Information
-
Patent Grant
-
6371402
-
Patent Number
6,371,402
-
Date Filed
Wednesday, August 4, 199925 years ago
-
Date Issued
Tuesday, April 16, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 242 540
- 242 545
- 242 564
- 242 394
- 101 494
-
International Classifications
-
Abstract
An apparatus for winding or unwinding material webs onto or from a winding core (3) has a bearing device (5) and a drive device (9) for driving the winding core (3) that is rotatably mounted in the bearing device (5). The drive device (9) comprises a drive (10) and a torque-transmitting device (11) from the drive (10) to the winding core (3). In order to achieve the smallest possible winding-core diameter and, nonetheless, to achieve an adequate winding or unwinding speed, the torque-transmitting device (11) comprises a toothed-belt reduction gear mechanism (12).
Description
The invention relates to an apparatus for winding or unwinding material webs onto or from a winding core in accordance with the preamble to claim 1.
In printing works, it is known for products which occur in web form, such as paper webs, to be wound up on a winding core or unwound from a winding core.
The disadvantage with such known winding cores is the fact that they have a relatively large diameter in order to ensure the minimum winding or unwinding speed of the web-like product. A further disadvantage, caused by the large diameter, is the high weight and the high moment of inertia of the winding core.
The present invention is based on the object of providing an apparatus of the type cited at the beginning which makes it possible to achieve a higher winding speed with a smaller winding-core diameter.
According to the invention, the object is achieved by an apparatus having the features of claim 1.
The subclaims 2 to 11 relate to further, advantageous refinements of the invention.
The object of the invention is in particular achieved with an apparatus for winding or unwinding material webs onto or from a winding core, especially paper, textile, plastics or other material webs, comprising a bearing device for the winding core and a drive and a torque-transmitting device, coupled to the latter, for driving or braking the winding core rotatably mounted in the bearing device, the torque-transmitting device comprising a toothed-belt reduction gear mechanism operatively arranged between the drive and the winding core.
The toothed belt reduction gear mechanism has the advantage that it can be operated at a significantly higher speed than gear mechanisms known hitherto for driving winding cores, the toothed-belt reduction gear mechanism also being capable of transmitting a high torque to the winding core. As a result, the use of a winding core with a low diameter is possible, it being possible for this to be operated both at a high speed and also with a high torque. In particular when only a few webs are resting on the winding core, there is the requirement for the winding core to be operated at a high speed in order to achieve the necessary web speed. The winding operation is preferably operated in such a way that a constant force on the web is produced. It follows from this that, with increasing diameter of the coil, a higher torque is necessary in order to produce the required, in particular constant, web tension.
The fact that the torque-transmitting device comprises a toothed-belt reduction gear mechanism means that the drive can be carried out at significantly higher speeds than in the gear mechanisms, common hitherto, which permit a maximum input drive speed to the gear mechanism of only about 6000 rev/min. The reduction has the effect of a higher torque available at the winding core. In addition, toothed-belt gear mechanisms are cheaper to produce than cog gear mechanisms and are less problematic to maintain, since the lubricating and cooling problems which result in the case of cog gear mechanisms which produce heat are dispensed with. Toothed-belt gear mechanisms are also lighter than cog gear mechanisms, as a result of which lighter device designs are possible.
An additional advantage of the winding cores of low diameter is the fact that they have a low weight and a low moment of inertia. In addition, the winding core has a greater holding capacity but, given a predefined maximum external diameter of the roll, a longer paper web can be wound up. This is advantageous in particular in the case of small wound rolls, for example in the case of paper rolls.
In a particularly preferred embodiment of the apparatus of the invention, this has a bearing device for the winding core which is configured as a bearing fork and is mounted such that it can pivot about an axis of rotation between at least two positions, one of the positions corresponding to the working position, in which the winding or unwinding operation takes place, and the other, in particular horizontal, position being provided for the insertion or removal of the winding core or a wound roll formed on the winding core. In the horizontal position of the bearing fork, the winding core provided with a gearwheel can be moved without problems into engagement with a drive gearwheel on the torque-transmitting device, since in this position, during the insertion or removal of the wound roll, there are no, or only a small, wound-roll weight component which could cause tooth-on-tooth impact. In an advantageous embodiment, the toothed-belt reduction gear mechanism is connected to the bearing fork and can be pivoted easily and without problems together with the bearing fork.
The invention will be explained in more detail below using the drawing, in which:
FIG. 1
shows an exemplary embodiment of a winding or unwinding apparatus in purely schematic form;
FIG. 2
shows a further exemplary embodiment in a side view; and
FIG. 3
shows, on a reduced scale, part of the apparatus according to
FIG. 2
in plan view and partially in section.
The apparatus
1
illustrated schematically in
FIG. 1
is used for winding or unwinding flexible material webs, such as paper, textile, plastics or other material webs, on a winding core
3
. The winding core
3
itself in
FIG. 1
is rotationally fixedly connected to the gearwheel
4
, illustrated dashed. The winding core is indicated in FIG.
2
and designated there by
3
. The winding core
3
is preferably configured as a mandrel.
The winding core
3
with the gearwheel
4
is rotatably mounted in a bearing device
5
, which is illustrated in more detail in
FIGS. 2 and 3
.
FIG. 1
shows, in schematic form, a bearing fork
6
which belongs to the bearing device
5
and can be pivoted between two positions
13
a,
13
b
about an axis of rotation
7
. The horizontal position
13
b
of the bearing fork
6
, illustrated with solid lines, is provided for the insertion or the removal of the winding core or a wound roll formed on the winding core
3
, and is also referred to as the insertion or removal position
13
b.
The other position
13
a,
illustrated dashed, corresponds to the working position, in which the winding or unwinding operation takes place.
In order to drive the winding core
3
rotatably mounted in the bearing device
5
, there is a drive device
9
which comprises a motor
10
. The drive
10
is preferably configured as an electric motor, it being possible for this to be operated both in a driving and in a braking mode of operation. The drive
10
is coupled, via a toothed-belt pulley Z
1
to a torque-transmitting device
11
. The torque-transmitting device
11
in the exemplary embodiment illustrated has a three-stage toothed-belt reduction gear mechanism
12
. According to
FIGS. 1 and 2
, the first stage S
1
is formed by a toothed-belt pulley Z
1
which is rotationally fixedly connected to a drive shaft
14
and is operatively connected, via a toothed belt R
1
, to a toothed-belt pulley Z
2
of larger diameter. The toothed-belt pulley Z
2
is rotationally fixedly connected to a shaft
15
(FIG.
2
), which is arranged coaxially with the axis of rotation
7
and is rotatably mounted in a fork wall
16
of the bearing fork
6
. The shaft
15
is rotationally fixedly assigned a further toothed-belt pulley Z
3
, which forms part of the second stage S
2
of the toothed-belt reduction gear mechanism
12
and, via a toothed belt R
2
, is operatively connected to a toothed-belt pulley Z
4
of greater diameter, which is rotationally fixedly connected to a shaft
17
, which is likewise rotatably mounted in the bearing fork
6
. The third stage S
3
of the toothed-belt reduction gear mechanism
12
is formed by a further toothed-belt pulley Z
5
that is rotationally fixedly arranged on the shaft
17
, a toothed belt R
3
and a toothed-belt pulley Z
6
which is rotationally fixedly fitted to a further shaft
18
and in turn has a greater diameter than the toothed-belt pulley Z
5
. Rotationally fixedly arranged on the shaft
18
is a drive gearwheel
20
which, when the winding core
3
is located in the bearing device
5
, is engaged with its gearwheel
4
and forms the last part of the torque-transmitting device
11
.
As can be seen from
FIG. 3
, the toothed-belt pulleys associated with the respective shaft, for example the toothed-belt pulleys Z
4
, Z
5
arranged on the shaft
17
, are advantageously placed on either side of the fork wall
16
. The drive gearwheel
20
is also located on the inside of the fork wall
16
, while the toothed-belt pulley Z
6
is fitted to the outside.
The action of pivoting the bearing fork
6
is carried out by means of an additional drive, not specifically illustrated in the drawing, which is operatively connected to a lifting part designated by
25
in
FIGS. 2 and 3
. The lifting part
25
is located at a distance from the axis of rotation
7
, specifically on the other side from two bearing parts
26
,
26
′ (FIGS.
2
and
3
), which are assigned to the two fork walls
16
,
16
′ (FIG.
3
), for the winding core
3
. According to
FIG. 2
, each bearing part
26
,
26
′ has a recess
27
which is designed such that the winding core
3
can be inserted from above in the horizontal position of the bearing fork
6
and, in the recesses
27
, is brought in the horizontal direction into engagement with the drive gearwheel
20
. As a result, when the wound roll is being inserted or removed, it is advantageously the case that there is no wound-roll weight component present, which could cause tooth-on-tooth impact of the two gearwheels
4
,
20
. The two gearwheels
20
,
4
transmitting the force—both carried along by the bearing fork
6
—then remain constantly engaged. After the winding core
3
has been inserted, a stop part
28
is moved into the position shown, in order that the winding core
3
is securely held in the recess
27
. During the removal of the wound roll, which is not illustrated but is located on the winding core
3
, the arm
6
is moved from the position
13
a
into the position
13
b,
and the stop part
28
is removed from the position illustrated, so that the winding core
3
can be removed from the recess
27
.
As can be seen from
FIG. 3
, the bearing fork
6
is of U-shaped configuration with two limbs
6
a,
6
b
which extend in parallel and which, in their end section, each have a bearing part
26
,
26
′ to accommodate the winding core
3
. In addition, the limbs
6
a,
6
b
each have a bearing point
8
a,
8
b
to accommodate the axis of rotation
7
, so that the bearing device
5
, as illustrated in
FIG. 1
, is mounted such that it can pivot in relation to the axis of rotation
7
. The bearing parts
26
,
26
′ and the bearing points
8
a,
8
b
are arranged in the bearing fork
6
in such a way that the axis of rotation
7
and a mounted winding core
3
extend parallel to each other.
In an advantageous embodiment, the toothed-belt reduction gear mechanism
12
could also be of single-stage design, or have two or even more stages S
1
, S
2
, S
3
. The apparatus
1
according to the invention is suitable for winding material webs such as paper webs, the electric motor
10
acting as a drive during the winding operation. The apparatus
1
according to the invention is also suitable for unwinding material webs stored on the winding core
3
, the electric motor acting as a drive and/or as a brake during the unwinding operation, as required, in order to produce the tension usually required in the material web.
Claims
- 1. An apparatus for winding or unwinding material webs onto or from a winding core, comprising:a bearing device for the winding core; a drive; and a torque-transmitting device, coupled to the drive, for driving or braking the winding core rotatably mounted in the bearing device, the torque-transmitting device including a toothed-belt reduction gear mechanism operatively arranged between the drive and the winding core; wherein the torque-transmitting device ends with a drive gearwheel which is arranged on the bearing device in such a way that a winding core having a gearwheel engages with the drive gearwheel when said core is mounted thereon; and wherein the bearing device is mounted such that it can pivot about an axis of rotation, the bearing device being capable of assuming at least an insertion or removal position and a working position, wherein in the insertion or removal position the winding core can be fitted to or removed from the bearing device by moving the winding core in the horizontal direction into engagement with the drive gearwheel, and in the working position the winding or unwinding operation takes place.
- 2. The apparatus as claimed in claim 1, wherein the toothed-belt reduction gear mechanism is of multi-state design.
- 3. The apparatus as claimed in claim 1, wherein the winding core is arranged to be higher in the working position than in the insertion or removal position.
- 4. The apparatus as claimed in claim 1, wherein the bearing device is configured as a U-shaped bearing fork with two limbs, which in particular extend in parallel, and wherein a bearing part to accommodate the winding core is arranged on each limb.
- 5. The apparatus as claimed in claim 4, wherein the toothed-belt reduction gear mechanism is connected to one of the limbs.
- 6. The apparatus as claimed in claim 4, wherein each limb of the bearing fork has a bearing point to accommodate an axis of rotation of the bearing device and wherein the bearing points are arranged in such a way that the axis of rotation and a mounted winding core extend in parallel.
- 7. The apparatus as claimed in claim 4, wherein a shaft which is rotatably mounted in the bearing fork, coaxial with the axis of rotation, is rotationally fixedly connected to a toothed-belt pulley of the tooth-belt reduction gear mechanism, said pulley being operatively connected, via a first toothed belt to a first toothed pulley that is rotationally fixedly arranged on a drive shaft.
- 8. The apparatus as claimed in claim 7, wherein the toothed-belt reduction gear mechanism has at least one further shaft, which is rotatably mounted in the bearing fork and is equipped with a rotationally fixedly arranged toothed pulley, said shaft being operatively connected, via at least one toothed belt, to a further toothed-belt pulley arranged on a shaft that is coaxial with the axis of rotation, and being rotationally fixedly connected to a drive gearwheel that engages with the winding-core gearwheel.
- 9. The apparatus as claimed in claim 8, wherein the toothed-belt pulley that is arranged on the shaft provided with the drive gearwheel is operatively connected in two stages, via two toothed belts, to the toothed-belt pulley which is arranged on the shaft that is coaxial with the axis of rotation, said toothed belts each being deflected around a toothed-belt pulley arranged on a further shaft rotatably mounted in the bearing fork.
- 10. A printing apparatus comprising an apparatus as claimed in claim 1.
Priority Claims (1)
Number |
Date |
Country |
Kind |
198 40 816 |
Sep 1998 |
DE |
|
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
1967202 |
Dalton |
Jul 1934 |
A |
3182924 |
Jones et al. |
May 1965 |
A |
3519215 |
Tyler et al. |
Jul 1970 |
A |