, a rotary dryer is used in place of a mesh belt dryer or any device suited for circulating cold air around solid material. The exhaust and intake of the mesh belt dryer may be directly connected by a circulation fan, so that the evaporator coils or other cooling mechanism of the refrigeration unit are in the path of the airflow. Cooling the seaweed from ambient temperature has the effect of dramatically lowering its rate of decomposition.
In other embodiments, the collected seaweed is processed through a seaweed washer. In some embodiments, the seaweed washer is comprised of a refrigeration unit to lower the temperature of the wash water, which in turn lowers the temperature of the seaweed. In other embodiments, the wash water is injected with a sterilizing agent such as ozone, bromine, or chlorine. In another embodiment, the seaweed is sterilized by ultraviolet-C (e.g. UV-C) or electromagnetic radiation suitable for killing, e.g., bacteria, nematodes, protozoans, and fungi, thereby suitably sterilizing the seaweed. Sterilizing the seaweed also aids in slowing the rate of decomposition.
Other aspects, embodiments and features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying figures. The accompanying figures are for schematic purposes and are not intended to be drawn to scale. In the figures, each identical or substantially similar component that is illustrated in various figures is represented by a single numeral or notation at its initial drawing depiction. For purposes of clarity, not every component is labeled in every figure. Nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention.
The preceding summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the attached drawings. For the purpose of illustrating the invention, presently preferred embodiments are shown in the drawings. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
Embodiments of the disclosed floatable-material harvester, when used particularly to harvest seaweed or chemically absorbent material, enable workers on a shore of adjacent body of water to clean up seaweed or other floatable material more efficiently, with less environmental impact. The improved transport hose has the effect of accelerating the speed of material as the air speed increases over each air inductor, allowing a significant increase in both travel/conveyance distance, even while possibly using a smaller hose diameter. The improved suction also permits the harvester to collect seaweed or other floatable material more rapidly. Even more mass may be moved and/or an even larger conveyance distance may be achieved in some embodiments which depict at least one floatable-material thruster comprised of at least one nozzle pointed in the general direction of flow of the seaweed or floatable material, where the floatable-material thruster provides pressurized fluid from at least one pump through a high pressure hose. Even more mass may be transported a longer distance with the use of a plurality of floatable-material thrusters and a plurality of flow control valves.
Some embodiments disclosed herein are designed to harvest seaweed, particularly loose seaweed on the surface or shore of any body of water. “Seaweed” for the purposes used in this document includes oceanic seaweed, kelp, and other algal “plants,” as well as any aquatic plant or plant-like organisms in fresh, brackish, or salt water. Embodiments of the disclosed floatable-material harvester may function on the surface or shore of any body of water, including oceans, seas, bays, fjords, lagoons, lakes, rivers, streams, ponds, estuaries, marshes, salt marshes, and swamps. The “shore” or “beach” of a body of water is the area of land immediately adjacent to that body of water.
It is noted that, for simplicity sake and ease of description, the floatable-material harvester is being described primarily in the context of harvesting seaweed but, as previously noted, the system can be used in a similar manner to harvest/retrieve other types of floating or beached sorbents, also known as a chemically absorbent material (e.g., wood chips, vermiculite, straw, clay, mesh polypropylene, zeolite, titanate nanofibres), such as those employed to aid clean up of a chemical or pollutant spill (e.g. absorbent material capable of floating in water) and providing that such material could be harvested either while floating or once beached on a shore. It is to be understood that, for the purposes of cleaning up non-organic beach/floating sorbents (e.g., clay, perlite, titanate nanofibres), the system described herein for use with floating organics can also be used to clean up of such non-organic beached/floating sorbents, given that the principles of operation are basically the same for such materials. Also, natural and synthetic zeolite minerals have a unique ability to absorb radiation and harmful substances from the environment. They are used even in food supplements for people employed in industries where there is a risk of exposure. Products such as zeolite which may not be easily pierced and picked up by a tine may be blended with a Styrofoam, fabric, or other material that is easily picked up by a tine or hook. In some embodiments, the absorbent material may be configured into loops. In some embodiments, zeolite or nanofibres may be embedded in natural material such as cotton. In some embodiments, zeolite or nanofibres may be embedded in a synthetic material such as but not limited to polypropylene mesh. In some embodiments, the sorbent may be comprised of magnetic material, so that it may be easier for a mechanical device to pick up.
A beach cleaner is a vehicle or pull-behind unit that operates on the beach and is designed to remove seaweed and refuse while leaving sand, either from the beach or near-shore waters. Beach cleaners may be comprised of a mechanical device that picks up floatable material, or pick up floatable material that can be pierced or grabbed by the tines. Beach cleaners come in many different forms and have been in active use for decades. The beach cleaner's largest limitation is that it has a collection area which becomes full, which requires the beach cleaner to travel to a separate vehicle to transfer the load, or a vehicle needs to meet the beach cleaner. This is fuel inefficient and an inefficient process in general. Beach cleaners may also only use one pick up mechanism, which makes the rate of pick up too slow for a mass removal from a single apparatus. Beach cleaners also have no means of elevating themselves over large obstructions. Also, once the load is transferred to truck, it is well known and published that barging can be roughly 6.2 times more fuel efficient than trucking a material an equal weight and distance. In some embodiments, the beach cleaner may be replaced with an amphibious vehicle. In some embodiments, the vehicle may be a hovercraft. In some embodiments, a vehicle that floats may be configured to pick up floatable material from the beach or within a body of water.
In some embodiments, an elongated pick up 19 is comprised of a side-by-side row of conveyor belts 120 which are further comprised of many tines, the conveyor belts 120 configured in such a manner as to pick up floatable material from the beach as depicted in
In one of the embodiments and in relation to
For simplicity of naming conventions, hoses that transport floatable material are often referred to herein as “suction hoses” and vise-versa, given that a vacuum source is often employed to move material toward the collection area 12 in
Returning to
In some embodiments, the pick up 19 is a rotating conveyor belt 120 containing a large amount of tines or hooks that combs through the sand and removes surface and buried debris while leaving the sand on the beach. In some embodiments, the conveyor belts 120 transfer their load to a perpendicular conveyor 8 (see
Continuing with
An AUV is an acronym for an Autonomous Underwater Vehicle and is well known in the prior art. AUV's are generally powered by an electric power plant, but may use other forms of energy as propulsion including diesel, gas, nuclear, or solar. In some embodiments, the AUV is comprised of cutting blades. In the same embodiment, the AUV may operate near the bottom of the body of water, severing macro algae growing on the bottom. This may cause the algae to float to the surface of the body of water, where the algae may be harvested by the floatable-material harvester. For efficiency of the operation, several AUV's may be deployed simultaneously. In some embodiments, the underwater vehicle may have an operator. In some embodiments, the AUV is instead controlled remotely.
Returning to
High pressure water pump 29 draws water from the ocean or body of water and pressurizes high pressure water tank 30, then the water flows into high pressure hose 28 through spool 57. The high pressure hose may be pressurized to several thousand psi, as to provide a long hydraulic parallel to the transport hose 60, which may be an efficient means of transferring energy into a system. In some embodiments, the speed of the high pressure pump 29 may be controlled by pulsation or a wave of energy. In other embodiments, the high pressure pump 29 may be controlled by bursts of energy. The energy may be electrical, combustion, mechanical, chemical, or the expansion of a fluid such as steam into a turbine. In a variation of the fluid compression system, high pressure water pump 29 is replaced or supplemented by air compressor and motor, and the high pressure water tank 30 is replaced or supplemented by high pressure air tank.
Returning to
The implementation of a series of floatable-material thrusters 62 along the length of the transport hose 60 has a distinct advantages of transporting floatable material a greater overall distance and more efficiently than a single floatable-material thruster, with less wear on the transport hose 60, extending time between hose replacement. Wear may be especially excessive on the hose near the output of the floatable-material thruster 62. The release of high pressure fluid into a lower pressure environment may cause expansion and acceleration of the overall volume of the fluid or the space that it occupies, which in turn may cause acceleration of the material travelling through the hose and potential damage to that material.
The velocity of the material and wear of components due to frictional contact with that same material have a relationship that is often nearly exponential. That is, an increase in velocity has an often near exponential increase in wear due to friction and loss of energy as heat. Furthermore, hydraulics can offer an enormous transfer of energy that has the potential to cut through hose if that localized release of energy is too great, as well as damaging the product being transported thereby. Therefore, it is advantageous and more energy efficient to spread the overall release of energy over the entire distance of the transport hose 60, by using as many floatable-material thrusters 62 connected in series as possible and regulating the flow of fluid into each floatable-material thruster 62. Often the fluid is provided from a high pressure hose 28 that is deployed parallel to the transport hose 60. In some embodiments, the high pressure hose 28 may be flexible in composition and may float. It may be advantageous to use flexible hose to transport fluid through high pressure hose 28 to the floatable-material thruster 62, and as well the use of flexible hose for both the suction hose and the transport hose 60. In some embodiments, the transport hose 60 may be a rigid tube. In some embodiments, the high pressure hose 28 may be a rigid tube.
In one embodiment of the apparatus, the flexible hose is wound around the outer perimeter of the apparatus, so that the apparatus becomes, in essence, one very large spool. This allows for a gradual pending of the flexible hose, where the hose may be of a composition that makes it difficult to bend on a smaller conventional spool. Winding the hose on the outer perimeter also allows the vessel or apparatus to carry a relatively long length of hose and to deploy the apparatus rapidly without assembly.
Based on the pressure information from the pressure sensor, entrained air may be released out of the system through the mechanism of
Undercarriage 100 suspends the hoses between each amphibious vehicle 5 and the beach cleaner 7. The undercarriage 100 may be comprised of many horizontally positioned solid plates overlapping one another, so that the undercarriage 100 is horizontally flexible. They may be referred to as horizontally flexible joints 152. As seaweed reaches the vessel through transport hose 60, the seaweed is deposited into the collection area 2 through the large cavities of centrifugal pump 72. The seaweed then flows perpendicular down draining conveyor belt 17, so that extra water in the system is removed efficiently. Most of the water passes through small holes in the back of the collection area 12, and the water is directed to pass through a directional propulsion thruster 101. Directing the water in such a fashion provides thrust for the vessel in any direction the operator chooses, while dissipating the immense energy of the vacuum system. In some embodiments, the collection area may be a large net that collects material and allows water to project into the air.
At a reasonable distance down the hose (e.g., nearing the end thereof), most or all of the entrained gas is evacuated through the series gun silencer system shown in
Sorbents or absorbent material are insoluble materials or mixtures of materials used for the recovery of a fluid. In broadest terms, the sorbent or absorbent material needs to have an attraction for the fluid that is being used to recover and should have the ability to float on or near the surface of the body of water upon which it is employed. To be particularly useful in combatting petroleum and solvent spills, sorbents should, to at least some degree, be both oleophilic (oil attracting) and hydrophobic (water repelling). Suitable materials can be divided into three basic categories: natural organic, natural inorganic, and synthetic. Natural organics include peat moss, straw, hay, sawdust, and feathers. Natural inorganics include clay, perlite, vermiculite, glass wool, zeolite, and sand. Synthetics include plastics such as polyurethane, polyethylene, and polypropylene. For the purpose of this invention, the terms sorbent and absorbent material are used interchangeably.
Clay, perlite, zeolite, and vermiculite are also used to absorb radioactive material and heavy metals. They have the disadvantage of sometimes releasing the absorbed radioactive material if they are exposed to water. Nanofibres on the other hand have the benefit of permanently absorbing radiation and radioactive material such as heavy metals (e.g. cesium and cadmium), which may make their use in and near water ideal. In some embodiments, the nanofibres may be made from sodium titanate. In other embodiments, other titanate salts may be used. Radioactive iodine is also effectively absorbed by nanofibres. For the purpose of the invention, nanofibres may be mixed with and/or comprised of floatable material, pelletized, cubed, shredded, comprise of loops, or provided in such a manner that the nanofibre is easy to collect by the apparatus, where the absorbent material is composed or configured in such a manner that a tine can pick up said material easily.
In reference to
As seaweed is a sensitive and live organic that needs to be preserved, seaweed requires a chemical and physical treatment to ensure its preservation, often so that the seaweed has time to reach a drying facility. However, the pick up of waste solvents presents another process distinct from the processing of seaweed or radioactive material, where there is a desire, if at all possible, to simply combust the product to ensure its immediate disposal and to reduce or possibly eliminate the amount that might otherwise need to be land-filled or stored. Furthermore, some of the collected pollutant (e.g. petroleum, crude oil) may be recycled by pressing the absorbent material, centrifuging the material, or otherwise mechanically separating the pollutant from the absorbent material. The apparatus can serve as an ideal location to process the waste absorbent material since nominally little or no additional time or effort is used to dispose of the contamination. Further, the waste energy generated by combusting the waste material instead could be used directly to power the vessel or apparatus or otherwise stored or delivered to a local energy grid (depending, in part, on the amount of energy generated). Also it presents the safety of having contained the spreading of a fire, which is a concern when performing the combustion task within a body of water.
In the method, the absorbent material is ideally, although not necessarily, combustible as well, so materials such as wood chips or straw becomes more suitable for absorbing petroleum. The wet organic solvent and absorbent material is metered under the rate of feed decided by the central microprocessor 11 into an incinerator of sufficient size as to incinerate at a rate that is consistent with the rate of feed. This may in fact be a very large incinerator. The incinerator may have all of the emission controls that are relevant and known to the prior art, including but not limited to catalytic conversion, air intakes, sensors to monitor plume gas concentrations, and temperature control. In some embodiments, the collected floatable material is metered into the incinerator by an operator. In some embodiments, the collected organic material is metered into the incinerator by a variable speed controller and a conveyor.
The incinerator produces a great deal of waste heat, which also produces steam from the wet organic material. Water from the body of water may be added to the exhaust of the incinerator to create more steam, or a heat exchanger may be used in some embodiments. The steam can be used to power a turbine or any similar device that converts steam into mechanical energy. The mechanical energy can used to power the apparatus through direct drive of the hydraulic or vacuum pumps and/or to turn generators for electrical power, electrical power which could be used onsite or delivered to a power grid. Organic material for the purpose of this document may include material which is inorganic or synthetic that has absorbed organic material, since the chemical it absorbs is sometimes organic in nature.
During the vacuuming process, there may be times oil may separate back into the body of water. It is, of course, desirable to separate the oil and water and to not allow petroleum or solvent to return to the body of water from which it was drawn. This may be done by passing the fluid draining as part of the vacuum process through more wood chips or other sorbent material. If need be, the oil may be separated by allowing it to float on the surface of the water and skimming the oil from the water. All that said, the present process is designed to limit the amount of oil or other solvents that might return to the water, given the capabilities of the sorbents being employed. Such additional processing steps are provided simply to increase the percentage of oil/solvent that is to be captured. The use of nanofibres in the cleanup of radioactive material has the benefit of retaining said material and radiation, so that the radioactive material/isotopes has the benefit of not separating back into water. Zeolite is also a useful material for absorbing and purifying both salt and fresh water from radiation and other chemicals.
The seaweed flows through the center of floatable-material thrusters 62 or conventional air conveyors, where additional forward moving energy is released into the system by expansion of high pressure fluid. That additional forward moving energy pushes the material in the direction of flow at a higher velocity and minimizes the resistance on vacuum unit 66, where the effect may allow vacuum unit 66 to run at higher velocity. This high velocity is achieved through, e.g., a higher gear ratio from motor-to-fan and/or a larger fan size-to-motor size ratio. Microprocessor control 11 (not shown in this context) receives flow and pressure information from ultrasonic/radio 2-way transmitter 65, calculates ideal conditions from a set table, and relays commands back to flow valves 69, vacuum unit 66, high pressure water pump 29, and the belt conveyor 8, and buoyancy control through bilge pumps 9 located on the floating conveyor belt apparatus of
When seaweed and water fills the collection area 12 of vacuum unit 66, the vacuum unit shuts off, and the collection area 12 is opened. The floatable material is dumped into dump box 18, which is equipped with adequate draining, where seaweed is then metered into trommel washer 64 by a conveyor belt 8. The trommel washer 64 is equipped with a refrigeration unit 48 and sterilizer injector 79, as depicted in
Transport hose spool 56 was bypassed after deployment of the hose, so that transport hose 60 could guide the floatable material directly into the collection area 12 as straight as possible. Such a substantially straight alignment limits the centripetal force and resistance that would have occurred by having such a large mass coil around at a high speed inside the spool, which may cause energy loss and add resistance to the system. Also, the propulsion thrusters 63 of
FIG. 3,4,5,6 illustrate a floating belt conveyor 8 based apparatus that works on both the beach and in the surf. The motor speed of the belt conveyor 8 is controlled by central microprocessor control 11 and speed information is transmitted by ultrasonic/radio 2-way transmitter 65. The conveyor belt 8 is a feeder mechanism that provides floatable material to the transport hose 60. The microprocessor 11 is not shown. Anchors 6 can be used for stability. The unit floats or rests on pontoons 43, where the bottom of the pontoons and vessel may be flat for lower footprint on the beach. Unit may be lowered or raised by positive or negative buoyancy through reversible bilge pumps 9 and snorkels 54 by pumping water or air into the hollow portion of floatation device 43. The conveyor moves in a forward motion towards funnelling element 45 and into removable vegetation shredder 67, where contents of the belt conveyor 8 are pushed into the mouth of removable vegetation shredder 67 and then into transport hose 60. The vegetation shredder is also a feeder mechanism that provides floatable material to the transport hose 60. The vegetation shredder 67 may be omitted and the conveyor belt 8 may act as the feeder mechanism that provides material to the funnelling element 45.
Handles 25 are located in all four corners of the detachable plate allow ease of movement by personnel. The watercraft is stabilized by two pontoons 43, where the reversible propulsion system 49 is located in the center of the craft, between and parallel to the two pontoons 43. Steering of the vessel is performed with a rudder system 50. Mesh filters 33 may be placed over the intake and exhaust of the propulsion systems to keep windrow and loose seaweed and floatable material out of the propulsion system. Outside of the perimeter of the funnel is a snorkel 54, which connects by tubing to bilge pumps 9 which have the ability to pump air or water in either direction of flow into the air cavities of pontoons 43, thereby raising or lowering the apparatus in the surf. Additional bilge pumps 9 are connected to the bottom outside of the craft and to the inside of the pontoons, so that water or air can be pumped in either direction. An automatic anchoring system 6 may also be deployed to help stabilize the floating funnel in the surf. In some embodiments, bilge pumps 9, anchoring system 6, rudders 50, propulsion system 49, and agitator 108 are controlled by microprocessor control 11.
In some embodiments, the vacuum source 66 is an air-impeller evacuated device, such as that commonly available under the tradename “Hydrovac”. In some embodiments, the vacuum source 66 includes a vacuum chamber evacuated by an air impeller (not shown). In some embodiments, the vacuum source is a large fan connected to a motor. In some embodiments, the vacuum source is a large fan connected to a turbine powered by steam. In some embodiments, the vacuum source 66 is a vacuum excavator system, which combines a Hydrovac vacuum device a high-pressure water pump connected to a high pressure hose and a wand that allows a worker to loosen substrates with the jet so that the Hydrovac vacuum can consume the resulting slurry. In some embodiments, the vacuum source 66 draws the contents of the transport hose into a collection area 12. The vacuum source 66 may be mounted on a transporter. The transporter may include a watercraft. In some embodiments, the watercraft is a boat. In other embodiments, the watercraft is a barge. In still other embodiments, the watercraft is a raft. The watercraft may be a flotation device. The transporter may include a terrestrial vehicle. In some embodiments, the transporter is a motorized wheeled vehicle. In other embodiments the transporter is a trailer. In other embodiments, the transporter is a sledge. The vacuum source 66 may be mounted on skids to permit it to be pulled over sand and debris. The vacuum source 66 may have an on/off switch. The vacuum source 66 may have controls that vary its power. An operator may operate the controls. An “operator,” as used in this document, is a person operating the floatable-material harvester of
In some embodiments, the vacuum source 66 includes a canister, defined as a chamber in which the vacuum source collects the seaweed and other floatable materials it receives via the transport hose 60. The canister may be the collection area 12. In some embodiments, the vacuum source may be connected to at least one storage container. The at least one storage container may be refrigerated. The at least one storage container may be detachable from the vacuum source 66 for transport. The vacuum source 66 may have a dump box into which the canister may rapidly be emptied, for instance, by opening a connecting door between the canister and the dump box so that the force of gravity causes the contents of the canister to fall into the dump box. In some embodiments, the vacuum source 66 includes at least one conveyor to move seaweed and other floatable materials from one container to another. The least one conveyor may be a conveyor belt. The least one conveyor may be a conveyor screw. The conveyor may be least one controlled by an operator. The conveyor may be controlled by a microprocessor configured to control the conveyor. In some embodiments, the conveyor is a drainage conveyor; for instance, it may be a conveyor belt made of mesh, which allows water to run out of the materials it is transporting.
As illustrated in
In some embodiments, the water passes through a heat exchanger 26 prior to being sprayed on the seaweed by the spray nozzle 58 and then again passes through the same heat exchanger as the water exits. In some embodiments, the water that drains from the washer drum is ejected from the trommel washer 64 via a water outlet 80. In some embodiments, the water passes through the heat exchanger 26 prior to being ejected through the water outlet 80. The trommel washer 64 may have controls by means of which its operation may be regulated. An operator may operate the controls. The controls may be operated remotely or locally. A microprocessor configured to operate the controls, as set forth more fully below, may operate the controls.
The suction tube or, more broadly, transport hose 60 of any of the embodiments may be made from any combination of materials that permit the tube to be sufficiently airtight to maintain the pressure differentials with the outside atmosphere that is necessary for suction or pressure thrusting. The transport hose 60 should also be sufficiently watertight to transport wet materials and be capable of withstanding the suction force without collapsing or the thrust pressure force without exploding or rupturing. In some embodiments, the transport hose 60 may be reinforced with a metal mesh to withstand high pressure. In some embodiments, the transport hose/suction tube 60 is a flexible hose or other conduit. For the purposes used herein, an object is “composed at least in part” of a substance if any non-zero proportion of the object is composed of that substance. An object is “composed at least in part” of a substance if the object is composed entirely of that substance.
In some embodiments, the transport hose 60 is composed at least in part of a polymer material. In some embodiments, the transport hose 60 is composed at least in part of polyvinyl chloride. In other embodiments, the transport hose 60 is composed at least in part of polyurethane. In additional embodiments, the transport hose 60 is composed at least in part of a fluoropolymer also known as Teflon. In additional embodiments, the transport hose 60 is composed at least in part of polyethylene. In still other embodiments, the transport hose 60 is composed at least in part of nylon. The transport hose 60 may be composed at least in part of a natural rubber. In some embodiments, the transport hose 60 is composed at least in part of a synthetic rubber. The transport hose 60 may be composed at least in part of a textile material. The transport hose 60 is composed at least in part of metal. The transport hose 60 may be composed at least in part of a rigid plastic.
In some embodiments, the transport hose 60 is composed of a combination of the above materials. For instance, the transport hose 60 may be composed of a flexible substance reinforced with cross-sectional hoops of a rigid substance. The transport hose 60 may be composed of a polymer substance reinforced with textile material. The transport hose 60 may be composed of cylindrical sections of rigid material such as metal concatenated with cylindrical sections of flexible material, such as flexible polyvinyl chloride. The rigid cylindrical sections may form watertight joints for connecting together two sections of flexible hose. In some embodiments, each hose section connects to the watertight joints via a threaded connection, requiring the hose section to be screwed together with the watertight joint. Some embodiments of the transport hose 60 are composed of a flexible material corrugated to form cross-sectional circular ribs for greater strength. In some embodiments, the inner diameter of transport hose 60 may be between 4 and 17 inches. In some embodiments, the transport hose may be at least 500 feet long. Where the transport hose 60 is a flexible hose, it may be stored on a spool; for instance, it may be wound on a spool attached to the vacuum source 66.
In some embodiments, the transport hose 60 has at least one flotation device 105. In some embodiments the flotation device 105 is a buoy. The buoy may be composed of any combination of materials known in the art to be suitable for manufacturing buoys. The buoy 105 may be composed at least in part of foam. The buoy 105 may be composed least in part of natural polymer foam, such as latex foam. The buoy 105 may be composed least in part of synthetic polymer foam such as polyethylene foam. The foam may be closed-celled. The foam may be open-celled. Open-celled foam may be combined with a waterproof skin to prevent incursion of water and resultant loss of buoyancy.
The high pressure hose 28 may share similar characteristics to the transport hose 60. High pressure hose 28 may have much higher pressure ratings than transport hose 60 and may be comprised of thicker material. High pressure hose 28 may be flexible or rigid in composition. High pressure hose 28 may be reinforced with a mesh designed to withstand very high pressures. High pressure hose 28 may float from its composition or may require an additional floatation device.
In some embodiments, the flotation device 105 is a cylindrical ‘O’ type buoy that is designed to be attached to the transport hose 60, comprised of two C halves connected by hinges. On the opposite end of the hinges there may be locking clamp to secure the buoy 105 to the transport hose 60. The inside diameter of the locked ‘O’ type buoy may be equivalent to the outside diameter of the transport hose 60, so that the buoy firmly grips the transport hose 60.
In some embodiments, the flotation device 43 is a part of the air inductor, as set forth below in reference to
As illustrated by
In some embodiments, the at least one air inductor also includes at least one air control valve 3, regulating the flow of air through the at least one inductor. The air control valve 3 may be located at the opening 106. In embodiments in which the air inductor includes an air cavity 1, the air control valve 3 may regulate the entry of the air into the air cavity 1. In one embodiment, the air control valve 3 is a check valve. For instance, the air control valve 3 could be a check valve with a bias that causes it to close if the pressure within the transport hose 60 interior relative to the source of the air outside the opening 106 falls below a certain threshold. In some embodiments, the air control valve 3 is a ball valve. In some embodiments, the air control valve 3 is a pressure regulator valve. In other embodiments, the air control valve 3 is a globe valve. In still other embodiments, the air control valve 3 is a gate valve. The air control valve 3 may be a butterfly valve. The air control valve 3 may be actuated mechanically. The air control valve 3 may be actuated hydraulically. The air control valve 3 may be actuated pneumatically. The air control valve 3 may be actuated by means of an electrical motor. In some embodiments, any of the air inductors described within this document may function in reverse direction as a gas escape mechanism that may be for a floatable-material thruster, such as is depicted in
Some embodiments include a microprocessor 11 coupled to the at least one air control valve or water control valve and configured to control the at least one air control valve 3 or water control valve 69. The microprocessor 11 may control the air control valve 3 or water control valve 69 via any actuator controls listed herein or by any conventional means. The microprocessor 11 may be coupled to the air control valve 3 or water control valve 69 with actuator control by a wired connection. The microprocessor 11 may be coupled to the air control valve 3 actuator via a wireless connection 65. The microprocessor 11 may be any processor known in the art. The microprocessor 11 may be a special purpose or a general-purpose processor device. As will be appreciated by persons skilled in the relevant art, the microprocessor 11 may also be a single processor in a multi-core/multiprocessor system, such system operating alone, or in a cluster of computing devices operating in a cluster. The air flow valve 3 and water flow valve 69 may be controlled by an analog circuit coupled to the flow meter
In some embodiments, the at least one air inductor also includes an airflow meter 23. The airflow meter 23 may measure the rate of flow of the air through the air inductor. In some embodiments, the air flow meter is an anemometer. An anemometer may obtain an air flow reading through Doppler laser, sonic, windmill, cup, hot hire, acoustic resonance, ping-pong ball, pressure, plate, tube, and air density. The airflow meter 3 in some embodiments controls the airflow through the air control valve 3 by means of the air control valve 3 actuator, responsive to that measurement. In some embodiments, the airflow meter 23 is coupled to the microprocessor 11. In some embodiments, the microprocessor 11 controls the air control valve 3 in response to a measurement of airflow received from the airflow meter 23. In some embodiments, the air inductor includes an anchor 6. In some embodiments, the anchoring system is automated. In some embodiments, such as an embodiment using a floatable-material thruster, the airflow meter 23 is replaced or supplemented by a flow meter designed to measure the flow of pressurized fluid such as air or water. The flow of water may be measured by turbine, displacement, velocity, compound, electromagnetic, ultrasonic, and impeller.
In some embodiments, the at least one air inductor includes a snorkel 54. The air inductor in some embodiments receives air through the snorkel 54. The snorkel may be of sufficient height to prevent or at least minimize entry of water from waves. The air may enter the air inductor via the snorkel by passive induction/negative pressure. In some embodiments, watertight connectors 4 allow the snorkel apparatus to be detached when not in use, so that the transport hose 60 rolls up easily onto a spool 56. In some embodiments, the at least one air inductor includes two snorkels 54. In some embodiments, the air inductor includes a counterweight 13, such as in
As shown in
In this embodiment, top conveyor belt 130 is positioned above the swivel joint 61. As top conveyor belt 130 moves its load forward, the force of gravity causes the floatable material to drop to the lower conveyor belt 131. The swivel 61 ensures that whatever direction a conveyor belt 130 is facing, it is able to transfer its load to the lower conveyor belt 131. This may present a flow problem however, where the top conveyor belt may transfer its load faster than gravity may cause the material to fall. This may cause plugging or a low rate of flow. This problem is minimized by a downward pointing spray nozzle 58, which may provide fluid from a high pressure hose 28 or an independent source. The high pressure fluid released from nozzle 58 forces the material in a downward direction much faster than for which gravity can provide, thereby producing a faster rate of transfer from one conveyor to the next. In some embodiments, screw augers are used to substitute or augment the conveyor belts. In some embodiments, two screw conveyors are positioned to replace conveyor belts 130 and 131 with a nozzle pointed in the direction of flow of the seaweed in the same manner as
Returning to
The floatable-material receiver may include a nozzle 58. The nozzle 58 may have handles (not shown), allowing an operator to direct the nozzle at floatable material on a shore or in water. The nozzle may have two or more sections connected by joints, allowing the operator to direct the nozzle opening to various angles relative to the position of the transport hose 60. The nozzle may have a valve that allows the operator to stop airflow or water flow through the nozzle into the transport hose 60. An operator may operate the valve directly or via remote control. A microprocessor 11 may operate the valve.
In some embodiments, as shown in
The platform-based floatable-material receiver may include a conveyor belt 8 or a screw auger 52 to convey the seaweed from the platform to the transport hose 60. As a non-limiting example, the feeder mechanism may be a conveyor belt 8. The conveyor belt 8 may be powered by any conventional means, including the force of the vacuum itself. In some embodiments, the conveyor belt 8 has a variable speed control. In some embodiments, the feeder may have a funneling element 45 that forces floatable material into the hose by narrowing the path the material can follow as the conveyor belt 8 moves forward. The variable speed control may be able to cause the conveyor belt to move faster or slower. The variable speed control 75 may be controlled by an operator. The variable speed control 75 may be controlled by a microprocessor configured to control the variable speed control (not shown). The microprocessor may be a microprocessor 11.
In some embodiments, as shown in
In some embodiments, the receptacle-based floatable material receiver includes a funnel 24. In some embodiments, the funnel 24 is angled so that it opens directly into the transport hose 60. In other embodiments, as shown in
In one embodiment, the hopper 84 includes an agitator 108. The agitator 108 may be an element that agitates the seaweed or floatable material in the hopper or funnel; this may have the effect of loosening clumps of seaweed/floatable material and may act as a feeder mechanism to the transport hose 60. In some embodiments, the agitator 108 vibrates. In some embodiments, the nozzle 58 may assist or replace a feeder mechanism for the transport hose 60. An operator may operate the agitator 108 directly or via remote control. A microprocessor configured to operate the agitator 108 may operate the agitator. In some embodiments, the floatable-material receiver includes a vegetation shredder 67. An operator may operate the vegetation shredder 67 directly or via remote control. A microprocessor configured to operate the vegetation shredder 67 may operate the vegetation shredder 67. In some embodiments, the floatable-material receiver includes a trommel washer 64. The trommel washer may be a trommel washer 64 as described above in reference to
Returning to
In some embodiments, the floatable-material receiver transporter includes a flotation device 43 supporting the floatable-material receiver. The flotation device may be a raft. The flotation device 43 may be a boat. The flotation device 43 may include at least one pontoon. The flotation device 43 may be constructed using any combination of materials known in the art to produce a buoyant object. In some embodiments, the flotation device 43 is composed at least in part of polymer foam, as described above in reference to
As shown in
In some embodiments, the at least one bilge pump 9 pumps water from the cavity into the body of water through a water conduit. In an embodiment, the at least one bilge pump 9 is capable of pumping air into the cavity. In another embodiment, the at least one bilge pump 9 is capable of pumping air out of the cavity. In an additional embodiment, the at least one bilge pump 9 is capable of both of pumping air into the cavity and of pumping air out of the cavity. In some embodiments, the at least one bilge pump 9 pumps air from the atmosphere using a snorkel 54. In some embodiments, the bilge pump 9 pumps air back into the atmosphere using a snorkel 54. In some embodiments, the at least one bilge pump 9 can pump either air or water in or out of the cavity, as needed to adjust the buoyancy of the flotation device 43. In some embodiments, the buoyancy control is controlled by an operator. In some embodiments, the operator controls the buoyancy control remotely by means of a wired or wireless signal. In some embodiments, the buoyancy control is controlled by a microprocessor configured to control the buoyancy control (not shown). The microprocessor may be a microprocessor 11.
As shown in
In some embodiments, as shown in
In some embodiments, as shown in
A team of operators provide a floatable-material harvester as described above in reference to
In an embodiment, the operators attach the floatable-material receiver to the transport hose 60. In another embodiment, the operators attach the floatable-material receiver to the flotation device 43; for instance, the operators may attach the floatable-material receiver to the flotation device 43 via the swivel 61 as described above. The operators may couple the microprocessor 11 to the at least one valve 3. The operators may couple the microprocessor to the propulsion system 49. The operators may couple the microprocessor to the buoyancy control. The operators may couple the microprocessor to the automated anchoring system 6. The operators may couple the microprocessor to the conveyor belt 8. The operators may couple the microprocessor to the agitator 108. The operators may couple the microprocessor to the vacuum source 66. The operators may couple the microprocessor to the air flow meters 23. In some embodiments, the floatable-material receiver is comprised of a floatable-material thruster 62 such as depicted in
In some embodiments, for instance when the floatable-material receiver is platform-based or receptacle-based as described above in reference to
In some embodiments, the transport hose and floatable-material thruster are comprised of a pressure sensor. Pressure sensors can alternatively be called pressure transducers, pressure transmitters, pressure senders, pressure indicators and piezometers, manometers, among other names. Pressure may be measured by piezoresistive strain gauge, capacitive, electromagnetic, piezoelectric, optical, potentiometric, resonant, thermal, and ionization. In another embodiment, a pressure sensor is connected to the high pressure hose and the high pressure tank. The pressure sensor may transmit pressure information to the microprocessor 11. The microprocessor 11 may use such pressure information to control the speed and generated thrust of the high pressure pump, the water pump connected to the transport hose, and the flow valves 69 or 3. In some embodiments, the microprocessor may be replaced or supplemented by an analog circuit, configured to control said valves and said pumps.
A method is disclosed of an additional benefit to the floatable-material harvester, where the floatable-material harvester is used to remove other types of floatable substrate from the body of water that the floatable-material receiver floats on. This substrate can, for example, be material used to absorb chemical spills, such as in a spill of petroleum. These substrates have an affinity for absorbing petroleum over water, such as but not limited to wood chips, peat moss, or sphagnum moss. The substrate may be comprised of nanofibres, to absorb nuclear waste. Nanofibres neutralize radiation and permanently absorb some heavy metals. Large amounts of the substrate are placed into the body of water or on the beach and are allowed enough time for the chemical to absorb into the substrate, which for the purpose of this document are referred to as sorbent or absorbent material. The spilled chemical and/or radioactive material may be referred to as pollutants. A similar apparatus may be used to deploy the sorbent material to the beach and shore. In some embodiments, the sorbent material deploying apparatus is comprised of a storage area containing absorbent material, which is metered by a conveyor into a floatable-material receiver which, is fluidly connected to a transport hose, the transport hose having at least one floatable-material thruster along its length. The floatable-material thruster is fluidly connected to at least one pump. The apparatus may have a small vessel which directs the output end of the transport hose to deploy absorbent material to the beach and shore.
The floatable-material receiver depicted in
Essentially, the same features that facilitate the collection of seaweed are generally able to be employed for collection of chemical/radioactive-spill absorption substrate, whether the absorption substrate is organic or inorganic in nature. That is, while many of the elements are described in relation to “floating-organics” harvesting, those same elements could, within the scope of the present device, also be used to collect floating sorbents (both organic and inorganic varieties). That said, certain features may not necessarily be employed with the clean up of the absorption substrate, such as the cleaning/oxygenating/refrigeration system and/or the vegetation shredder. Also, the water displacement apparatus and the trommel washer may be excluded from the apparatus. In the method of harvesting material used to absorb a chemical/radioactive spill, a floatable-material thruster may be referred to as a material thruster or vise-versa, and an organics receiver may be referred to as a floatable-material receiver or vise-versa, since the material used to absorb the chemical spill may be inorganic or synthetic in composition.
It will be understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Date | Country | Kind |
---|---|---|---|
2805925 | Feb 2013 | CA | national |
This application claims the benefit of Canadian Patent Application No. CA 2805925, filed on Feb. 6, 2013. This application also claims the benefit of U.S. Provisional Application No. 61/786,452, filed Mar. 15, 2013. This application also claims the benefit of U.S. Provisional Application No. 61/817,267, filed Apr. 29, 2013 This application also claims the benefit of U.S. Provisional Application No. 61/838,336, filed Jun. 23, 2013. This application also claims the benefit of U.S. provisional application No. 61/845,349, filed 11 Jul. 2013. This application also claims the benefit of U.S. provisional application No. 61/878,028, filed 15 Sep. 2013. This application also claims the benefit of U.S. Provisional application No. 61/879,646, filed 18 Sep. 2013. This application also claims the benefit of U.S. Provisional application No. 61/887,421, filed Oct. 6, 2013. This application also claims the benefit of U.S. Provisional application No. 61/914,353, filed Dec. 10, 2013 This application also claims the benefit of U.S. Provisional application No. 61/923,729, filed Jan. 5, 2014
Number | Date | Country | |
---|---|---|---|
61786452 | Mar 2013 | US | |
61817267 | Apr 2013 | US | |
61838336 | Jun 2013 | US | |
61845349 | Jul 2013 | US | |
61878028 | Sep 2013 | US | |
61879646 | Sep 2013 | US | |
61887421 | Oct 2013 | US | |
61914353 | Dec 2013 | US | |
61923729 | Jan 2014 | US |