Aspects of the present disclosure relates to liquid and gas systems and methods that generate ultra-fine bubbles and mix them into a highly concentrated aqueous solution.
Bubbles contained in a liquid are visible to the eyes when the bubble sizes are range from 6 to 29 microns. We can see bubbles in carbonated drinks or those coming from the air diffuser in a water tank. Bubbles with the size of a few millimeters in diameter show visible surfacing action in a liquid, and the presence of fine bubbles of dozens of microns in diameter can be confirmed with white turbidity in a liquid, because these bubbles are scattering substances. Bubbles in diameter smaller than the wavelength of light are called ultra-fine bubbles, and they are too small to see. Ultra-fine bubbles have several unique properties including long lifetime in liquid owing to their negatively charged surface, and high gas solubility into the liquid owing to their high internal pressure. These special features of ultra-fine bubbles have attracted attention from many industries such as food, cosmetics, chemical, medical, semi-conductor, soil and water remediation, aquaculture and agriculture.
A mixing apparatus for generating and mixing gas bubbles, including for example, ultra-fine bubbles, into an aqueous solution includes a structure defining an interior fluid-flow chamber that extends along a longitudinal axis between an input port at a liquid input end and an output port at a liquid output end. The structure is characterized by a gas injection portion located upstream from the liquid output end and a mixing vane portion extending in the downstream direction from the gas injection portion. The gas injection portion defines a gas injection lumen and a first region of the interior fluid-flow chamber, while the mixing vane portion defines a second region of the interior fluid-flow chamber. The first region of the interior fluid-flow chamber includes a plurality of side fluid-path lumens that extend in the downstream direction alongside a first part of the gas injection lumen. This first part of the gas injection lumen, together with the side fluid-path lumens, merges with a downstream fluid-path lumen of the first region. The various lumens are arranged such that the first part of the gas injection lumen is closer to the longitudinal axis than any of the plurality of side fluid-path lumens.
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details.
Disclosed herein are different versions or embodiments of ultra-fine bubble generating liquid/gas mixing apparatuses. In one version, referred to as a “multi-component” mixing apparatus,” components of the apparatus are separately manufactured and coupled together with attaching hardware to form a complete apparatus. This version may also include some internal, removable components such as an O-ring gasket and gas inlet structure, e.g., diffuser. The multi-component version of the mixing apparatus allows for subsequent disassembly of the apparatus without destroying or damaging the structural integrity of the components. In another version, referred to as a “unitary, single-piece mixing apparatus,” the apparatus is a single unitary structure, where “single unitary” means that the mixing apparatus does not have any separate components parts that require assembly, and that the mixing apparatus cannot be taken apart or disassembled without damaging or destroying either of the structural integrity or functional integrity of the mixing apparatus. In other words, the mixing apparatus is a single piece structure with no separately attached external or internal components.
Multi-Component Mixing Apparatus
With reference to
Moving from left to right in
The gas input region 120 of the gas injection component 104 includes an inlet portion 112 having an opening 110 that is configured to be coupled with a tubular elbow fitting 106. The tubular elbow fitting 106 defines a gas injection port 108 through which gas is injected into a gas injection lumen within the gas injection component 104. The gas input region 120 also defines multiple fluid-path lumens 212a, 212b that form a first region of the interior fluid-flow chamber of the mixing apparatus 100. As shown in
Continuing in the downstream direction, the mixing vane component 102 includes: a) an upstream end 144 where the mixing vane component couples with the gas injection component 104, b) a helical region 146, and c) the liquid output end 138 through which liquid/gas mixture exist the mixing apparatus 100. The helical region 146 defines multiple fluid-path lumens, each lumen twisting around the longitudinal axis 142 to form a helical fluid-path lumen that guides fluid in the downstream direction toward the liquid output end 138 of the mixing apparatus 100. The helical fluid-path lumens form a second region of the interior fluid-flow chamber of the mixing apparatus 100. The helical fluid-path lumens of the second region of the fluid-flow chamber are equal in number with the C-shaped fluid path lumens of the first region of the fluid-flow chamber. For example, the mixing apparatus 100 of
In one configuration, each of the mixing vane component 102 and a gas injection component 104 may be separately manufactured as a single-piece, unitary component using 3D printing. In another configuration, each of the mixing vane component 102 and the gas injection component 104 may be separately manufactured using injection molding techniques. For example, separate molds may be used to form different portions of the mixing vane component 102 and the gas injection component 104 relative to the longitudinal axis 142 of the apparatus. In one implementation, each molded portion may be one half of the mixing vane component 102 and one half of the gas injection component 104 along the longitudinal axis 942.
Once the mixing vane component 102 and a gas injection component 104 are manufactured, they are assembled with a gas inlet structure 114 and an O-ring 116 and secured together using various fastening components, e.g., nuts, bolts, washers, and a silicon sealant. The gas inlet structure 114 (also referred to herein as a muffler or a diffuser) provides a gas injection interface between gas received through the inlet portion 112 of the gas injection component 104 and the interior fluid-flow chamber of the mixing apparatus 100. The O-ring 116 fits within an annular groove 122 (visible in
After manufacture or manufacture and assembly, the mixing apparatus 100 may be encased in a sleeve. This may be accomplished by placing the mixing apparatus 100 in a heat-shrink tube; and then heating the tube to shrink into contact with the outer surface of the apparatus to thereby provide an impenetrable sleeve over the entire apparatus.
With reference to
The base 222 of the conical structure 202 transitions to the hollow cylindrical structure 204. The interior of the hollow cylindrical structure 204 defines a first portion 206 of the gas injection lumen that extends along the length of the cylinder. Extending from the outer surface of the hollow cylindrical structure 204 are two wing structures 208a, 208b positioned on opposite sides of the cylinder. The wing structures 208a, 208b extend to and merge with an interior surface 210 (visible in
The space between the outer surfaces of the conical structure 202 and the hollow cylindrical structure 204 and the interior surface 210 of the outer wall 224 of the gas injection component 104 define the first region of the interior fluid-flow chamber. With reference to
With reference to
A second section 604 of the first region of the interior fluid-flow chamber extends between point “b” and point “c” as shown in
With reference to
In one configuration, the gas inlet structure 114 comprises a threaded base that screws into the first portion 206 of the gas injection lumen and a cap structure (also referred to as a muffler or a diffuser) that couples with the threaded base. The hollow interior 214 of the gas inlet structure 114 defines a second portion of the gas injection lumen. The cap structure includes a cylindrical sidewall and an end cap, each having a porous structure that permits injected gas to pass through. Alternatively, the gas inlet structure 114 may be configured as a simple Pitot type tube with holes passing through its sidewall and end cap. Configured as such the porous cap or Pitot tube allows for the injection of gas in multiple directions relative to the longitudinal axis 142 of the mixing apparatus 100. For example, with reference to
In another configuration, where the mixing apparatus 100 is manufactured as a single unitary structure, a separate gas inlet structure 114 is not present. Instead, the gas inlet structure 114 is formed as part of the downstream region of the hollow cylindrical structure 204. For example, the downstream region of the hollow cylindrical structure 204 may comprise a reduced diameter portion that extends beyond the downstream end 124 of the gas injection component, which portion is formed to include a number of pores through which injected gas may pass in multiple directions relative to the longitudinal axis 142 of the mixing apparatus 100, as described above.
In yet another configuration, to allow for unimpeded injection of gas, a gas inlet structure 114 is not included and gas is injected through the downstream end of the hollow cylindrical structure in the direction of the longitudinal axis and into the surrounding interior fluid-flow chamber. This configuration, an example of which is described further below with reference to
The gas injection lumen of the gas injection component 104 includes a third portion 216 that extends between the base of the inlet portion 112 to the first portion 206 of the gas injection lumen. Extending in this manner, the third portion 216 passes through the outer wall 224 of the gas injection component 104, through a wing structure 208a, and through the wall of the cylinder structure 204 before it merges with the first portion 206 of the gas injection lumen. The first, second and third portions 206, 214, 216 of the gas injection lumen may have any of a number of cross-section shapes. In one configuration, the first portion 206 and second portion 214 are cylindrical, while the third portion 216 is rectangular.
In operation, as shown in
A method of mixing gas and liquid may include passing liquid through a venturi to create a low-pressure zone, thereby exposing a supply of gas to the low-pressure zone adjacent the venturi. This may allow low pressure suction to extract gas from the gas supply and expose the gas to more liquid before entering the mixing vane component 102. With reference to
With reference to
As described above, the gas inlet structure 114 through which gas exits may be configured to allow for the injection of gas in multiple directions relative to the longitudinal axis 142 of the mixing apparatus 100, including radially outward relative to the longitudinal axis and downstream, in the direction of the longitudinal axis. Configured in this manner, the mixing apparatus 100 injects gas from a location close to the longitudinal axis 142, into fluid that surrounds the location, as the fluid flows past the location. In other words, the mixing apparatus is configured to inject gas into liquid from the inside out. This is distinct from other mixing apparatuses that are configured to inject gas into liquid from the outside in, for example, through an annular structure surrounding a fluid-flow path, such as disclosed in U.S. Pat. No. 5,935,490.
With reference to
As the compressed liquid/gas mixture exits through the liquid output end 138 of the mixing apparatus 100, the mixture is expanded slightly. This is done by attaching an exit tube (not shown) to the liquid output end 138. The exit tube may have an internal diameter that is slightly larger than the internal diameter at the liquid output end 138 of the mixing vane component 102. The enlarged internal diameter provided by the exit tube creates a vacuum effect that pulls the liquid/gas mixture forward through the liquid output end 138 and allows the spin of the liquid to stabilize before final discharge from the exit tube. This vacuum effect reduces back pressure on the liquid/gas mixture stream and flow loss associated with back pressure. As the compressed liquid/gas mixture passes through the liquid output end 138, the previously compressed gas bubbles in the liquid/gas mixture expand and explode creating even smaller bubbles of sub-micron size. In one configuration, an exit tube (not shown) is coupled to the mixing vane component 102 at the liquid output end 138. The exit tube is of a length sufficient to allow velocity and rotation of the liquid/gas mixture to slow to normal flow conditions before it discharges into a tank, reservoir or surface body of water. The normal flow condition prevents high speed collisions and forces that will dislodge the trapped ultra-fine gas bubbles.
In one configuration, the mixing vane component 102 may include a series of individual helical vane sections, of equal or different length, separated by a distance of “d” that is void of any helical structure.
With reference to
The structure may be formed of separately manufactured components that are assembled. For example, the gas injection portion may be in the form of a gas injection component 104 and the mixing vane portion may be in the form of a mixing vane component 102. Alternatively, the structure may be manufactured as a single component, portions of which respectively define a gas injection portion and a mixing vane portion.
The gas injection portion includes an outer wall 224 and a geometric structure 202, e.g., a cone, surrounded by the outer wall. The geometric structure has a tip 220 facing the liquid input end 134 and a base 222 facing the liquid output end 138. The gas injection portion also includes a hollow cylindrical structure 204, e.g., a cylinder, that is also surrounded by the outer wall 224. The hollow cylindrical structure 204 extends in the downstream direction from the base 222 of the geometric structure and has a hollow interior that defines a first portion 206 of the gas injection lumen. The outer wall 224 has an interior surface 210 and each of the geometric structure 202 and the hollow cylindrical structure 204 has an outer surface spaced apart from the interior surface 210. The space between the interior surface 210 and the outer surfaces of the geometric structure 202 and the hollow cylindrical structure 204 defines the first region of the interior fluid-flow chamber. The space between the interior surface and the outer surfaces changes in dimension along the length of the gas injection portion. The change in dimension creates a venturi that creates a low-pressure zone for liquid that may allow low pressure suction to extract gas from the gas injection lumen 206, 214, 216 and expose the gas to more liquid before entering the mixing vane component 102.
The hollow cylindrical structure 204 has a gas inlet structure 114 that extends from a downstream region of the hollow cylindrical structure. The gas inlet structure 114 has a hollow interior that defines a second portion 214 of the gas injection lumen. At least part of the second portion 214 of the gas injection lumen is configured to inject gas into the surrounding interior fluid-flow chamber in at least one of a plurality of directions relative to the longitudinal axis 142. For example, the gas inlet structure 114 may inject gas radially outward relative to the longitudinal axis 142 and/or downstream, in the direction of the longitudinal axis. In one configuration, the gas inlet structure 114 includes a hollow cap structure having at least one of a porous cylindrical sidewall and a porous end cap through which gas may injected into the surrounding interior fluid-flow chamber. In another configuration, the gas inlet structure is a reduced diameter portion of the downstream region of the hollow cylindrical structure 204 that is formed to include a number of pores through which gas may injected into the surrounding interior fluid-flow chamber.
The first region of the interior fluid-flow chamber defined by the gas injection portion may include a plurality of separate fluid-path lumens 212a, 212b. In one configuration, the plurality of separate fluid-path lumens 212a, 212b are partially defined by a pair of wing structures 208a, 208b that extend between the outer surface of the hollow cylindrical structure 204 and the interior surface 210 of the outer wall 224. One of the wing structures 208a, 208b may define a third portion 216 of the gas injection lumen. For example, the gas injection portion may include an inlet portion 112 having a base, and the third portion 216 of the gas injection lumen may extend from the base of the inlet portion 112 through one of the pair of wing structures 208a, 208b and into the first portion 206 of the gas injection lumen defined by the hollow cylindrical structure 204.
The plurality of separate fluid-path lumens 212a, 212b of the first region of the interior fluid-flow chamber are non-helical lumens. For example, the gas injection portion may define a pair of fluid-path lumens 212a, 212b having a C-shaped cross section that extend linearly along part of the gas injection portion. At the junction of the gas injection portion and the mixing vane portion, each of the separate non-helical fluid-path lumens 212a, 212b transition to a helical lumen of the second region of the interior fluid-flow chamber defined by the mixing vane portion. The mixing vane portion may include one helical vane region 802 or a plurality of helical vane regions 802, 804 arranged adjacently along the length of the mixing vane portion. In configurations having multiple helical vane regions, adjacent helical vane regions are separated by a separation distance 806 that defines an annular space between the adjacent helical vane regions.
Unitary, Single-Piece Configuration
With reference to
Moving from left to right in
The gas injection portion 904 defines a first region of the interior fluid-flow chamber that includes multiple fluid-path lumens. With reference to
Referring to
In one configuration, the unitary, single-piece mixing apparatus 900 of
In any of the foregoing manufacturing configurations, after manufacture or manufacture and assembly, the mixing apparatus 900 may be encased in a sleeve. This may be accomplished by placing the mixing apparatus 900 in a heat-shrink tube; and then heating the tube to shrink into contact with the outer surface of the apparatus to thereby provide an impenetrable sleeve over the entire apparatus.
With continued reference to
The first geometric structure 1002, hereinafter referred to as the conical structure 1002, has a tip 1020 that faces the liquid input port 1052 of the mixing apparatus 900 and a base 1022 opposite the tip. The base 1022 of the conical structure 1002 transitions to the second geometric structure 1004, hereinafter referred to as the cylindrical structure 1004. The conical structure 1002 functions to constrict the flow of fluid into and through the gas injection portion 904 just enough to maintain a constant back pressure. This reduces the voids in the water stream that may collect large gas bubbles. The space between the outer surfaces of the conical structure 1002 and the interior surface of the outer wall 1024 of the gas injection portion 904 define an upstream tubular fluid-path lumen 1056 of the first region of the interior fluid-flow chamber.
With reference to
With reference to
As previously mentioned, the interior of the cylindrical structure 1004 defines a first part 1006 of a gas injection lumen of the gas injection portion 904. This first part 1006 of the gas injection lumen is in the form of a 90-degree elbow having a downstream opening 1034 at the end of the cylindrical structure 1004 and an upstream end 1036 that is beneath the inlet portion 912 of the gas injection portion 904. The gas injection lumen merges into and is in fluid communication with the downstream tubular fluid-path lumen 1038 through the downstream opening 1034. The gas injection lumen does not include any structure that would impede the flow of gas into the downstream tubular fluid-path lumen 1038. For example, unlike the mixing apparatus of
The gas injection lumen of the gas injection portion 904 includes a second part 1016 that extends from the upstream end 1036 the first part 1006 through the inlet portion 912. The second part 1016 of the gas injection lumen is arranged transverse to the first part 1006 and in one configuration, has an axis that extends generally perpendicular to the longitudinal axis of the first part. Extending in this manner, the second part 1016 of the gas injection lumen passes through a thickness of the outer wall 1024 of the gas injection portion 904, through the first wing structure 1008a, and through the wall of the cylinder structure 1004 before it merges with and comes into fluid communication with the first part 1006 of the gas injection lumen. The first and second parts 1006, 1016 of the gas injection lumen may have any of a number of cross-section shapes. In one configuration, the cross-section shape of each of the first part 1006 and the second part 1016 is cylindrical.
In operation, a liquid stream input through the liquid input end 934 of the gas injection portion 904 is initially displaced and separated by the conical structure 1002, with a first portion of the liquid being directed toward and into a first fluid-path lumen 922a to form a first liquid stream 932a, and a second portion of the liquid being directed toward and into a second fluid-path lumen 922b to form a second liquid stream 932b. The conical structure 1002 and cylinder structure 1004 thus function together to divide or expand a single stream of liquid into multiple liquid streams, e.g., two streams, as it passes through the gas injection portion 904, and prior to the liquid reaching the mixing vane portion 902. Because of this function, the gas injection portion 904 may also be referred to as a “jet stream expander.” Expansion of a single liquid stream into multiple liquid streams maximizes the amount of contact between injected gas and the liquid flowing through the gas injection portion 904. Expansion into multiple liquid streams also allows the mixing vane portion 902 to further compress and shear injected gas into ultra-fine bubbles of sub-micron size.
As the first and second liquid streams 932a, 932b reach the end of their respective C-shaped fluid-path lumens 922a, 922b, the liquid streams empty into the downstream tubular fluid-path lumen 1038 where they merge. The downstream tubular fluid-path lumen 1038 has a length along the longitudinal axis 942 that defines a distance between the end of the C-shaped side fluid-path lumens 922a, 922b and the beginning of the helical fluid-path lumens 1010a, 1010b. At this point, within the downstream tubular fluid-path lumen 1038, the liquid side fluid-path lumens 922a, 922b is located in front of, i.e., downstream from, the downstream opening 1034 of the gas injection lumen. Gas being injected into the gas injection portion 904 through the gas injection opening 910 passes through the downstream opening 1034 into the downstream tubular fluid-path lumen 1038 and mixes with the liquid present in the downstream tubular fluid-path lumen to form an ultra-fine bubble liquid/gas mixture. The upstream pressure within the mixing apparatus 900 causes the liquid/gas mixture to bifurcate into a pair of liquid/gas mixture streams 1012a, 1012b, each of which transitions into a respective helical fluid-path lumen 1010a, 1010b in the mixing vane portion 902.
The arrangement of the first part 1006 of the gas injection lumen relative to the C-shaped fluid-path lumens 922a, 922b and the downstream tubular fluid-path lumen 1038 enables the injection of gas through the downstream opening 1034 into the downstream tubular fluid-path lumen in a same direction, e.g., downstream and aligned with or parallel to the longitudinal axis 942, as the fluid flow through the C-shaped fluid-path lumens 922a, 922b into the downstream tubular fluid-path lumen 1038. Configured in this manner, the mixing apparatus 900 injects gas from a location close to the center, longitudinal axis 942 of the mixing apparatus and thus distant from the inner wall of the mixing apparatus. This is distinct from other mixing apparatuses that are configured to inject gas into liquid at a location at to the inner wall, for example, through an annular structure adjacent an inner wall and surrounding a fluid-flow path, such as disclosed in U.S. Pat. No. 5,935,490.
With reference to
Continuing with
The separation distance “d” between adjacent helical vane sections 1040, 1042 that is void of any helical structure may be anywhere between a small fraction, e.g., one-sixteenth, of the inner diameter 1044 of the mixing vane portion 902 to a multiple of the inner diameter. It has been found, however, that a separation distance “d” ranging from between one half of the inner diameter 1044 to equal to the inner diameter is more effective in increasing the level of gas saturation. In the configuration shown in
The direction of the twisting of the lumens within the helical vane sections about and along the length of the longitudinal axis may be counterclockwise or clockwise depending on the geographical region in which the mixing apparatus 900 will be used. For example, versions of the mixing apparatus 900 to be used in the northern hemisphere will include helical vane sections that twist in the clockwise direction, while those to be used in the southern hemisphere will include helical vane sections that twist in the counterclockwise direction. This results in a higher concentration of ultra-fine bubbles because there is less turbulence when the water flows in its natural direction. When water flows counter to the earths rotational effects the water “rolls” over itself as it flows. This creates a lot of “collision” inside the mixing apparatus. This collision reduces flow, increases pressure, and causes the turbulence that releases O2 molecules from the water. When water flows in its natural direction it avoids this collision, resulting in calmer water flow that increases velocity which increases the volume of the flow. This calm flow is actually higher than the standard flow tables you can get in a given pipe size. The higher flow velocity creates a slight vacuum at the injection point where the cross-sectional area is reduced just prior to the gas injection point. Also, a smaller pump using less energy can replace the larger pump needed to produce the same flow in a counter rotational example.
As the compressed liquid/gas mixture exits through the liquid output end 938 of the mixing apparatus 900, the mixture is expanded slightly. This is done by attaching an exit tube (not shown) to the liquid output end 938. The exit tube may have an internal diameter that is slightly larger than the internal diameter at the liquid output end 938 of the mixing vane portion 902. The enlarged internal diameter provided by the exit tube creates a vacuum effect that pulls the liquid/gas mixture forward through the liquid output end 938 and allows the spin of the liquid to stabilize before final discharge from the exit tube. This vacuum effect reduces back pressure on the liquid/gas mixture stream and flow loss associated with back pressure. As the compressed liquid/gas mixture passes through the liquid output end 938, the previously compressed gas bubbles in the liquid/gas mixture expand and explode creating even smaller bubbles of sub-micron size. In one configuration, an exit tube (not shown) is coupled to the mixing vane portion 902 at the liquid output end 938. The exit tube is of a length sufficient to allow velocity and rotation of the liquid/gas mixture to slow to normal flow conditions before it discharges into to a tank, reservoir or surface body of water. The normal flow condition prevents high speed collisions and forces that will dislodge the trapped ultra-fine gas bubbles.
Another embodiment of a unitary, single-piece mixing apparatus may be modeled after the multi-component mixing apparatus described above with reference to
In other configuration, the mixing apparatus 100 may be manufactured using injection molding techniques. For example, separate molds may be used to form different portions of the mixing apparatus 100 relative to the longitudinal axis 142 of the apparatus. In one implementation, each molded portion corresponds one half of the mixing apparatus 100 along the longitudinal axis 142. Once molded, the two halves may be bonded together to form a single assembly of the mixing apparatus 100.
Thus, disclosed herein is a mixing apparatus 900 for generating and mixing gas bubbles, including for example, ultra-fine bubbles, into an aqueous solution. The mixing apparatus 900 includes a structure defining an interior fluid-flow chamber that extends along a longitudinal axis 942 between an input port 1052 at a liquid input end 934 and an output port 1054 at a liquid output end 938. The structure is characterized by a gas injection portion 904 located upstream from the liquid output end 938 and a mixing vane portion 902 extending in the downstream direction from the gas injection portion. The gas injection portion 904 defines a gas injection lumen having a first part 1006 and a second part 1016. The gas injection portion 904 also defined a first region of the interior fluid-flow chamber, while the mixing vane portion 902 defines a second region of the interior fluid-flow chamber. The first region of the interior fluid-flow chamber includes a plurality of side fluid-path lumens 922a, 922b that extend in the downstream direction alongside the first part 1006 of the gas injection lumen. This first part 1006 of the gas injection lumen, together with the side fluid-path lumens 922a, 922b, merges with a downstream fluid-path lumen 1038 of the first region. The various lumens 922a, 922b, 1006 are arranged such that the first part 1006 of the gas injection lumen is closer to the longitudinal axis 942 than any of the plurality of side fluid-path lumens 922a, 922b.
Manufacturing and Materials
The mixing apparatuses 100, 900 may be manufactured using 3D printing technology. For the multi-component version, each of the mixing vane component 102 and the gas injection component 104 may be separately manufactured as a unitary, single-piece object using 3D printing, and then assemble to form a mixing apparatus 100. For the unitary, single-piece versions, the entirety of the mixing apparatus 100, 900 may be manufactured as a single object.
In either version, the mixing apparatus 100, 900 may be 3D printed using a plastic or a metallic material. Regarding plastics, the components may be 3D printed, for example, in nylon or a polycarbonate material, e.g., PVC, and/or other compatible filament with high tensile strength to withstand the force of water flowing at high speeds. The selected 3D print material should also be compatible with the chosen gas to be injected. For example, polycarbonate is rated for ozone, while nylon is not. With respect to metallic materials, the components may be 3D printed, for example, in stainless steel.
The mixing apparatuses 100, 900 may be manufactured using techniques other than 3D printing. For example, the mixing apparatuses 100, 900 may be manufactured using a number of injection molds to form separate portions of the assembly, which portions are then joined together to form a mixing apparatus 100, 900. The portions may be formed of plastic and bonded together, or metal, e.g., coarse cast iron or aluminum, and welded together.
The mixing apparatuses 100, 900 may be manufactured in ½″, ¾″ and 1½″ sizes for use in varying systems, where the size corresponds to the interior diameter of the apparatus at the liquid input end and the liquid output end. Larger liquid flows may be accommodated by an array of liquid/gas mixing apparatuses enclosed in a larger pipe. In this configuration, a portion of a large liquid flow is divided into separate portions, each of which passes through a liquid/gas mixing apparatus. Testing of a ½″ size ultra-fine bubble generating liquid/gas mixing apparatus configured as disclosed herein, has generated ultra-fine bubbles having a size ˜100 nanometers and concentration of 265,000,000 bubbles per ml, as measured using a NanoSight NS300 particle analyzer.
The foregoing description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but instead are to be accorded the full scope consistent with the claim language. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims.
This application is a U.S. national phase application of and claims priority to International Application No. PCT/US2019/034749, entitled “Apparatus in the Form of a Unitary, Single-Piece Structure Configured to Generate and Mix Ultra-Fine Gas Bubbles Into a High Gas Concentration Aqueous Solution” and filed on May 30, 2019, which claims the benefit of U.S. Provisional Application Ser. No. 62/679,702, entitled “Apparatus in the Form of a Unitary, Single-Piece Structure Configured to Generate and Mix Ultra-Fine Gas Bubbles into a High Gas Concentration Aqueous Solution” and filed on Jun. 1, 2018, each of which is expressly incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/034749 | 5/30/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/232273 | 12/5/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2601018 | Heyl et al. | Jun 1952 | A |
3452966 | Smolski | Jul 1969 | A |
3545731 | McManus | Dec 1970 | A |
3761066 | Wheeler | Sep 1973 | A |
3852384 | Bearden | Dec 1974 | A |
3953002 | England, Jr. et al. | Apr 1976 | A |
4088449 | Smith | May 1978 | A |
4127332 | Thiruvengadam et al. | Nov 1978 | A |
4202635 | Hendrickson | May 1980 | A |
4408893 | Rice, III | Oct 1983 | A |
4466741 | Kojima | Aug 1984 | A |
4674888 | Carlson | Jun 1987 | A |
4721562 | Barnscheidt et al. | Jan 1988 | A |
4749527 | Rasmusen | Jun 1988 | A |
4761077 | Werner | Aug 1988 | A |
4767026 | Keller et al. | Aug 1988 | A |
4840753 | Jungmann et al. | Jun 1989 | A |
4872833 | Kramer | Oct 1989 | A |
4911836 | Haggerty | Mar 1990 | A |
5073309 | Bousquet et al. | Dec 1991 | A |
5091118 | Burgher | Feb 1992 | A |
5498078 | Keller | Mar 1996 | A |
5814222 | Zelenak et al. | Sep 1998 | A |
5842600 | Singleterry et al. | Dec 1998 | A |
5885467 | Zelenak et al. | Mar 1999 | A |
5904851 | Taylor et al. | May 1999 | A |
5935490 | Archbold et al. | Aug 1999 | A |
6039884 | Burris et al. | Mar 2000 | A |
6142457 | Holtan et al. | Nov 2000 | A |
6322055 | Speece | Nov 2001 | B1 |
6467949 | Reeder et al. | Oct 2002 | B1 |
6474627 | Speece | Nov 2002 | B2 |
6485003 | Speece | Nov 2002 | B2 |
6623635 | Barnes | Sep 2003 | B2 |
6668556 | Speece | Dec 2003 | B2 |
6848258 | Speece | Feb 2005 | B1 |
6923568 | Wilmer et al. | Aug 2005 | B2 |
7103450 | Kubiak et al. | Sep 2006 | B2 |
7320749 | Speece et al. | Jan 2008 | B2 |
RE40407 | Natarius | Jul 2008 | E |
7534351 | Chiba | May 2009 | B2 |
7566397 | Speece | Jul 2009 | B2 |
7772376 | Payne et al. | Aug 2010 | B2 |
7814745 | Levin et al. | Oct 2010 | B2 |
7905653 | Wilmer et al. | Mar 2011 | B2 |
7975991 | Kojima | Jul 2011 | B2 |
8177197 | Ergican | May 2012 | B1 |
8196906 | Benton et al. | Jun 2012 | B2 |
8205541 | Barberio et al. | Jun 2012 | B2 |
8272777 | Kohrs et al. | Sep 2012 | B2 |
8286951 | Dart et al. | Oct 2012 | B2 |
8371114 | Hayashi et al. | Feb 2013 | B2 |
8567767 | Fantappie | Oct 2013 | B2 |
8580125 | Clidence et al. | Nov 2013 | B2 |
10052596 | Richardson | Aug 2018 | B2 |
20010033526 | Illy et al. | Oct 2001 | A1 |
20010042708 | Barnes | Nov 2001 | A1 |
20020066970 | Speece | Jun 2002 | A1 |
20030196437 | Speece | Oct 2003 | A1 |
20040112404 | Doke et al. | Jun 2004 | A1 |
20040124136 | Bak | Jul 2004 | A1 |
20050155922 | Tormaschy et al. | Jul 2005 | A1 |
20050173326 | Speece | Aug 2005 | A1 |
20050263914 | Kojima | Dec 2005 | A1 |
20060120214 | Raftis | Jun 2006 | A1 |
20060231500 | Speece et al. | Oct 2006 | A1 |
20080062813 | Wilmer et al. | Mar 2008 | A1 |
20080223782 | Chiba | Sep 2008 | A1 |
20080237140 | Liverud et al. | Oct 2008 | A1 |
20090034361 | Trang et al. | Feb 2009 | A1 |
20090308472 | Harman | Dec 2009 | A1 |
20100011967 | Barberio et al. | Jan 2010 | A1 |
20100025867 | Benton et al. | Feb 2010 | A1 |
20100031825 | Kemp | Feb 2010 | A1 |
20100208547 | Kiel et al. | Aug 2010 | A1 |
20110024362 | Clidence et al. | Feb 2011 | A1 |
20110153084 | Wilmer et al. | Jun 2011 | A1 |
20120160333 | West | Jun 2012 | A1 |
20120195994 | El-Siblani et al. | Aug 2012 | A1 |
20130215710 | Hepperle et al. | Aug 2013 | A1 |
20150202579 | Richardson | Jul 2015 | A1 |
20150352503 | Lai | Dec 2015 | A1 |
20160339399 | Goi | Nov 2016 | A1 |
20160346758 | Kress | Dec 2016 | A1 |
20170259219 | Russell et al. | Sep 2017 | A1 |
20170291151 | Berglund | Oct 2017 | A1 |
20200045997 | Blevins | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
87201156 | Dec 1987 | CN |
1254179 | Nov 1971 | GB |
2350069 | Nov 2000 | GB |
2350069 | Apr 2003 | GB |
199512452 | May 1995 | WO |
2013050764 | Apr 2013 | WO |
2013050764 | Apr 2013 | WO |
2018191431 | Oct 2018 | WO |
Entry |
---|
PCT/US2014/070813. Int'l Search Report & Written Opinion (dated Apr. 28, 2015). |
PCT/US2018/027187. Int'l Search Report & Written Opinion (dated Aug. 9, 2018). |
PCT/US2019/034749. Int'l Search Report & Written Opinion (dated Aug. 15, 2019). |
Number | Date | Country | |
---|---|---|---|
20210046435 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62679702 | Jun 2018 | US |