The invention relates to an apparatus for winding up a metal strip into a coil.
Such an apparatus is essentially known from prior art, for example the one shown in
From European Patent Publication EP 2 038 076 B1 is known an apparatus for winding up a metallic strip, wherein the apparatus is provided with a coil mandrel for winding up the strip and with a strip transport device having the form of a pair of a drive rollers arranged upstream of the strip for conveying the strip into the coil device. Between the driver device and the coil device is arranged a bending device consisting of a first and of a second counter-bending roller for supporting the strip on its path to the coiling device on the upper side, and further including also a bending roller that engages on the lower side of the trip. Both counter-bending rollers as well as the actual bending roller are respectively adjustable to the strip before it enters into the coiling device. The counter-bending rollers as well as the actual bending roller are used to apply a bending moment to the strip as soon as a certain residual length of the strip is reached. Due to the plastic deformation of the band achieved in this manner, an improved system is obtained with respect to the end of the strip in the wound coil.
When the bending device is installed with both counter-bending rollers and with the actual bending roller as separate structural units between the driver device and coiling device, a large amount of space is required, which is often not available in a structurally narrow zone of the coiling shaft. Moreover, the integration of the additional components required for the bending device often results in an increase of the distance between the driver device and the coiling device. Such an increase of the distance is undesirable because the unguided strip position can result in an undesirable “upheaval” during the threading.
The object of the invention is to further develop a known apparatus for winding up a metal strip into a coil in such a way that the integration of the bending device between the driver device and the coiling device is carried out in a manner that is space-saving and cost-saving as much as possible.
This object is achieved with the subject matter of claim 1, which is characterized in that the first counter-bending roller is mounted in a rotatable but fixed manner as a roller bed roller of a roller bed running above the coiling device; wherein the second counter-bending device is rotatably mounted; a swivel joint is provided for coupling the second adjusting device to the frame; and the control device is further designed for pivoting the frame with the second counter-bending roller between a coiling shaft position and a roller bed position, in which the second counter-bending roller is arranged next to the first counter-bending roller as a roller bed roller of the roller bed of the device.
Both the coiling shaft position and the roller bed position and all other adjustment positions of the frame in between are bending positions in the sense that in all of these positions—with a corresponding adjustment of the bending roll from below—a strip that is guided between both counter-bending rollers and the binding roller can be bent.
With the double function of the second counter-bending roller according to the invention, wherein it serves once as a counter-bending roller for bending the metal strip, and the second time as a driver roller in an already available roller bed which is arranged above the coiling device, the additional costs, such as providing a complete and separate bending device, can be avoided. In addition, this concept is at the same time a save-saving concept because as an alternative to the requirements for the second counter-bending roller, which is formed so that it is connected with the first counter-bending roller of the complete upper part of the bending device, a complete bending device would have to be provided with two separate upper counter-bending rollers below the roller bed, which would necessarily lead to a significant extension of the coiling shaft and thus to an undesirable increase of the coiling shaft and therefore also to an undesirable increase of the distance between the driver device and of the coiling device. With the claimed use of the roller bed rollers as the first and second counter-bending rollers, the additional/separate bending device is avoided, so that the costs can be lowered with a space-saving design.
According to a first embodiment, both the bending roller and the second counter-bending roller, and optionally also the first counter-bending roller, are rotationally driven by means of the drive device in order to convey the strip in the direction of the coiling device during the bending process.
The control device is designed to control the second driving device in such a way that the second counter-bending roller is driven to convey the strip in the coiling position, and to convey it in the position of the roller bed in the opposite rotational direction. The driving in the different rotational direction is required for the second counter-bending roller because the metallic strip—when the counter-bending roller function in its retracted position as a roller bed roller—runs on the upper side of the roller bed and, in contrast to that, when the second counter-bending roller is in its bending position, the metal strip runs along the underside of the opposite bending roller. Using the drive in the opposite rotational direction thus ensures that the strip is constantly conveyed away from the driver device, regardless of whether the counter-bending roller is located in the position of the roller bed, or in the bending position.
According to another embodiment, the apparatus is characterized by a switch determining the direction for the pair of river rollers that is pivotally mounted in the direction of the axis of rotation of the switch. The axis of rotation of the switch preferably coincides with the axis of rotation of the first counter-bending roller, which is to say along with the axis of rotations of the first roller bed roller. A third adjusting device is used for the adjustment of the switch. The control device is further configured in such a way that the switch is placed by means of the third adjusting device either into a coiling inlet position, in which the strip enters into the coiling device, or into a transfer position, in which the strip is positioned above the roller bed and thus guided away above the coiling device.
In a first operating state, also referred to as strip threading, the switch is positioned by means of the control device into the coil inlet position. The control device is in this case designed to pivot the frame by means of the second adjusting device in its coiling shaft position, and to pivot the bending roller by means of the first adjusting device to its retracted position for forming and releasing a coiling shaft when the beginning of the strip is wound up onto the coiling device.
During the threading of the beginning of the strip:
The frame then forms, together with the switch, the upper part of the coiling shaft. The roller bed is in this operating state interrupted because the second counter-bending roller is pivoted away.
During the threading of the strip, the advancement of the beginning of the strip into the coiling shaft takes place by means of the driver device. The bending roller as well as the first and the second counter-bending roller are preferably all driven. The beginning of the strip is guided by means of the upper and lower baffle plate, and supported by the counter-bending rollers and the actual bending roller, to the coiling mandrel, where it is coiled, with the support of the coiling shaft roller and of the pressure roller of the coiling device, around the rotating coiling mandrel.
In a second operating state of the device, also referred to as unthreading of the strip, the switch is also positioned in the coiling shaft by means of the control devices.
The control device is then further configured for pivoting the frame by means of the second adjusting device into a bending position depending on the actual diameter of the strip, as well as to pivot the bending roller by means of the first adjusting device in its bending position. However, the second operating state, in which the strip is bent, does not take place until a predetermined residual length of, for example, 20 m of the strip has been created for winding it up onto the coiling device.
In this operating state, the relevant structural modules are adjusted according to the ready-for-winding strip diameter in order to ensure that the bending of the end of the strip will take place approximately tangentially to the surface of the strip. This means that the respective bending positions of the bending roller and of both counter-bending rollers can vary depending on the actual diameter of the strip.
During the unthreading of the end of the strip:
During the bending of the end of the strip, the bending rollers and both counter-bending rollers are also guided synchronously and thus create the desired bending, which is to say the desired plastic deformation of the end of the strip. The end of the strip is at the same time guided to the coil surface.
In a third operating state of the device, the switch is positioned for the transfer position by means of the control device. The control device is then further also configured to pivot the frame by means of the second adjusting device in its roller bed position, in which the second counter-bending roller is arranged next to the first counter-bending roller as a roller bed roller of the roller bed of the device.
The first adjusting device is preferably connected to the bending roller via a multi-articulated coupling gear. The advantage of the fact that a multi-articulated coupling gear is that the bending roller can be moved on a specified travel path between its bending position and its retracted position. This travel path is defined and limited by numerous structural elements, which are arranged in this region. The multi-articulated coupling gear is configured in such a way that the bending roller does not collide during the process between the bending position and the retracted position with other components or interfering edges.
Since a first baffle plate is provided between the second and the first counter-bending roller in the frame as an upper cover of the coiling shaft between convexly curved second first baffle plate and second baffle, which is placed in the transport direction between the counter-bending roller and the coiling shaft roller in the frame as another upper cover of the coiling shaft, this provides the advantage that the metal strip is thus guided into the coiling device in an optimal manner, in particular when it enters at its beginning the coiling shaft when it is not yet gripped by the coiling device.
The control device is configured in such a way that the first and the second adjusting device—wherein with the latter, the frame is provided with the second counter-bending roller—can control the position and/or also control the force. The position control is required to position the bending direction, in particular the bending roller and the second counter-bending roller, in such a way that the metal strip leaves these two rollers positioned approximately tangentially based on the individual diameter of the strip. The required bending force and the respective position of the rollers are determined by the thickness of the strip, the temperature and the deformation resistance and thus also by the predetermined bending radius, with which the end of the strip will be impacted by means of the bending device.
These and other advantageous embodiments of the invention are the subject matter of the dependent claims.
The description is accompanied by 4 figures, which show the following
The invention will next be described in detail in the form of embodiments with reference to
The apparatus 100 is further provided with a driver device 120 mounted upstream of the coiling device 110 seen in the transport direction of the strip 210 (the direction of the arrow in
The frame 160 is provided with a coiling shaft 162 on its end that is assigned to the coiling device 110 and it is rotatably mounted on its end opposite the coiling shaft roller, preferably on the rotational axis of the first counter-coiling roller 132.
The second counter-bending roller 134 is rotatably mounted between the coiling shaft roller 162 and the first counter-bending roller 132 parallel to both above-named rollers on the frame 160. A first baffle plate 161 is provided between the first counter-bending roller 132 and the second counter-bending roller 134 on the frame 160, and a second baffle plate is provided on the frame 163 in the region between the second counter-bending roller 134 and the coiling shaft roller 162.
It is preferred when a switch 180 is also rotatably mounted on the axis of rotations X of the first counter-bending roller 132, which is tapered off or tapers off in the direction of the driver device 120. The switch can be moved by means of the control device and of a third adjustment device 181 into a transfer position, in which the metal strip 210 is guided as it exits from the driver device 120 to a roller 150 arranged above the coiling device 110. Alternatively, the switch can be pivoted by means of the control device and of the third adjusting device 181 into the coiling inlet position shown
The configuration of the device 100 is shown in
The control required for the first, second and third adjusting device 133, 135 and 181 for the positioning of the switching 180, of the frame 160 and of the bending roller 136 is in said positions carried out with a drive device 140, which controls in a suitable manner also the drive devices 172, 174, and 176.
In a second operating state of the device 100, the switch remains in its coiling inlet position as before, but the frame 160 as well as the bending rollers 136 are positioned in their respective bending positions. In this second operating state, the bending state is influenced by the cooperation with the bending roller 136 exerting a bending moment on the strip 210 to be wound up, but only after a predetermined residual length of for example 20 m has been created for winding up the strip on the coiling device 110.
The multi-articulated coupling gear is provided with a stationary main axis of rotation D1, which extends parallel to the first and to the second counter-bending roller 132, 134 in the direction of the width of the strip 210. An angle lever 192 is rotatably mounted about the stationary main axis of rotation D1. The angle lever 192 is provided with at least one force arm 193, which is preferably centrally arranged and on whose end is engaged the first adjusting device 135 on the opposite end, as well as with two load arms 194, wherein each load arm forms angle α with the force arm. Furthermore, two extended levers 195 that are arranged in the mirror-image form are provided, which are rotatably articulated at the opposite ends of the load arms 194 of the angle lever 192, which carry and rotatably support with their other end the binding roller 136, and which are respectively equipped with a pivot point D2 that is located between the bending roller 136 and the articulation on the load arm 194 of the angle lever 192. Finally, two mirror-image shaped tabs 195 are rotatably mounted with their other end at a stationary axis of rotation D3, wherein the stationary axis of rotation D3 of the tabs is arranged above the stationary main axis of rotation of the angle lever 192.
In addition to the two operating states shown in
In all three operating states, the strip 210 is moved out of the driver device 120 and it is either wound up on the coiling device 110, or guided via the roller bed 150. It is important that the second counter-bending roller 134, when it functions as a roller bed roller, be driven by its associated second driver device 174 in the opposite direction of rotation, as opposed to the situation when it functions as a counter-bending roller. The opposite direction of rotation is required because the second counter-bending roller 134 comes in its position when it functions as a roller bed roller in contact with the lower side of the strip 210, while when it functions as a second counter-bending roller, it will come into contact with the upper side of the strip 210.
100 device
110 coiling device
112 coiling mandrel
114 pressure roller
115 coiling shaft
117 another baffle plate
118 another baffle plate
120 driver device
130 bending device
132 first counter-bending roller
133 second adjusting device
134 second counter-bending roller
135 first adjusting device
136 bending roller
140 control device
150 roller bed
160 frame
161 first baffle plate
162 coiling shaft roller
163 second baffle plate
167 lever arm
168 pivot
172 first drive device
174 second drive device
176 third drive device
180 switch
181 third adjusting device
190 multi-articulated coupling gear
192 angle lever
193 force arm
195 extended lever
196 tabs
200 strip
210 strip
X axis of rotation
D1 the first stationary main axis of rotations
D2 pivot point
D3 the second stationary axis of rotations
L residual length
α angle
Number | Date | Country | Kind |
---|---|---|---|
10 2014 225 414.0 | Dec 2014 | DE | national |
10 2015 209 462.6 | May 2015 | DE | national |
PCT/EP2015/075873 | Nov 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/078928 | 12/8/2015 | WO | 00 |