The present invention provides an apparatus for improving the dynamic response or feel of a golf club as it strikes a golf ball during play by selectively adding weight to the upper end of the shaft. Although there are many products and prior patents relating to adjusting the swing weight, feel, or balance of a golf club, few if any of these devices are directed towards improving the dynamic response, or feedback, of the club to the golfer at ball impact. Most prior art devices are aimed more specifically at the static or quasi-static feel of the club in the golfer's hand at the initial alignment, or during the back and forward swings. Such devices usually focus on the feel of the club itself, not the feel of the shot through the club. The importance of impact and dynamic response to the golfer's game are often overlooked.
Impact is momentary, but it is at and immediately following this critical moment that the golfer feels his shot through the dynamic response of the club. As many golfers will confess, after impact one often knows where the ball is heading without having to actually see its trajectory. The golfer has only one tactile interface to the club, and that is through his hands which grasp the club's shaft on the grip. It is thus through the golfer's hands gripping the shaft that the dynamic response of the club to the golfer's stroke is communicated. This dynamic response is a result of the vibration characteristics of the club, and the golfer often perceives it simply as feel. Thus it follows that if the club's dynamic response can be increased in this specific gripping area, the golfer will have a better feel for his shot.
The present invention provides an apparatus for improving the dynamic response of the golf club by allowing a golfer to selectively adjust the weight of the club at its grip end. This action in turn enhances the feel of the club to the golfer.
One embodiment of the present invention comprises a deformable cylinder sized to fit within a hollow shaft, such as that of a golf club. This cylinder includes an upper void or chamber, into which an oversized removable insert is inserted. This causes the deformable cylinder to expand against the inside of the shaft, creating a secure friction fit. This embodiment also includes a lower rigid cylinder with at least one circumferential groove on its outer wall and at least one annular deformable member, such as an o-ring or sleeve, fitted around the rigid cylinder and seated in the groove(s). The rigid cylinder, as fitted with the annular member(s), is sized to fit snugly within the shaft. The deformable cylinder is coupled to the lower rigid cylinder by a rod. These components may be constructed of different lengths or materials in order to selectively vary the amount and location of weight added to the golf club.
These and other features, aspects, structures, advantages, and functions are shown or inherent in, and will become better understood with regard to, the following description and accompanied drawings where:
The present invention relates to device for adding weight to the end of a hollow shaft for a hand-held implement such as a golf club. A golf club shaft will be referred to herein as the exemplary application for the device, but it should be understood there are many other applications for the device as well.
One embodiment of the present invention is illustrated in
In a preferred embodiment, the insert 30 may be threaded and include a slot or receptacle for receiving a tool. After the insert 30 is pushed into place, the threading allows easy removal of the insert from the upper cylinder 20, which allows the device 10 to be removed from the shaft 100. The upper cylinder 20 may include a flange 26 of a diameter approximating that of the outside of the shaft 100, so that flange 26 acts as a stop when the device 10 is inserted into the shaft 100.
The rod 40 may be either removably or permanently affixed to the upper and lower members. In a preferred embodiment, portions of the upper and lower ends of the rod are threaded. The deformable cylinder 20 includes may include a lower chamber into which a threaded nut 24 is affixed and which receives the upper threaded end of the rod 50. Similarly, the lower member 50 may include a threaded chamber or bore to receive the lower threaded end of the rod 40. In an alternative embodiment, the rod 40 is press fit into either or both of the upper and lower members and, optionally, secured with an adhesive. Optionally, a weighted collar 80 may be mounted upon the rod 40 and fixed in a desired location using the set screw 82, or other similar mechanism.
The lower member 50 is generally cylindrical, but may be tapered or otherwise oblong as desired. As used herein, the term cylindrical includes an object of such an oblong shape and does not require a uniform diameter or cross section throughout its length. The lower member 50 comprises a plurality of grooves 52. In this embodiment, the grooves are shaped and sized to receive o-rings 52 and allow the o-rings to seat in the grooves, with some portion of the o-ring protruding beyond the surface of lower member 50. The o-rings are made of a deformable material, such as a polymer. Thus, the o-rings compress as the device 10 is placed within the shaft 100 and provide a snug fit between the lower member 50 and the shaft 100.
In a preferred embodiment, an axial bore extends all the way through the lower member 50, and the upper and lower chambers of the deformable cylinder 20 are formed by an axial bore through the deformable cylinder, and the rod 40 is hollow. This allows a passage for air to escape as the assembly is inserted into a shaft 100. As noted above, after this assembly is placed into the shaft, the slightly oversized rigid insert 30 is pushed into the upper chamber (or upper portion of the bore) in the deformable cylinder 20, which causes the cylinder to expand against the inside of the shaft 100, securely holding the device 10 in place.
Devices 10 and 110 having a range of weights can easily be manufactured by making the lower cylindrical member, rod, and collar of varying lengths or of materials of varying densities (e.g., tungsten, brass, aluminum), or a combination of the two. In this way, a range of weights can be tested until a weight providing optimum feel for a given club is selected. The deformable cylinder 20 is typically made of a polymer, but other deformable materials capable of providing the desired friction fit could be used.
Another embodiment of the present invention is illustrated in
The lower member 230, the main body of which will generally be of a cylindrical shape sized to fit within the shaft 100, includes a first post 232 extending down from its lower surface. The first post 232 is concentric with (or coaxial with) the lower member 230. A second axial bore 236 extends through the main body of the lower member 30 and into the first post 232. The bore 236 is sized to receive the screw 240, with an enlarged portion near the upper terminus to receive the screw's cap 244 and the remainder sized to accommodate the screw's barrel 242.
The nut 270 is located below the lower member 230. The nut 270 can be of any shape that will fit within the shaft 100 and accommodate the expansion ring, but is preferably round and slightly smaller than the internal diameter of the shaft 100. The nut 270 includes a second post 272 extending from its upper surface. The second post 272 is concentric with (or coaxial with) the nut 270. A second axial bore 276 extends through the second post 272 and, typically, into the main body of the nut 270. The second axial bore 276 is threaded complementary to the threaded portion of the barrel 242 of screw 240.
The expander ring 250 fits between the lower member 230 and the nut 270. Specifically, the expander ring 250 is annular or hollow, with its inner void being referred to as a third axial bore 252. The third axial bore 252 is sized so that the expander ring 250 fits snugly onto the first post 232 and the second post 272. In a preferred embodiment, as shown in
The lower member 230, the nut 270, the hollow rod 40, and the collar 80 may be made from any suitably durable and rigid material, as described above. Similarly, the expansion ring 250 may be made from any deformable material with good durability, such as a polymer, including a polymer reinforced with a non-polymeric material, such as strands of nylon, to add strength and control the deformation characteristic.
In one embodiment, the inner diameter of the hollow rod 40 is smaller than the cap 244 of the screw 240. Thus, the screw 240 is seated into the enlarged portion of the second bore 236 before the hollow rod 40 is fixed between the upper and lower members. Thus, once the rod 40 is in place, the screw 240 cannot fall out. In practice, the upper and lower members may be removably or permanently affixed to the rod 40, as may be desired for a given application. The ring 250 is mounted on the first and second posts 232 and 272, as described above, and the nut 270 is partially threaded onto the screw 240. This assembly is inserted into a hollow shaft. Then, using an elongate tool extending through the deformable cylinder and the hollow rod, the screw is then tightened into the nut, causing the expansion ring 250 to expand radially and creating a friction fit between the device 200 and the shaft 100.
Although the present invention has been described and shown in considerable detail with reference to certain preferred embodiments thereof, other embodiments are possible. The foregoing description is therefore considered in all respects to be illustrative and not restrictive. Therefore, the present invention should be defined with reference to the claims and their equivalents, and the spirit and scope of the claims should not be limited to the description of the preferred embodiments contained herein.
This application is a continuation-in-part of and claims the benefit of U.S. patent application Ser. No. 11/726,281, filed Mar. 21, 2007, which in turn is a continuation in part and claims the benefit of U.S. patent application Ser. No. 10/752,126, filed Jan. 6, 2004, now U.S. Pat. No. 7,261,641.
Number | Name | Date | Kind |
---|---|---|---|
1658447 | Lantz | Feb 1928 | A |
1696462 | Victor | Dec 1928 | A |
1704544 | Novak | Mar 1929 | A |
2051083 | Hart | Aug 1936 | A |
3539185 | Andis | Nov 1970 | A |
4058312 | Stuff et al. | Nov 1977 | A |
4461479 | Mitchell | Jul 1984 | A |
4600195 | Hunter | Jul 1986 | A |
4674746 | Benoit | Jun 1987 | A |
4690407 | Reisner | Sep 1987 | A |
4869511 | Spoonster, Sr. | Sep 1989 | A |
4887815 | Hughes et al. | Dec 1989 | A |
4936586 | Van Raemdonck | Jun 1990 | A |
4988102 | Reisner | Jan 1991 | A |
5277059 | Chastonay | Jan 1994 | A |
5364102 | Appledorn | Nov 1994 | A |
5390921 | DeRuyter | Feb 1995 | A |
5465967 | Boeckenhaupt | Nov 1995 | A |
5716289 | Okoneski | Feb 1998 | A |
5722899 | Cheng | Mar 1998 | A |
5766088 | Severtsen | Jun 1998 | A |
5779085 | Havlinek et al. | Jul 1998 | A |
5871140 | McCrink | Feb 1999 | A |
6007431 | Bloom, Jr. | Dec 1999 | A |
6074119 | Schlanger | Jun 2000 | A |
6190267 | Marlowe et al. | Feb 2001 | B1 |
6364787 | Huiskamp | Apr 2002 | B1 |
6533301 | Catania | Mar 2003 | B1 |
6739813 | Gundy et al. | May 2004 | B1 |
7582023 | Hung | Sep 2009 | B2 |
20030027658 | Li et al. | Feb 2003 | A1 |
20090163286 | Hung | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
0530960 | Mar 1993 | EP |
0545606 | Jun 1993 | EP |
0377673 | May 1997 | EP |
1153632 | Nov 2001 | EP |
11118 | Jul 1901 | GB |
Number | Date | Country | |
---|---|---|---|
20080274823 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11726281 | Mar 2007 | US |
Child | 12176243 | US | |
Parent | 10752126 | Jan 2004 | US |
Child | 11726281 | US |