The present invention relates generally to the field of ion transport detection systems and methods, particularly those that relate to the use of biochip and other fluidic component and system technologies. Such technologies can include micromanipulation methods to direct particles, such as cells, to areas on a biochip that have ion transport detection or measuring structures. Such technologies can also include structures and configurations on biochips and other fluidic components particularly suitable for ion transport detection and measurement. Such technologies can further include methods and approaches to improve the ion transport detection and measurement by modifying ion transport detection or measuring structures.
Ion transports are located within cellular membranes and regulate the flow of ions across the membrane. Ion transports participate in diverse processes, such as generating and timing of action potentials, synaptic transmission, secretion of hormones, contraction of muscles etc. Ion transports are popular candidates for drug discovery, and many known drugs exert their effects via modulation of ion transport functions or properties. examples of such drugs are antiepileptic compounds such as phenytoin and lamotrigine which block voltage dependent sodium ion transports in the brain, anti-hypertension drugs such as nifedipine and diltiazem which block voltage dependent calcium ion transports in smooth muscle cells, and stimulators of insulin release such as glibenclamide and tolbutamine which block an ATP regulated potassium ion transport in the pancreas.
One popular method of measuring ion transport function or properties is the patch-clamp method, which was first reported by Neher, Sakmann and Steinback (Pflügers Arch. 375:219-278 (1978)). This first report of the patch clamp method relied on pressing a glass pipette containing acetylcholine (Ach) against the surface of a muscle cell membrane, where discrete jumps in electrical current were attributable to the opening and closing of Ach-activated ion transports.
The method was refined by fire polishing the glass pipettes and applying gentle suction to the interior of the pipette when contact was made with the surface of the cell. Seals of very high resistance (between about 1 and about 100 giga ohms) could be obtained. This advancement allowed the patch clamp method to be suitable over voltage ranges at which ion transport studies can routinely be made.
Once the high gigaohm seal was achieved, it opened the door to multiple configurations to allow voltage-clamping of the cell membrane (for a review, see Hamil et al., Pflügers Archiv, 391:85-100 (1981); Liem et al., Neurosurgery 36:382-392 (1995)). For example, the sealed patch of membrane could itself be voltage-clamped in the cell-attached patch mode, or momentary strong suction could be employed to rupture the patch of membrane within the pipette and provide voltage clamp access to the whole-cell. It is also possible to voltage-clamp the whole-cell by the addition of perforating or permeabilizing agents to either the pipette (referred to as “perforated patch” mode) to give whole-cell voltage-clamp access, or to the bathing medium, to give a pseudo-inside-out patch clamp mode. The inside-out patch clamp mode is also achievable by pulling the pipette away from the cell membrane to excise the patch. Recently an alternate type of excised patch mode has been demonstrated by first gaining whole-cell access, then slowly pulling the pipette away from the cell, producing the outside-out patch clamp mode. Further, in some cases suction cannot be employed so as to not disrupt sub-membrane assemblies, therefore the loose patch technique, analogous to the cell-attached patch mode, is employed, sacrificing the higher gigaohm seals. If one is willing to sacrifice the high gigaohm seal then recordings may also be made from a much larger patch of membrane, called the “giant patch” clamp mode, with a much larger diameter pipette tip.
These and later methods relied upon interrogating one sample at a time using large laboratory apparatuses that require a high degree of operator skill and time. Attempts have been made to automate patch clamp methods, but these have met with little success. Alternatives to patch clamp methods have been developed using fluorescent probes, such as the simultaneous use of oxonol and cumarin-lipids (cu-lipids) (Tsien et al., U.S. Pat. No. 6,107,066, issued August 2000). These methods rely upon change in polarity of membranes and the resulting motion of oxonols across the membrane. This motion allows for detection using fluorescence resonance energy transfer (FRET). Unfortunately, these methods do not measure ion transport directly but measure the change of indirect parameters as a result of ionic flux. For example, the characteristics of the lipid used in the cu-lipid can alter the biological and physical characteristics of the membrane, such as fluidity and polarizability.
Thus, what is needed is a simple device and method to measure ion transport directly. Preferably, these devices would utilize patch clamp detection methods because these types of methods represent a gold standard in this field of study. The present invention provides these devices and methods, particularly miniaturized devices and automated methods for the screening of chemicals or other moieties for their ability to modulate ion transport function or properties.
The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as patch-clamp, whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as fluorescence-based detection systems. The present invention provides biochips and other fluidic components and apparatuses and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that allow for automated and/or high throughput detection of ion transport functions or properties. These biochips and fluidic apparatuses and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for high throughput screening purposes.
A first aspect of the present invention is a biochip comprising at least one particle measuring means and methods of use. The biochip preferably includes at least one particle positioning means and at least one ion transport measuring means. The particle positioning means is preferably active upon cells such as eukaryotic cells using appropriate forces, particularly dielectric forces and hydrostatic pressure. The ion transport measuring means can be any appropriate ion transport measuring means, such as but not limited to structures that can be used for patch clamp detection, whole cell detection or recording, single ion transport detection or recording, and the like.
A second aspect of the present invention is an array of capillaries on a biochip and methods of use. The array of capillaries is preferably microfabricated and integrated onto the chip such that they are useful in ion transport function determinations. In one aspect of the present invention, the capillaries can be used as ion transport measuring means in patch clamp assay methods, whole cell assay methods, or single channel assay methods.
A third aspect of the invention is an array of needle electrodes on a biochip and methods of use. The array of needle electrodes is preferably microfabricated such that they are useful in ion transport determinations. These structures are particularly useful in ion transport determinations using whole cells.
A fourth aspect of the invention is an array of holes on a biochip and methods of use. The holes are preferably microfabricated and are useful in methods for the determination of ion transport functions or properties. The holes can be used in patch clamp methods such as whole cell or single ion channel methods. In one aspect of the present invention, the holes can be used in whole cell or single ion channel methods, particularly when pressure is applied upon a solution through such holes. In another aspect of the present invention, the surface of the substrate around and within the hole is negatively charged and is capable of engaging particles such as biological cells, vesicles, and/or membrane organelles with a high resistance electric seal. In another aspect of the present invention, the surface of the substrate around and within the hole has been treated in acidic and/or basic solutions and is capable of engaging particles such as biological cells, vesicles, and/or membrane organelles with a high resistance electric seal. In one particular embodiment, the substrate or coating material for the biochip is glass, one or more holes is fabricated using laser ablation, and the surface of the substrate or coating around the one or more holes has been treated in acidic and/or basic solutions.
A fifth aspect of the invention is a biochip or fluidic component having ion transport measuring means being apertures with appropriate geometries and dimensions, which are located along the side walls of microfluidic channels, and methods of use. This type of patch-clamp-in-a-channel technology provides means of efficient simultaneous recording on and fluid delivery to a biochip of current invention.
A sixth aspect of the invention is a fluidic component that comprises at least one tube with tube walls comprising one or more holes less than 10 micron in diameter. In one aspect of the present invention, the fluidic component comprises a second tube wherein a first tube is inserted in the second tube and the first tube serves as one fluidic compartment and the second tubes serve as a second fluidic compartment, and the two fluidic compartments are connected via one or more holes. In another embodiment of this aspect of the present invention, the fluidic component comprises a substrate with a microfluidic channel on the substrate surface, wherein a tube is arranged substantially perpendicular to the microfluidic channel and is sealed onto the substrate so that the tube serves as one fluidic compartment, the microfluidic channel serves as a second fluidic compartment, and at least one aperture on the tube wall connects the two fluidic compartments.
A seventh aspect of the invention is a method for modifying at least a portion of a chip or substrate comprising at least one ion transport measuring means to enhance the electric seal of a particle or a portion thereof with an ion transport measuring means. In one aspect of the present invention, the chip or substrate comprising an ion transport measuring means is modified to become more electronegative and /or more smooth. In another aspect of the present invention, the chip or substrate comprising the ion transport measuring means is modified chemically, such as with different types of acids and bases.
An eighth aspect of the invention is the substrates, biochips, cartridges, apparatuses, and/or devices comprising ion transport measuring means with enhanced electric seal properties.
A ninth aspect of the present invention is a method for storing the substrates, biochips, cartridges, apparatuses, and/or devices comprising ion transport measuring means with enhanced electrical seal properties.
A tenth aspect of the present invention is a method for shipping the substrates, biochips, cartridges, apparatuses, and/or devices comprising ion transport measuring means with enhanced electrical seal properties.
An eleventh aspect of the present invention is a method for utilizing ion transport measurements as detection systems for a number of cell-based assays.
A twelfth aspect of the present invention is a method of using G-protein-coupled ion channels for electrophysiological read-outs for GPCR assays. In one embodiment of this aspect of the present invention, cellular intermediate messenger systems that activate or inactivate ion channels act as signal transducers between a cellular receptor/ligand binding event (including both plasma membrane receptors and intracellular receptors) and an ion channel effector read-out.
A thirteenth aspect of the invention is a biochip or a fluidic component with at least one ion transport measuring means combined with high information content screening and methods of use. This type of on-chip procedural combination allows for high throughput detection of multiple cellular signals in a time and space-controlled manner that cannot be achieved by existing technologies.
A fourteenth aspect of the invention is a biochip with three-dimensionally configured channels that can be microfabricated using sacrificial methodologies such as sacrificial wire methods and methods of use. This biochip provides a system of three-dimensional microfluidic structures that can be efficiently microfabricated for use in high-density bioassays and lab-on-a-chip systems.
The particle positioning means employed in the apparatuses, cartridges, biochips, methods, and systems of the present invention, particularly those used for positioning biological cells in an array format for single cell analysis, can be used with significant advantages for cell-based assays over current cell-based assays. Current cell-based assays analyze and examine a population of cells by measuring averaged, integrated signals and do not allow for assays at the single cell level. The cell positioning means disclosed in this invention provides the devices and methods for analyzing individual cellular events in high throughput formats. These analyses can be performed by reading out electrical (for example, ion transport assay) and optical (for example, fluorescent readout) signals from individual cells. Using the high throughput capability for ion transport assays in this invention, one can analyze the effects of intracellular signaling events on ion transport functions or properties in a systematic fashion. High throughput proteomics and functional analysis of ion channels can be performed at the single cell level. Furthermore, the devices and methods in the present invention allow the electrophysiological measurement of native cells isolated from tissues (normal or diseased). Such analysis would allow for a fast and more accurate determination for cellular variation as hundreds or thousands of cells could be investigated individually in parallel for their biological, pharmacological and physiological responses. Cellular variation has proven to be a factor complicating the scientific analysis of complex systems, for example, in the diseases such as arrhythmias, cancer, and nervous system disorders. The present inventions provide devices and methods to address such cellular variations by providing a multiplicity of single cell measurements in parallel.
In addition, positioning of the individual cells in an array format may permit better studies in subcellular organization and microdomain measurements. With the cells positioned, dynamic subcellular locations of cellular compartments, structures and molecules such as receptors and enzymes may be examined. Cells may be engineered to express recombinant ion channels or receptors with appropriate scaffolding proteins or chaperone proteins so that the surface expression of these proteins can be achieved at certain locations in a timed manner. For microdomain measurement of individual cells, various detection technologies such as optical measurements could be applied. Using the methods and devices of the present invention, individual cells can be positioned in an array format and the examination of hundreds or even thousands of the cells could be performed using a single device to assess their chemical and biochemical parameters or properties in given subcellular microdomains. These parameters include, but are not limited to, calcium levels, enzyme activity, translocation, membrane and molecular trafficking, pH, and concentrations of specific molecules.
Definitions
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Generally, the nomenclature used herein and the manufacture or laboratory procedures described below are well known and commonly employed in the art. Conventional methods are used for these procedures, such as those provided in the art and various general references. Terms of orientation such as “up” and “down” or “upper” or “lower” and the like refer to orientation of parts during use of a device. Where a term is provided in the singular, the inventors also contemplate the plural of that term. The nomenclature used herein and the laboratory procedures described below are those well known and commonly employed in the art. Where there are discrepancies in terms and definitions used in references that are incorporated by reference, the terms used in this invention shall have the definitions given herein. As employed throughout the disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:
“Dielectrophoresis” is the movement of polarized particles in electrical fields of nonuniform strength. There are generally two types of dielectrophoresis, positive dielectrophoresis and negative dielectrophoresis. In positive dielectrophoresis, particles are moved by dielectrophoretic forces toward the strong field regions. In negative dielectrophoresis, particles are moved by dielectrophoretic forces toward weak field regions. Whether moieties exhibit positive or negative dielectrophoresis depends on whether particles are more or less polarizable than the surrounding medium.
A “dielectrophoretic force” is the force that acts on a polarizable particle in an AC electrical field of non-uniform strength. The dielectrophoretic force {right arrow over (F)}DEP acting on a particle of radius r subjected to a non-uniform electrical field can be given, under the dipole approximation, by:
{right arrow over (F)}DEP=2πεmr3χDEP∇Erms2
where Erms is the RMS value of the field strength, the symbol ∇ is the symbol for gradient-operation, εm is the dielectric permittivity of the medium, and χDEP is the particle polarization factor, given by:
“Re” refers to the real part of the “complex number”. The symbol εx*=εx−jσx/2πf is the complex permittivity (of the particle x=p, and the medium x=m) and j={square root}{square root over (−1)}. The parameters εp and σp are the effective permittivity and conductivity of the particle, respectively. These parameters may be frequency dependent. For example, a typical biological cell will have frequency dependent, effective conductivity and permittivity, at least, because of cytoplasm membrane polarization. Particles such as biological cells having different dielectric properties (as defined by permittivity and conductivity) will experience different dielectrophoretic forces. The dielectrophoretic force in the above equation refers to the simple dipole approximation results. However, the dielectrophoretic force utilized in this application generally refers to the force generated by non-uniform electric fields and is not limited by the dipole simplification. The above equation for the dielectrophoretic force can also be written as
{right arrow over (F)}DEP=2πεmr3χDEPV2∇p(x,y,z)
where p(x,y,z) is the square-field distribution for a unit-voltage excitation (Voltage V=1 V) on the electrodes, V is the applied voltage.
“Traveling-wave dielectrophoretic (TW-DEP) force” refers to the force that is generated on particles or molecules due to a traveling-wave electric field. An ideal traveling-wave field is characterized by the distribution of the phase values of AC electric field components, being a linear function of the position of the particle. In this case the traveling wave dielectrophoretic force {right arrow over (F)}TW-DEP on a particle of radius r subjected to a traveling wave electrical field E=E cos(2π(ft−z/λ0)){right arrow over (a)}x (for example, a x-direction field is traveling along the z-direction) is given, again, under the dipole approximation, by
where E is the magnitude of the field strength, εm is the dielectric permittivity of the medium. ζTW-DEP is the particle polarization factor, given by
“Im” refers to the imaginary part of the “complex number”. The symbol εx*=εx−jσx/2πf is the complex permittivity (of the particle x=p, and the medium x=m). The parameters εp and εp are the effective permittivity and conductivity of the particle, respectively. These parameters may be frequency dependent.
A traveling wave electric field can be established by applying appropriate AC signals to the microelectrodes appropriately arranged on a chip. For generating a traveling-wave-electric field, it is necessary to apply at least three types of electrical signals each having a different phase value. An example to produce a traveling wave electric field is to use four phase-quardrature signals (0, 90, 180 and 270 degrees) to energize four linear, parallel electrodes patterned on the chip surfaces. Such four electrodes may be used to form a basic, repeating unit. Depending on the applications, there may be more than two such units that are located next to each other. This will produce a traveling-electric field in the spaces above or near the electrodes. As long as electrode elements are arranged following certain spatially sequential orders, applying phase-sequenced signals will result in establishing traveling electrical fields in the region close to the electrodes.
“Electric field pattern” refers to the field distribution in space or in a region of interest. An electric field pattern is determined by many parameters, including the frequency of the field, the magnitude of the field, the magnitude distribution of the field, and the distribution of the phase values of the field components, the geometry of the electrode structures that produce the electric field, and the frequency and/or magnitude modulation of the field.
“Dielectric properties” of a particle are properties that determine, at least in part, the response of a particle to an electric field. The dielectric properties of a particle include the effective electric conductivity of a particle and the effective electric permittivity of a particle. For a particle of homogeneous composition, for example, a polystyrene bead, the effective conductivity and effective permittivity are independent of the frequency of the electric field at least for a wide frequency range (for example between 1 Hz to 100 MHz). Particles that have a homogeneous bulk composition may have net surface charges. When such charged particles are suspended in a medium, electrical double layers may form at the particle/medium interfaces. Externally applied electric field may interact with the electrical double layers, causing changes in the effective conductivity and effective permittivity of the particles. The interactions between the applied field and the electrical double layers are generally frequency dependent. Thus, the effective conductivity and effective permittivity of such particles may be frequency dependent. For moieties of nonhomogeneous composition, for example, a cell, the effective conductivity and effective permittivity are values that take into account the effective conductivities and effective permittivities of both the membrane and internal portion of the cell, and can vary with the frequency of the electric field. In addition, the dielectrophoretic force experienced by a particle in an electric field is dependent on its size; therefore, the overall size of particle is herein considered to be a dielectric property of a particle. Properties of a particle that contribute to its dielectric properties include but are not limited to the net charge on a particle; the composition of a particle (including the distribution of chemical groups or moieties on, within, or throughout a particle); size of a particle; surface configuration of a particle; surface charge of a particle; and the conformation of a particle. Particles can be of any appropriate shape, such as geometric or non-geometric shapes. For example, particles can be spheres, non-spherical, rough, smooth, have sharp edges, be square, oblong or the like.
“Magnetic forces” refer to the forces acting on a particle due to the application of a magnetic field. In general, particles have to be magnetic or paramagnetic when sufficient magnetic forces are needed to manipulate particles. For a typical magnetic particle made of super-paramagnetic material, when the particle is subjected to a magnetic field {right arrow over (B)}, a magnetic dipole {right arrow over (μ)} is induced in the particle
where Vp is the particle volume, χp and χm are the volume susceptibility of the particle and its surrounding medium, μm is the magnetic permeability of medium, {right arrow over (H)}m is the magnetic field strength. The magnetic force {right arrow over (F)}magnetic acting on the particle is determined, under the dipole approximation, by the magnetic dipole moment and the magnetic field gradient:
{right arrow over (F)}magnetic=−0.5 Vp(χp−χm){right arrow over (H)}m●∇{right arrow over (B)}m,
where the symbols “●” and “∇” refer to dot-product and gradient operations, respectively. Whether there is magnetic force acting on a particle depends on the difference in the volume susceptibility between the particle and its surrounding medium. Typically, particles are suspended in a liquid, non-magnetic medium (the volume susceptibility is close to zero) thus it is necessary to utilize magnetic particles (its volume susceptibility is much larger than zero). The particle velocity Vparticle under the balance between magnetic force and viscous drag is given by:
where r is the particle radius and ηm is the viscosity of the surrounding medium.
As used herein, “manipulation” refers to moving or processing of the particles, which results in one-, two- or three-dimensional movement of the particle, in a chip format, whether within a single chip or between or among multiple chips. Non-limiting examples of the manipulations include transportation, focusing, enrichment, concentration, aggregation, trapping, repulsion, levitation, separation, isolation or linear or other directed motion of the particles. Where binding partners are employed, the binding partner and the physical force used in the method should be compatible. For example, binding partners such as microparticles having magnetic properties that can be bound with particles, are preferably used with magnetic force. Similarly, binding partners having certain dielectric properties, for example, plastic particles, such as polystyrene microbeads, are preferably used with dielectrophoretic force.
A “sample” is any sample from which particles are to be separated or analyzed. A sample can be from any source, such as an organism, group of organisms from the same or different species, from the environment, such as from a body of water or from the soil, or from a food source or an industrial source. A sample can be an unprocessed or a processed sample. A sample can be a gas, a liquid, or a semi-solid, and can be a solution or a suspension. A sample can be an extract, for example a liquid extract of a soil or food sample, an extract of a throat or genital swab, or an extract of a fecal sample. Samples are can include cells or a population of cells. The population of cells can be a mixture of different cells or a population of the same cell or cell type, such as a clonal population of cells. Cells can be derived from a biological sample from a subject, such as a fluid, tissue or organ sample. In the case of tissues or organs, cells in tissues or organs can be isolated or separated from the structure of the tissue or organ using known methods, such as teasing, rinsing, washing, passing through a grating and treatment with proteases. Samples of any tissue or organ can be used, including mesodermally derived, endodermally derived or ectodermally derived cells. Particularly preferred types of cells are from the heart and blood. Cells include but are not limited to suspensions of cells, cultured cell lines, recombinant cells, infected cells, eukaryotic cells, prokaryotic cells, infected with a virus, having a phenotype inherited or acquired, cells having a pathological status including a specific pathological status or complexed with biological or non-biological entities.
A “white blood cell” is a leukocyte, or a cell of the hematopoietic lineage that is not a reticulocyte or platelet and that can be found in the blood of an animal. Leukocytes can include lymphocytes, such as B lymphocytes or T lymphocytes. Leukocytes can also include phagocytic cells, such as monocytes, macrophages, and granulocytes, including basophils, eosinophils and neutrophils. Leukocytes can also comprise mast cells.
A “red blood cell” is an erythrocyte.
“Neoplastic cells” refers to abnormal cells that grow by cellular proliferation more rapidly than normal and can continue to grow after the stimuli that induced the new growth has been withdrawn. Neoplastic cells tend to show partial or complete lack of structural organization and functional coordination with the normal tissue, and may be benign or malignant.
A “malignant cell” is a cell having the property of locally invasive and destructive growth and metastasis.
A “stem cell” is an undifferentiated cell that can give rise, through one or more cell division cycles, to at least one differentiated cell type.
A “progenitor cell” is a committed but undifferentiated cell that can give rise, through one or more cell division cycles, to at least one differentiated cell type. Typically, a stem cell gives rise to a progenitor cell through one or more cell divisions in response to a particular stimulus or set of stimuli, and a progenitor gives rise to one or more differentiated cell types in response to a particular stimulus or set of stimuli.
An “etiological agent” refers to any etiological agent, such as a bacteria, virus, parasite or prion that can be associated with, such but not limited to infecting, a subject. An etiological agent can cause symptoms or a disease state in the subject it infects. A human etiological agent is an etiological agent that can infect a human subject. Such human etiological agents may be specific for humans, such as a specific human etiological agent, or may infect a variety of species, such as a promiscuous human etiological agent.
“Subject” refers to any organism, such as an animal or a human. An animal can include any animal, such as a feral animal, a companion animal such as a dog or cat, an agricultural animal such as a pig or a cow, or a pleasure animal such as a horse.
A “chamber” is a fluid compartment that comprises at least one chip, engages at least one chip, or is integral to at least one chip. The chamber may have various dimensions and its volume may vary between 0.001 microliter and 50 milliliter. In some embodiments of the present invention, a chamber comprises or engages a single chip or multiple chips. In preferred embodiments of the present invention, a single biochip of the present invention engages at least two chambers, or fluid compartments. Preferably, a chip of the present invention used in ion transport measurement that engages multiple chambers engages one or more upper chambers and one or more lower chambers. Preferably, where a chip engages at one or more upper chambers and one or more lower chambers, at least one of the one or more upper chambers can be in fluid communication with at least one of one or more lower chambers via an ion transport measuring means, such as a hole or capillary.
A “cartridge” is a structure that comprises at least one chamber and one or more ports for the transport of fluid into or out of at least one chamber. A cartridge can comprise one or more chips. In preferred embodiments of the present invention, a cartridge comprises a biochip of the present invention that comprises at least one ion transport measuring means, at least one upper chamber and at least one lower chamber that engage the biochip, a housing that surrounds the biochip and chamber (and can also be, at least in part, walls of one or more chambers), and at least one port for the introduction of a sample.
As used herein, a “chip-based apparatus for ion transport measurement” or “apparatus” is an apparatus comprising at least one cartridge that comprises one or more biochips having at least one ion transport measuring means; at least one recording circuit in connection with at least on ion transport measuring means of one or more chips via recording electrodes; and at least one fluidic device in fluid communication with at least one port on at least one cartridge.[ As used herein “plurality” means two or more, and “multiplicity” means more than two.
A “port” is an opening in the housing of a chamber through which a fluid sample can enter or exit the chamber. A port can be of any dimensions, but preferably is of a shape and size that allows a sample to be dispensed into a chamber by means of a pipette, syringe, or conduit, or other means of dispensing a sample.
A “conduit” is a means for fluid to be transported from one compartment to another compartment of a device of the present invention or to another structure, such as a dispensation or detection device. Preferably a conduit engages a port in the housing of a chamber. A conduit can comprise any material that permits the passage of a fluid through it. Preferably a conduit comprises tubing, such as, for example, rubber, teflon, or tygon tubing. A conduit can be of any dimensions, but preferably ranges from 10 microns to 5 millimeters in internal diameter.
A “chip” or “biochip” is a solid substrate on which one or more processes such as physical, chemical, biochemical, biological or biophysical processes can be carried out. Such processes can be assays, including biochemical, cellular, and chemical assays; ion transport or ion channel function or activity determinations, separations, including separations mediated by electrical, magnetic, physical, and chemical (including biochemical) forces or interactions; chemical reactions, enzymatic reactions, and binding interactions, including captures. The micro structures or micro-scale structures such as, channels and wells, electrode elements, electromagnetic elements, may be incorporated into or fabricated on the substrate for facilitating physical, biophysical, biological, biochemical, chemical reactions or processes on the chip. The chip may be thin in one dimension and may have various shapes in other dimensions, for example, a rectangle, a circle, an ellipse, or other irregular shapes. The size of the major surface of chips of the present invention can vary considerably, for example, from about 1 mm2 to about 0.25 m2. Preferably, the size of the chips is from about 4 mm2 to about 25 cm2 with a characteristic dimension from about 1 mm to about 5 cm. The chip surfaces may be flat, or not flat. The chips with non-flat surfaces may include wells fabricated on the surfaces. A biochip is preferably biocompatible.
An “ion transport” can be any molecule (for example, protein or non-protein moiety) that modulates, regulates or allows for the transfer of one or more ions across a membrane, such as a biological membrane or an artificial membrane. Ion transports include but are not limited to ion channels, proteins allowing transport of ions by active transport, proteins allowing transport of ions by passive transport, ion pumps, carriers, uniporters, symporters, antiporters, exchangers, toxins such as from insects, viral proteins, proteins such as prions, beta-amyloid protein, complement proteins, or the like. Viral proteins, such as the M2 protein of influenza virus can form an ion channel on cell surfaces.
A “particle” refers to an organic or inorganic particulate that is suspendable in a solution and can be manipulated by a particle positioning means. A particle can include a cell, such as a prokaryotic or eukaryotic cell, or can be a cell fragment, such as intracellular organelle such as cell nuclei, mitochondria, a vacuole, or a vesicle or a microsome that can be made using methods known in the art. (Membrane bound organelles such as, but not limited to, nuclei, mitochondria, chloroplasts, lysozomes, vacuoles, etc., are referred to herein as “membrane organelles”.) A particle can also include artificial membrane preparations that can be made using methods known in the art. Preferred artificial membrane preparations are lipid bilayers, lipid bilayer vesicles, but that need not be the case. A particle in the present invention can also be a lipid film, such as a black-lipid film (see, Houslay and Stanley, Dynamics of Biological Membranes, Influence on Synthesis, Structure and Function, John Wiley & Sons, New York (1982)). In the case of a lipid film, a lipid film can be provided over a hole, such as a hole or capillary of the present invention using methods known in the art (see, Houslay and Stanley, Dynamics of Biological Membranes, Influence on Synthesis, Structure and Function, John Wiley & Sons, New York (1982)). A particle preferably includes or is suspected of including at least one ion transport of interest. Particles that do not include an ion transport of interest can be made to include such ion transport using methods known in the art, such as by fusion of particles or insertion of ion transports into such particles such as by detergents, detergent removal, detergent dilution, sonication or detergent catalyzed incorporation (see, Houslay and Stanley, Dynamics of Biological Membranes, Influence on Synthesis, Structure and Function, John Wiley & Sons, New York (1982)). A microparticle, such as a bead, such as a latex bead or magnetic bead, can be attached to a particle such as a cell or cellular organelle, such that the particle can be manipulated by a particle positioning means.
A “microparticle” is a structure of any shape and of any composition that is manipulatable by desired physical force(s). The microparticles used in the methods could have a dimension from about 0.01 micron to about ten centimeters. Preferably, the microparticles used in the methods have a dimension from about 0.1 micron to about several hundred microns. Such particles or microparticles can be comprised of any suitable material, such as glass or ceramics, and/or one or more polymers, such as, for example, nylon, polytetrafluoroethylene (TEFLON™), polystyrene, polyacrylamide, sepaharose, agarose, cellulose, cellulose derivatives, or dextran, and/or can comprise metals. Examples of microparticles include, but are not limited to, plastic particles, ceramic particles, carbon particles, polystyrene microbeads, glass beads, magnetic beads, hollow glass spheres, metal particles, particles of complex compositions, microfabricated free-standing microstructures, etc. The examples of microfabricated free-standing microstructures may include those described in “Design of asynchronous dielectric micromotors” by Hagedorn et al., in Journal of Electrostatics, Volume: 33, Pages 159-185 (1994). Particles of complex compositions refer to the particles that comprise or consists of multiple compositional elements, for example, a metallic sphere covered with a thin layer of non-conducting polymer film.
“A preparation of microparticles” is a composition that comprises microparticles of one or more types and can optionally include at least one other compound, molecule, structure, solution, reagent, particle, or chemical entity. For example, a preparation of microparticles can be a suspension of microparticles in a buffer, and can optionally include specific binding members, enzymes, inert particles, surfactants, ligands, detergents, etc.
“Coupled” means bound. For example, a moiety can be coupled to a microparticle by specific or nonspecific binding. As disclosed herein, the binding can be covalent or noncovalent, reversible or irreversible.
A “cell” refers to a viable or non-viable prokaryotic or eukaryotic cell. A eukaryotic cell can be any eukaryotic cell from any source, such as obtained from a subject, human or non-human, fetal or non-fetal, child or adult, such as from a tissue or fluid, including blood, which are obtainable through appropriate sample collection methods, such as biopsy, blood collection or otherwise. Eukaryotic cells can be provided as is in a sample or can be cell lines that are cultivated in vitro. Differences in cell types also include cellular origin, distinct surface markers, sizes, morphologies and other physical and biological properties.
A “cell fragment” refers to a portion of a cell, such as cell organelles, including but not limited to nuclei, endoplasmic reticulum, mitochondria or golgi apparatus. Cell fragments can include vesicles, such as inside out or outside out vesicles or mixtures thereof. Preparations that include cell fragments can be made using methods known in the art.
A “population of cells” refers to a sample that includes more than one cell or more than one type of cell. For example, a sample of blood from a subject is a population of white cells and red cells. A “population of cells” can also include a plurality of cell types obtained by, for example, processing or preparing tissue samples. A population of cells can also include a sample including a plurality of substantially homogeneous cells, such as obtained through cell culture methods for a continuous cell lines.
A “population of cell fragments” refers to a sample that includes more than one cell fragment or more than one type of cell fragments. For example, a population of cell fragments can include mitochondria, nuclei, microsomes and portions of golgi apparatus that can be formed upon cell lysis.
A “particle positioning means” refers to a means that is capable of manipulating the position of a particle relative to the X-Y coordinates or X-Y-Z coordinates of a biochip. Positions in the X-Y coordinates are in a plane. The Z coordinate is perpendicular to the plane. In one aspect of the present invention, the X-Y coordinates are substantially perpendicular to gravity and the Z coordinate is substantially parallel to gravity. This need not be the case, however, particularly if the biochip need not be level for operation or if a gravity free or gravity reduced environment is present. Several particle positioning means are disclosed herein, such as but not limited to dielectric structures, dielectric focusing structures, quadropole electrode structures, electrorotation structures, traveling wave dielectrophoresis structures, concentric electrode structures, spiral electrode structures, circular electrode structures, square electrode structures, particle switch structures, dielectrophoresis guide electrode structures, electromagnetic structures, DC electric field induced fluid motion structure, electroosmosis structures, acoustic structures, pressure control structures and the like. Preferably, a biochip of the present invention comprises a particle positioning means and an ion transport measuring means, and the particle positioning means, when connected with an electrical signal source, is capable of and is used for positioning particles at, on, or near the ion transport measuring means.
A “particle manipulation or manipulating means” refers to a means that is capable of manipulating the position of a particle relative to the X-Y coordinates or X-Y-Z coordinates of a biochip. Same or similar types of structures can be used for “particle positioning means” and “particle manipulating means”. In one embodiment of biochips of the present invention, a biochip comprises a “particle positioning means”, an “ion transport measuring means” and additionally a “particle manipulating means”. The particle manipulating means and structures can be used for various purposes, for example, separating target particles from mixtures of particles such as cells, transporting separated target cells to the regions where the particle positioning means can then position them, and fluidic mixing. The particle manipulating means and structures can change or modulate the relative positions of two or more particles within mixtures of particles on a biochip. “Particle manipulating means” may be incorporated onto the chip of the present invention, or “particle manipulating means” may be located outside, but preferably in close proximity of, the chip.
An “ion transport measuring means” or “ion channel measuring means” refers to a means that is capable of measuring ion transport function or properties. In the present invention, holes, apertures, capillaries, and needles are examples of structures that can be used as ion transport measuring means. An ion transport measuring means is preferably positioned on or within a biochip of the present invention, a fluidic component, a chamber, or a cartridge of the present invention. However, an ion transport measuring structure may be located on a biochip or may be not be localized on a biochip. For example, a glass pipette can be an ion transport measuring means.
A “hole” is an aperture that extends through a chip. Descriptions of holes found herein are also meant to encompass the perimeter of the hole that is in fact a part of the chip or substrate (or coating) surface, as well as the surfaces that surround the interior space of the hole that is also the chip or substrate (or coating) material. Thus, in the present invention, where particles are described as being positioned on, at, near, against, or in a hole, or adhering or fixed to a hole, it is intended to mean that a particle contacts the entire perimeter of a hole, such that at least a portion of the surface of the particle lies across the opening of the hole, or in some cases, descends to some degree into the opening of the whole, contacting the surfaces that surround the interior space of the hole.
A “capillary” in the context of a chip or a biochip of the present invention is a tubular structure that can protrude upward from the surface of a chip, providing a rim, and an inner space that can be in fluid communication with a chamber above the surface of a chip and a chamber below the surface of the chip. Although the term “capillary” can suggest a narrow, elongated tube, as used herein, the term “capillary”, when referring to a structure on a chip, can also describe a tube with a wide diameter with respect to its height. In addition, the perimeter of the opening of a capillary need not be circular, although preferably the perimeter of the opening of a capillary is curved. In the case of a glass “capillary” electrode, capillaries refer to glass pipettes used for patch clamping. Another usage of “capillary” in the present invention is “capillary electrophoresis”, describing electrophoresis occurred in a tubular structure or a thin channel.
A “needle” is a long, thin structure of conductive material that can contact and puncture a particle such as a cell such that the particle (cell) membrane can seal around the circumference of the needle and the needle can function as a recording electrode. In preferred aspects of the present invention, a needle is a long cylindrical structure having a conductive core that includes a tip that is less than 0.05 microns at its largest diameter. The needle can comprise a coating of an insulating material that surrounds at least a portion of the conductive core, with the exception of the tip. When a particle such as a cell is impaled upon the needle, the conductive tip of the needle is fully inside the particle interior so that the needle engages the particle surface (for example cell membrane) at the insulator-covered regions of the needle structure with a high resistance seal. The diameter at the base of the needle can be 5 microns or less at its largest diameter. A needle can be connected to recording circuitry, and can optionally be fabricated on or attached to a biochip.
A “dielectric focusing structure” refers to a structure that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using dielectric forces or dielectrophoretic forces.
A “quadropole electrode structure” refers to a structure that includes four electrodes arranged around a locus such as a hole, capillary or needle on a biochip and is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using dielectrophoretic forces or dielectric forces generated by such quadropole electrode structures.
An “electrorotation structure” refers to a structure that is on or within a biochip or a chamber that is capable of producing a rotating electric field in the X-Y or X-Y-Z coordinates that can rotate a particle. Preferred electrorotation structures include a plurality of electrodes that are energized using phase offsets, such as 360/N degrees, where N represents the number of electrodes in the electroroation structure (see generally U.S. patent application Ser. No. 09/643,362 entitled “Apparatus and Method for High Throughput Electrorotation Analysis” filed Aug. 22, 2000, naming Jing Cheng et al. as inventors). A rotating electrode structure can also produce dielectrophoretic forces for positioning particles to certain locations under appropriate electric signal or excitation. For example, when N=4 and electrorotation structure corresponds to a quadropole electrode structure.
A “traveling wave dielectrophoresis structure” refers to a structure that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using traveling wave dielectrophoretic forces (see generally U.S. patent application Ser. No. 09/686,737 filed Oct. 10, 2000, to Xu, Wang, Cheng, Yang and Wu; and U.S. application Ser. No. 09/678,263, entitled “Apparatus for Switching and Manipulating Particles and Methods of Use Thereof” filed on Oct. 3, 2000 and naming as inventors Xiaobo Wang, Weiping Yang, Junquan Xu, Jing Cheng, and Lei Wu).
A “concentric circular electrode structure” refers to a structure having multiple concentric circular electrodes that are on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using dielectrophoretic forces.
A “spiral electrode structure” refers to a structure having multiple parallel spiral electrode elements that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using dielectric forces.
A “square spiral electrode structure” refers to a structure having multiple parallel square spiral electrode elements that are on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using dielectrophoretic or traveling wave dielectrophoretic forces.
A “particle switch structure” refers to a structure that is on or within a biochip or a chamber that is capable of transporting particles and switching the motion direction of a particle or particles in the X-Y or X-Y-Z coordinates of a biochip. The particle switch structure can modulate the direction that a particle takes based on the physical properties of the particle or at the will of a programmer or operator (see, generally U.S. application Ser. No. 09/678,263, entitled “Apparatus for Switching and Manipulating Particles and Methods of Use Thereof” filed on Oct. 3, 2000 and naming as inventors Xiaobo Wang, Weiping Yang, Junquan Xu, Jing Cheng, and Lei Wu.
A “dielectrophoresis guide electrode structure” refers to an electrode structure that is capable of modulating the position of a moving particle in the X-Y or X-Y-Z coordinates of a biochip using dielectrophoretic forces. The moving particle is in a fluidic suspension and is carried with the moving fluid. The dielectrophoresis guide electrode structure is integrated with ion transport measuring or detection means so that the moving particle can be guided towards or near the ion transport measuring or detection means. Examples of dielectrophoresis guide electrode structure is provided in
An “electromagnetic structure” refers to a structure that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using electromagnetic forces. The particle to be manipulated by electromagnetic forces is either intrinsically magnetic or magnetically labeled. See generally U.S. patent application Ser. No. 09/685,410 filed Oct. 10, 2000, to Wu, Wang, Cheng, Yang, Zhou, Liu and Xu, WO 00/54882 published Sep. 21, 2000 to Zhou, Liu, Chen, Chen, Wang, Liu, Tan and Xu and related U.S. patent application Ser. No. 09/685,410 filed Oct. 10, 2000 and U.S. Pat. No.6,355,491 A “DC electric field induced fluid motion structure” refers to a structure that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using DC electric field that produces a fluidic motion. For example, a fluidic channel filled with solutions or fluids and having a charged surface can be used as a “DC electric field induced fluid motion structure”. DC electric field can be applied to such a fluidic channel in its length direction and the applied DC field can induce a fluidic motion in the channel. If particles are in the fluid in such a channel, particles can be caused to move towards or near the ion transport measuring means on the biochip.
An “electroosomosis structure” refers to a structure that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using electroosmotic forces. Preferably, an electroosmosis structure can modulate the positioning of a particle such as a cell or fragment thereof with an ion transport measuring means such that the particle's seal (or the particle's sealing resistance) with such ion transport measuring means is increased.
An “acoustic structure” refers to a structure that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using acoustic forces. In one aspect of the present invention, the acoustic forces are transmitted directly or indirectly through an aqueous solution to modulate the positioning of a particle. Preferably, an acoustic structure can modulate the positioning of a particle such as a cell or fragment thereof with an ion transport measuring means such that the particle's seal with such ion transport measuring means is increased.
A “negative pressure structure” refers to a structure that is on or within a biochip or a chamber that is capable of modulating the position of a particle in the X-Y or X-Y-Z coordinates of a biochip using negative pressure forces, such as those generated through the use of pumps or the like. Preferably, a negative pressure structure can modulate the positioning of a particle such as a cell or fragment thereof with an ion transport measuring means such that the particle's seal with such ion transport measuring means is increased. The use of this term in no way excludes the possibility of using instead positive pressure on the opposing chamber. Moreover, the term refers to the directionality of the pressure from the perspective of the particle.
A “horizontal positioning means” refers to a particle positioning means that can position a particle in the X-Y coordinates of a biochip or chamber wherein the Z coordinate is substantially defined by gravity.
A “vertical positioning means” refers to a particle positioning means that can position a particle in the Z coordinate of a biochip or chamber wherein the Z coordinate is substantially defined by gravity. “Micro-scale structures” are structures integral to or attached on a chip, wafer, or chamber that have characteristic dimensions of scale for use in microfluidic applications ranging from about 0.1 micron to about 20 mm. Example of micro-scale structures that can be on chips of the present invention are wells, channels, scaffolds, electrodes, electromagnetic units, or microfabricated pumps or valves.
“Separation” is a process in which one or more components of a sample is spatially separated from one or more other components of a sample or a process to spatially redistribute particles within a sample such as a mixture of particles, such as a mixture of cells. A separation can be performed such that one or more particles is translocated to one or more areas of a separation apparatus and at least some of the remaining components are translocated away from the area or areas where the one or more particles are translocated to and/or retained in, or in which one or more particles is retained in one or more areas and at least some or the remaining components are removed from the area or areas. Alternatively, one or more components of a sample can be translocated to and/or retained in one or more areas and one or more particles can be removed from the area or areas. It is also possible to cause one or more particles to be translocated to one or more areas and one or more moieties of interest or one or more components of a sample to be translocated to one or more other areas. Separations can be achieved through the use of physical, chemical, electrical, or magnetic forces. Examples of forces that can be used in separations include but are not limited to gravity, mass flow, dielectrophoretic forces, traveling-wave dielectrophoretic forces, and electromagnetic forces.
“Capture” is a type of separation in which one or more particles is retained in one or more areas of a chip. In the methods of the present invention, a capture can be performed when physical forces such as dielectrophoretic forces or electromagnetic forces are acted on the particle and direct the particle to one or more areas of a chip.
An “assay” is a test performed on a sample or a component of a sample. An assay can test for the presence of a component, the amount or concentration of a component, the composition of a component, the activity of a component, the electrical properties of an ion transport protein, etc. Assays that can be performed in conjunction with the compositions and methods of the present invention include, but not limited to, biochemical assays, binding assays, cellular assays, genetic assays, ion transport assay, gene expression assays and protein expression assays.
A “binding assay” is an assay that tests for the presence or the concentration of an entity by detecting binding of the entity to a specific binding member, or an assay that tests the ability of an entity to bind another entity, or tests the binding affinity of one entity for another entity. An entity can be an organic or inorganic molecule, a molecular complex that comprises, organic, inorganic, or a combination of organic and inorganic compounds, an organelle, a virus, or a cell. Binding assays can use detectable labels or signal generating systems that give rise to detectable signals in the presence of the bound entity. Standard binding assays include those that rely on nucleic acid hybridization to detect specific nucleic acid sequences, those that rely on antibody binding to entities, and those that rely on ligands binding to receptors.
A “biochemical assay” is an assay that tests for the composition of or the presence, concentration, or activity of one or more components of a sample.
A “cellular assay” is an assay that tests for or with a cellular process, such as, but not limited to, a metabolic activity, a catabolic activity, an ion transport function or property, an intracellular signaling activity, a receptor-linked signaling activity, a transcriptional activity, a translational activity, or a secretory activity. A cellular assay can also test for cellular processes that have morphological components, such as a change in cell size or shape, dendrite or axon extension, endocytosis, exocytosis, etc.
An “ion transport assay” is an assay useful for determining ion transport functions or properties and testing for the abilities and properties of chemical entities to alter ion transport functions. Preferred ion transport assays include electrophysiology-based methods which include, but are not limited to patch clamp recording, whole cell recording, perforated patch recording, cell-attached patch recording, vesicle recording, outside-out and inside-out recording, single channel recording, artificial membrane channel recording, voltage gated ion transport recording, ligand gated ion transport recording, stretch activated (fluid flow or osmotic) ion transport recording, and recordings on energy (such as ATP) requiring ion transports, non energy requiring ion transports, and channels formed by toxins such a scorpion toxins, viruses, certain proteins, and the like. For references, Neher and Sakman, Scientific American 266:44-51 (1992); Sakmann and Neher, Ann. Rev. Physiol. 46:455-472 (1984); Cahalan and Neher, Methods in Enzymology 207:3-14 (1992); Levis and Rae, Methods in Enzymology 207:14-66 (1992); Armstrong and Gilly, Methods in Enzymology 207:100-122 (1992); Heinmann and Conti, Methods in Enzymology 207:131-148 (1992); Bean, Methods in Enzymology 207:181-193 (1992); Leim et al., Neurosurgery 36:382-392 (1995); Lester, Ann. Rev. Physiol 53:477-496 (1991); Hamill and McBride, Ann. Rev. Physiol 59:621-631 (1997); Bustamante and Varranda, Brazilian Journal 31:333-354 (1998); Martinez-Pardon and Ferrus, Current Topics in Developmental Biol. 36:303-312 (1998); Herness, Physiology and Behavior 69:17-27 (2000); Aston-Jones and Siggins, www.acnp.org/GA/GN40100005/CH005.html (Feb. 8, 2001); U.S. Pat. No. 6,117,291; U.S. Pat. No. 6,107,066; U.S. Pat. No. 5,840,041 and U.S. Pat. No. 5,661,035; Boulton et al., Patch-Clamp Applications and Protocols, Neuromethods V. 26 (1995), Humana Press, New Jersey; Ashcroft, Ion Channels and Disease, Cannelopathies, Academic Press, San Diego (2000); Sakmann and Neher, Single Channel Recording, second edition, Plenuim Press, New York (1995) and Soria and Cena, Ion Channel Pharmacology, Oxford University Press, New York (1998), each of which is incorporated by reference herein in their entirety.
“Voltage Clamp” refers to controlling the potential across the cell (or patch) membrane. A desirable “command” voltage is applied to the membrane by the patch clamp amplifier. Clamping of voltage across the membrane when its ionic conductance changes in response to the command voltage is achieved by injecting a current back to the membrane from the amplifier that matches the current induced by ion channel opening or closing. This injected current is measured and recorded by the patch clamp amplifier and electronics. For detailed description, see Hille, “Ionic Channels of Excitable Membranes” 2nd Ed. (Sinauer Associates, Inc, 1992).
A “genetic assay” is an assay that tests for the presence or sequence or amount of a genetic element, where a genetic element can be any segment of a DNA or RNA molecule, including, but not limited to, a gene, a repetitive element, a transposable element, a regulatory element, a telomere, a centromere, or DNA or RNA of unknown function. Genetic assays also include assays that involve the manipulation of genetic elements for the purpose of detection, analysis, screening, or any other testing. As nonlimiting examples, genetic assays can use nucleic acid hybridization techniques, can comprise nucleic acid sequencing reactions, or can use one or more polymerases, as, for example a genetic assay based on PCR. A genetic assay can use one or more detectable labels, such as, but not limited to, fluorochromes, radioisotopes, or signal generating systems.
A “detection assay” is an assay that can detect a substance, such as an ion, molecule, or compound by producing a detectable signal in the presence of the substance. Detection assays can use specific binding members, such as antibodies or nucleic acid molecules, and detectable labels that can directly or indirectly bind the specific binding member or the substance or a reaction product of the substance. Detection assays can also use signal producing systems, including enzymes or catalysts that directly or indirectly produce a detectable signal in the presence of the substance or a product of the substance.
An “electric sealing” (or “seal”, “high resistance seal”, “electronic sealing”, “electric seal”, or “electronic seal”) refers to a high-resistance engagement between a particle or particle surface such as a cell membrane and an ion transport measuring means or structures, such as a hole, capillary or needle of the present invention. The definition of “resistance of electric sealing” between a particle or particle surface, such as cell membrane, and an ion transport measuring structure, such as a hole, is the same as that commonly used in classical patch clamp recording, referring to the electric or electronic leakage resistance across the ion transport measuring means or measuring structure (for example between the two ends of a hole) when the particle or particle surface is engaged on the measuring structure. For example, the measuring structure or measuring means is a hole through a biochip and a particle under measurement is a biological cell, which is engaged onto the hole with part of the cell membrane being attached to the surface of the hole. The cell is placed in or suspended in a measurement solution thus the regions connecting to the two ends of the hole (and the hole itself) are loaded with measurement solutions. The “resistance of electric sealing” refers to the leakage resistance between the two regions connecting to the two ends of the hole. Preferred resistance of such electric sealing is between about 1 mega ohm and about 100 giga ohms, but that need not be the case. More preferably, resistance of such electric sealing is above 200 mega ohm. Even more preferably, resistance of such electric sealing is above 500 mega ohm. Still even preferably, resistance of such electric sealing is above 1 giga ohm. Generally, a large resistance results in decreased noise in the recording signals. For specific types of ion channels (with different magnitude of recording current) appropriate electric sealing in terms of mega ohms or giga ohms can be used.
A “ligand gated ion transport” refers to ion transports such as ligand gated ion channels, including extracellular ligand gated ion channels and intracellular ligand gated ion channels, whose activity or function is activated or modulated by interaction with a ligand. The activity or function of ligand gated ion transports can be detected by measuring current in response to ligands or test chemicals or by measuring the voltage changes in response to that current. Examples include but are not limited to GABAA, strychnine-sensitive glycine, nicotinic acetylcholine (Ach), ionotropic glutamate (iGlu), and 5-hydroxytryptamine3 (5-HT3) receptors.
A “voltage gated ion transport” refers to ion transports such as voltage gated ion channels whose activity or function is activated or modulated by voltage. The activity or function of voltage gated ion transports can be determined by measuring the current carried by those ion transports in response to an imposed command voltage, or by measuring the effects of the ionic currents on voltage with or without an imposed command current. “Imposed command voltage” refers to the precise injection of current with the intent of clamping voltage to a desired value. In this document “voltage” may be used interchangeably with what is in the art referred to as “membrane potential”, namely it is the relative difference between the sum of all the ionic electrical and chemical potential energies on each side of a particle membrane. Examples include but are not limited to voltage dependent Na+ channels.
“Perforated” patch clamp refers to the use of perforating or permeabilizing agents such as but not limited to nystatin and amphotericin B to form pores or perforations in membrane patches (of cells, or other membrane bound particles). The formed pores or perforations are preferably ion-conducting, which allows for the electrical communication or conductance through the membrane patches and allows for measurement of current, including whole cell current.
“Cell-attached patch” method refers to the measurement of ionic current conducted by ion transports (for example ion channels) in membrane patches of cells (or other membrane bound particles) when the whole cells are attached to ion transport measuring means such as capillaries or ion transport measurement holes or apertures. In this configuration, membrane patches attached to the ion transport measuring means are not ruptured or perforated and remain intact during the measurement. The membrane not bound within the hole may or may not (for example by perforation with ionnphortes) be left intact. In certain circumstances, it may be desirable to provide a conductance pathway through the membrane not bound within the hole to guarantee a known membrane potential across the clamped patch. This method measures and detects the responses of ion transport(s) located in the membrane patch.
“Measurement solution” refers to any solution that can be used during the electrophysiological measurement of ion transports. Examples of measurement solutions include extracellular solutions into which the cells under the measurement are introduced or suspended; intracellular solutions that are in direct fluidic contact with cell interior when the membrane patches in ion transport measurement holes are ruptured; cell suspension; solutions containing test compounds. Typically, the measurement solution is aqueous, has appropriate ion concentrations, is isotonic to physiological osmolarity or osmolality, and has a physiological pH, such as between about 7.2 and about 7.4, or has a pH between about 6.6 and about 8.
An “electrode” is a structure of highly electrically conductive material. A highly conductive material is a material with conductivity greater than that of surrounding structures or materials. Suitable highly electrically conductive materials include metals, such as gold, chromium, platinum, aluminum, and the like, and can also include nonmetals, such as carbon, conductive liquids or conductive fluids and conductive polymers. An electrode can be any shape, such as rectangular, circular, castellated, etc. Electrodes can also comprise doped semi-conductors, where a semi-conducting material is mixed with small amounts of other “impurity” materials. For example, phosphorous-doped silicon may be used as conductive materials for forming electrodes. For the present invention, electrodes can serve two different functions. Electrodes can be used as particle positioning means to generate electrical fields in the regions on and around the chip so that particles can be positioned or directed towards or near or at the ion transport measuring means. Electrodes can also be used for measuring and detection electrical functions, responses, and/or properties of ion transports. Such electrodes are called “recording electrodes”. Electrodes can be integral on or within a biochip or can be located outside the chip.
A “channel” “fluidic channel” or “microfluidic channel” is a structure in a chip or other devices with a lower surface and at least two walls that extend upward from the lower surface of the channel, and in which the length of two opposite walls is greater than the distance between the two opposite walls. A channel therefore allows for flow of a fluid along its internal length. A channel can be covered (a “tunnel”) or open. A channel is also referred as a “fluidic channel” or a microfluidic channel. When a channel is covered, negative or positive pressure can be conducted in fluidic channels for moving fluids in the channel. If a channel surface is negatively or positively charged, electroosmosis can be induced in the channel for moving fluids when an appropriate electric field is applied along the length direction of the channel.
“Continuous flow” means that fluid is pumped or injected into a chamber of the present invention continuously during the separation process. This allows for components of a sample that are not selectively retained on a chip to be flushed out of the chamber during the separation process.
“Binding partner” refers to any substances that both bind to the moieties with desired affinity or specificity and are manipulatable with the desired physical force(s). Non-limiting examples of the binding partners include cells, cellular organelles, viruses, particles, microparticles or an aggregate or complex thereof, or an aggregate or complex of molecules.
A “specific binding member” is one of two different molecules having an area on the surface or in a cavity that specifically binds to and is thereby defined as complementary with a particular spatial and polar organization of the other molecule. A specific binding member can be a member of an immunological pair such as antigen-antibody, can be biotin-avidin or biotin streptavidin, ligand-receptor, nucleic acid duplexes, IgG-protein A, DNA-DNA, DNA-RNA, RNA-RNA, and the like.
A “nucleic acid molecule” is a polynucleotide. A nucleic acid molecule can be DNA, RNA, or a combination of both. A nucleic acid molecule can also include sugars other than ribose and deoxyribose incorporated into the backbone, and thus can be other than DNA or RNA. A nucleic acid can comprise nucleobases that are naturally occurring or that do not occur in nature, such as xanthine, derivatives of nucleobases, such as 2-aminoadenine, and the like. A nucleic acid molecule of the present invention can have linkages other than phosphodiester linkages. A nucleic acid molecule of the present invention can be a peptide nucleic acid molecule, in which nucleobases are linked to a peptide backbone. A nucleic acid molecule can be of any length, and can be single-stranded, double-stranded, or triple-stranded, or any combination thereof. The above described nucleic acid molecules can be made by a biological process or chemical synthesis or a combination thereof.
A “detectable label” is a compound or molecule that can be detected, or that can generate readout, such as fluorescence, radioactivity, color, chemiluminescence or other readouts known in the art or later developed. Such labels can be, but are not limited to, photometric, colorimetric, radioactive or morphological such as changes of cell morphology that are detectable, such as by optical methods. The readouts can be based on fluorescence, such as by fluorescent labels, such as but not limited to, Cy-3, Cy-5, phycoerythrin, phycocyanin, allophycocyanin, FITC, rhodamine, or lanthanides; and by fluorescent proteins such as, but not limited to, green fluorescent protein (GFP). The readout can be based on enzymatic activity, such as, but not limited to, the activity of beta-galactosidase, beta-lactamase, horseradish peroxidase, alkaline phosphatase, or luciferase. The readout can be based on radioisotopes (such as 33P, 3H, 14C, 35S, 125I, 32P or 131I. A label optionally can be a base with modified mass, such as, for example, pyrimidines modified at the C5 position or purines modified at the N7 position. Mass modifying groups can be, for examples, halogen, ether or polyether, alkyl, ester or polyester, or of the general type XR, wherein X is a linking group and R is a mass-modifying group. One of skill in the art will recognize that there are numerous possibilities for mass-modifications useful in modifying nucleic acid molecules and oligonucleotides, including those described in Oligonucleotides and Analogues: A Practical Approach, Eckstein, ed. (1991) and in PCT/US94/00193.
Other technical terms used herein have their ordinary meaning in the art that they are used, as exemplified by a variety of technical dictionaries.
Introduction
The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as patch-clamp recordings, are preferable to methods that utilize indirect detection methods, such as fluorescence-based detection systems. The present invention provides biochips and other fluidic components and apparatuses and methods of use that allow for the direct detection of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and apparatuses and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes, including high-throughput screening purposes.
In some aspects the present invention can be practiced using a wide variety of cells from different sources. For example, cancer cells can be interogated as to their ion channel activity in the presence and absence of test compounds or in comparison to other cells such as non-cancerous cells or other cancer cells. Also, the present invention can utilize neurons or cells of neuronal origin. For example, neuronal cells derived or obtained from subjects including humans or animals or animals sympomatic for neurodegenerative disorders such as, but not limited to Alzheimer's disease, Parkinson's disease, multiple sclerosis, lateral sclerosis and the like can be interogated as to ion channel activity in the presence and absence of test compounds or in comparison to other cells such as normal neuronal cells or cells from different subjects having the same or different neurodegenerative disorders. Alternatively, stem cells can be investigated as to ion channel activity and compared to other cells or during differentation of a population of stem cells over time or in the presence or absence of a test compound.
As a non-limiting introduction to the breath of the present invention, the present invention includes a number of general and useful aspects, including:
These aspects of the invention, as well as others described herein, can be achieved by using the methods, articles of manufacture and compositions of matter described herein. To gain a full appreciation of the scope of the present invention, it will be further recognized that various aspects of the present invention can be combined to make desirable embodiments of the invention.
The present invention includes a biochip that includes at least one particle positioning means and at least one ion transport measuring means. Particle positioning means such as, but not limited to, dielectric focusing structures, electrorotation structures, dielectrophoresis structures, traveling wave dielectrophoresis structures, dielectrophoresis guide structures, electroosmosis structures, or acoustic structures that can precisely position a particle, such as a cell, at or near an ion transport measuring means. Preferred ion transport measuring means include holes, apertures, or capillaries that can form a seal with a particle, such as a biological membrane, so that ion transport function or properties of the particle can be determined. Coupled with holes, apertures, or capillaries there can be electrodes that can record electric responses of ion transports such as ion channels.
Biochips in General
Biochips of the present invention generally are made using microfabrication methods such as those generally used in electronic chip manufacture. For example, methods of photolithography, MEMS fabrication, micromachining, molding, casting and other methods can be used. Generally, biochips include a substrate that forms a solid support or platform on which particle manipulation or an assay can take place. Biochips can also include one or more chambers or one or more conduits to allow for the introduction of materials onto the substrate or within the channels of the biochip.
Substrate
A substrate is an entity that a) provides a surface for the manipulation, transport, or analysis of moieties such as particles, or b) provides one or more structures that function in the manipulation, transport, or analysis of moieties such as particles. A chip can comprises one or more substrates. Where a chip comprises more than one substrate, the substrates are preferably arranged in layers. A substrate can be of any appropriate material or combination of materials for the manufacture of chips, such as through microfabrication methods used in the semiconductor industry. Preferred materials include, but are not limited to silicon, glass, sintered glass, quartz, silicon-oxide, plastics, ceramics, polymers such as a silicone polymer (for example polydimethylsiloxane, PDMS) or the like. A substrate is preferably non-porous, but porous materials are also useful, particularly for applications that utilize the transfer of materials through a substrate to take part in methods of the present invention, such as but not limited to binding reactions or detection of binding reactions.
A substrate is preferably of dimensions that are appropriate for microfabrication methods, such as etching, sputtering, masking, micromachining, drilling, laser ablation and the like. The substrate is also preferably of a size appropriate for micromanipulation of particles and for measuring ion transport function or properties such as described in the methods herein. For example, the substrate is preferably thin, such as about a millimeter in thickness, and between about 5 millimeters and about 50 centimeters in length and width, respectively, preferably between about 1 centimeter and about 5 centimeters in length and width, respectively. However, such sizes are not considered limiting to the present invention. The substrate can be of any appropriate shape, such as geometric or non-geometric shapes, such as square, circular, oblong, elliptical or the like. Preferred shapes include squares, circles, and appropriate polygons.
A substrate can be part of a single layer or multi-layered chip that can have a plurality of functions. For example, a single layer chip can include a variety of structures to perform a variety of functions, particularly particle positioning means. Preferred particle positioning means include, for example, acoustic structures or vibrational structures such as piezoelectric materials as they are known in the art to generate acoustic fields in a sample; dielectric structures such as dielectric focusing structures, quadropole electrode structures, traveling wave dielectrophoresis structures, concentric circular electrode structures, spiral electrode structures, square spiral electrode structures, particle switch structures; electrorotational structures; dielectrophoresis guide electrode structures; electromagnetic structures; DC electric field induced fluid motion structures, electroosmosis structures or pressure control structures to move or modulate moieties or particles. Alternatively, these additional structures, such as vibrational structures or dielectric structures can be provided in separate layers of substrate. In this aspect of the present invention, a plurality of substrates can be sandwiched and adhered together and fabricated into a multi-functional chip. The different functional elements can be independently controlled by appropriate controlling devices, such as switches and conductive materials (see, generally U.S. application Ser. No. 09/679,024, entitled “Apparatuses Containing Multiple Active Force Generating Elements and Uses Thereof” filed Oct. 4, 2000, and naming as inventors Xiaobo Wang, Jing Cheng, Lei Wu, Weiping Yang and Junquan Xu).
Coating
A substrate can optionally include a coating. A coating can cover the whole surface of a substrate of a biochip, or portions of a surface of a substrate of a biochip. A coating can be provided as a thin film (or film) of appropriate material to prevent direct interaction of particles with the substrate of a biochip. Alternatively or in addition, the coating can provide structures, such as holes, that can align with or interact with structural elements on or within the substrate, such as particle positioning means or holes or capillaries (see for example,
A coating can be a functional layer. A functional layer can include at least one immobilized moiety or ligand. Preferred immobilized moieties include charged groups, nucleic acid molecules, antibodies or receptors. A functional layer, when present, can be provided on the surface of the substrate such as to provide a variety of chemical groups or biological groups that can be utilized in the methods of the present invention. For example, antibodies or cell adhesion molecules or active fragments thereof can be localized at, near or on or within holes, capillaries or needles of the devices of the present invention so that a good electric seal between the particle such as a cell and the device can be achieved.
A functional layer can be of any appropriate material, but is preferably includes at least one of the following materials: a hydrophilic molecular monolayer, a hydrophilic molecular monolayer with functional groups, a hydrophobic molecular monolayer, a hydrophobic molecular monolayer with functional groups, a hydrophilic membrane, a hydrophilic membrane with functional groups, a hydrophobic membrane, a hydrophobic membrane with functional groups, a hydrophilic gel (for example a hydrogel), a hydrophilic gel with functional groups, a hydrophobic gel, a hydrophobic gel with functional groups, a porous material, a porous material with functional groups, a non-porous material and a non-porous material with functional groups.
A functional layer can be a sheet of material that is contacted, attached or adhered to the substrate. In the alternative, a functional layer can be made by modification, such as chemical modification or chemical treatment (for example, treated in acid, and/or base for specified lengths of time), of the substrate. Furthermore, the functional layer can be made by spraying, dipping or otherwise contacting liquid or semisolid material onto the substrate, wherein the material is then solidified such as through cooling, gelling, solidifying or polymerization. Another category of methods for producing the functional layer is physical means, in which the biochip is subjected to certain physical treatment. For example, a substrate or a biochip can be subjected to a baking procedure at certain temperature for certain lengths of time, which may result in some changes in surface compositions of the biochip. In another example, a substrate of a biochip surface of the portion of the biochip surface can be subjected a treatment by applying high energy radiation (including UV radiation), microwave radiation, oxygen plasma, or reactive chemical compounds. In still another example, the surface or the portion of the surface of a biochip made of glass may be subjected to a laser of appropriate wavelength and intensity so that the surface can be smoothed or polished.
A functional layer can have a variety of functional groups that can take part in a variety of chemical or biochemical reactions designed to immobilize particles thereon. Preferred functional groups include but are not limited to aldehydes, carbodiimides, succinimydyl esters, antibodies, receptors and lectins. Materials having these functional groups are known in the art. In addition, methods of making a variety of surfaces having these functional groups are known in the art.
A functional layer can include a moiety or ligand immobilized thereon. Preferred immobilized moieties or ligands include, but are not limited to nucleic acid molecules (such as single stranded or double stranded DNA or RNA or a combination thereof), binding reagents (such as antibodies or active fragments thereof), receptors or other members of binding pair, polypeptides, proteins, peptide nucleic acids, carbohydrates, lipids, prokaryotic cells, eukaryotic cells, prions, viruses, parasites, bacteria antibodies, lectins or receptors. Functional layers having such immobilized moieties thereon can be made using a variety of methods. For example, a functional layer with an appropriate functional group can be contacted with a preparation having a moiety to be immobilized thereon. The immobilization of such moieties on a functional layer can be throughout the functional layer or localized using appropriate methods, such as masking. For example, antibodies or cell adhesion molecules or active fragments thereof can be localized at, near or on or within holes, capillaries or needles of the devices of the present invention so that a good electric seal between the particle such as a cell and the device can be achieved.
A coating or a functional layer on the whole surface of the substrate, or on one or more portions of the surface of the substrate may serve any of a number of purposes. In one example, the functional layer (for example, the functionalized surfaces obtained by chemical treatment or chemical modification) may have appropriate electric charge, hydrophilicity or hydrophobicity, texture (for example, smoothness) and/or composition, which may facilitate and enhance high-resistance sealing between the substrates or holes and the membranes of the particles during electrophysiological measurement. In a specific embodiment, the substrate is made of glass and the functionalized surface refers to the surface that is obtained by treating the glass chip with acidic and/or basic solutions. Not intending to be limited to a mechanism of action, such a treatment may result in a change in surface composition, and/or surface texture, and/or surface cleanness, and/or surface electric charge on the substrate and/or on the hole. The altered surface properties may improve or facilitate high resistance electric seal or sealing between the substrates or holes and the membranes of the particles under electrophysiological measurement. In another example, the coating or the functional layer may be used for rupturing membrane patch of a cell that has been positioned on the ion-channel measurement hole located on the substrate.
In some preferred embodiments of the present invention, substrates, chips, coatings or any portions thereof can be treated with one or more acids, one or more bases, plasma, or peroxide to modify the surface of substrates, chips, coatings, or any portions thereof. Alternatively or in addition, the surface of substrates, chips, or coatings or any portions thereof can optionally be laser polished. In a particularly preferred embodiment of the present invention, a substrate, chip, coating or any portion thereof can be treated with base to facilitate the formation of an electric seal between a particle and an ion transport measuring means on the substrate, chip, or coating; to enhance an electric seal formed between a particle and an ion transport measuring means on the substrate, chip, coating; or to improve the probability of forming an electric seal between a particle and an ion transport measuring means on the substrate, chip, or coating.
Whilst the coatings described above may be homogeneous surfaces in the composition, this is not necessarily to be the case. Different coatings may be applied to different portions of the biochip surface so that desired effects at different regions of the biochip surface can be obtained. For example, for a chip with the ion channel measurement holes, the regions around the ion channel holes can be modified to facilitate and enhance a high-resistance electronic seal between the chip or the hole and the membrane of a particle (for example a cell) under measurement, whilst the regions away from the measurement hole may be modified to prevent the particles (for example, the cells) from adhering to a surface that is not proximal to a hole.
Chambers
A chamber or fluid compartment of the present invention is a structure that can contain a fluid sample. A chamber can be of any size or dimensions, and preferably can contain a fluid sample of between one nanoliter and 50 milliliters, more preferably between about 1 microliter and about 10 milliliters, and most preferably between about 10 microliters and about 1 milliliter. Preferably, a chamber or fluid compartment comprises a chip or engages a chip. A chamber can comprise any suitable material, for example, silicon, glass, metal, ceramics, polymers, plastics, etc. and can be of a rigid or flexible material.
A chamber or fluid compartment forms walls around at least a portion of a chip such that fluid can be held within the chamber or fluid compartment. Optionally, the chamber or fluid compartment can be sealed on all sides, but that need not be the case. In addition, a chamber or fluid compartment can be connected to a variety of structures such as ports or conduits to allow fluids or solids such as samples or reagents to enter the chamber, such as through conduits. The fluids or solids are introduced into the chamber or fluid compartment by appropriate methods or forces, such as by gravity feed or pumps. A chamber can also include exit structures, such as conduits or ports that allow materials within a chamber to be removed. In one preferred aspect of the present invention, a chamber is a flow through chamber that allows materials to be introduced by way of entry structures such as ports or conduits and materials to be removed by way of exit structures such as ports or conduits.
Chambers used in the methods of the present invention can comprise or engage one or more chips, where chips are solid supports on which one or more separations, assays, transportation switching, electrophysiological measurements or capturing procedures can be performed. A chip can comprise one or more metals, ceramics, polymers, copolymers, plastics, rubber, silicon, or glass. A chip can comprise one or more flexible materials. A chip can have dimensions ranging from about one mm2 to about 0.25 m2. Preferably, the size of the chips useable in the present methods is from about four mm to about 25 cm2. The shape of the chips useable in the present methods can be regular shapes such as square, rectangular, circular, or oval, or can be irregularly shaped. One or multiple chambers or fluid compartments can be built into or onto a chip. Chips useable in the methods of the present invention can also have one or more wells or one or more channels that can be etched into a chip or built onto the surface of a chip. Chips useable in the devices or methods of the present invention can have at least one incorporated ion-channel measurement structure. For example, the ion-channel measurement structure may take the form of an ion-channel measurement hole or aperture (for example, as shown in FIGS. 1A-C).
Preferably, in embodiments where a chamber comprises recording electrodes, the electrodes will be incorporated onto or within the chip, but this is not a requirement of the present invention. Recording electrodes can be located outside the chamber. Electrodes on a chip can be of any shape, such as rectangular, castellated, triangular, circular, and the like. Electrodes can be arranged in various patterns, for example, spiral, parallel, interdigitated, polynomial, etc. Electrodes can be arranged so that dielectrophoretic forces can be produced to position particles such as cells to desired locations. Electrode arrays can be fabricated on a chip by methods known in the art, for example, electroplating, sputtering, photolithography or etching. Examples of a chip comprising electrodes include, but are not limited to, the dielectrophoresis electrode array on a glass substrate (for example, Dielectrophoretic Manipulation of Particles by Wang et al., in IEEE Transaction on Industry Applications, Vol. 33, No. 3, May/June, 1997, pages 660-669), individually addressable electrode array on a microfabricated bioelectronic chip (for example, Preparation and Hybridization Analysis of DNA/RNA from E. coli on Microfabricated Bioelectronic Chips by Cheng et al., Nature Biotechnology, Vol. 16, 1998, pages 541-546), and the capillary electrophoresis chip (for example, Combination of Sample-Preconcentration and Capillary Electrophoresis On-Chip by Lichtenberg, et al., in Micro Total Analysis Systems 2000 edited by A. van den Berg et al., pages 307-310). The electrodes incorporated in the chamber can be used for different purposes. In one example, the electrodes incorporated onto or within the chip are used for positioning particles. Such electrodes may serve as at least in part the particle positioning means. In another example, the electrodes are used for measuring electric properties or responses of ion transports. Such electrodes are referred as “recording electrodes”. The recording electrodes can be made or fabricated onto or within the chip and we call these electrodes integral on the chip. The recording electrodes may be separate from the chip but remain in conductive fluidic contact with the ion transport measuring means. Preferably, the recording electrodes are of Ag/AgCl composition or other compositions that have relatively stable electrode/solution interface potential difference.
A chamber that comprises or engages a chip useable in the methods of the present invention can comprise one or more ports, or openings in the walls of a chamber. Preferably, a port is of a shape and size that allows a conduit to engage a port for the dispensing of a sample into the chamber. A conduit can be any tube that allows for the entry of a fluid sample into the chamber. Preferred conduits for use in the present invention include tubing, for example, rubber or polymeric tubing, for example, tygon or Teflon tubing. Alternatively, a port can provide an opening in a wall of a chamber for the dispensing of sample into the chamber by, for example, pipetting or injection.
Conduits that engage one or more ports of the sample can introduce a sample to a chamber by means of a fluidic device such as a pump (for example, a peristaltic pump or infusion pump), pressure source syringe, or gravity feed. One or more reagents, buffers, or measurement solutions, including extracellular solutions, intracellular solutions, cell suspensions, test compound solutions, can be added to the chamber before, after, or concurrently with the addition of a sample that comprises the particles to be measured by electrophysiological methods to a chamber. It is also within the scope of the invention to mix the sample with a reagent, buffer, or solution, before adding the sample to the chamber. Such mixing can optionally occur in one or more conduits leading to a chamber, or in one or more reservoirs connected to conduits.
When the ion transport measuring or detection means take the form of holes, apertures, or capillaries, there may be two fluidic chambers or fluidic compartments that are separated and connected by the ion transport measuring means. In such cases, a cartridge comprising chips or fluidic components for electrophysiological measurement may have at least two types of chambers. The fluid compartment/chamber to which the particles under measurement are introduced is called “extracellular chamber” and the other fluidic compartment/chamber to which the ion transport measuring means is connected is called “intracellular chamber”. A number of exemplary cartridge configurations comprising such “intracellular chamber” and “extracellular chamber” are shown in
Particle Positioning Means
A biochip of the present invention preferably includes particle at least one positioning means that can be on the substrate, within the substrate, partially within the substrate or on within or partially within the coating, although such particle positioning means can be separate from such substrate altogether. Particle positioning means are preferably manufactured using microfabrication methods, such as etching, lithography or masking, but other methods, such as machining or micro-machining can be used. Particle positioning means are active upon a particle, parts of a particle or population of particles, such as a cell, portions of cells, or a population of cells depending on their physical characteristics. Particles can include, for example, cells or portions of cells that are linked directly or indirectly to another particle or other particles, such as beads or microparticles, such as polymeric beads or magnetic beads. These particles such as cells associated with additional particles can have physical properties different from unassociated cells or cell fragments, such as different dielectrophoretic mobility or susceptibility to a magnetic field.
The particle positioning means are preferably arranged such that particles can be mobilized using such particle positioning means so that particles are mobilized and positioned at, on or in close proximity to an ion transport measuring structure. A particle positioning means can be connected to an AC or DC signal source for producing forces on particles introduced onto a biochip to position one or more particles at, to, or near at least one ion transport measuring means.
The particle positioning means preferably include at least one structure selected from the group consisting of dielectric focusing structures, quadropole electrode structures, electrorotation structures, traveling wave dielectrophoresis structures, concentric circular electrode structures, spiral electrode structures, square spiral electrode structures, particle switch structures, dielectrophoresis guide electrode structures, electromagnetic structures, DC electric field-induced fluid motion structures, AC electric field induced fluid motion structures, electrophoretic structures, electroosmosis structures, acoustic structures, or pressure control structures. One or more of these structures can be integrated into a biochip for use as particle positioning structures or means. In one aspect of the present invention, more than one of these structures can be integral to a chip and can optionally be serviced by the same or different set of electrodes leading to a chip.
Dielectric Structures
Dielectric structures can be used in positioning particles at, on, or near an ion transport measuring structure on a biochip of the present invention. In addition, a number of dielectrophoretic manipulation methods may be used for manipulating particles or cells in the present invention. For example, dielectrophoretic separation methods may be used for separating or isolating target cells or particles before they are transported to the ion transport measuring or determining means for assaying their ion transport properties. The methods that can be used for the dielectrophoretic particle positioning as well as dielectrophoretic separation in the present invention include but are not limited to the following: dielectrophoretic techniques, dielectrophoretic migration, dielectrophoretic retention, dielectrophoretic/gravitational field flow fractionation, traveling-wave dielectrophoresis and 2-D dielectrophoresis.
For an electric field of non-uniform magnitude distribution, the dielectrophoretic force on a particle of radius r can be determined, under the dipole approximation, by the following equation:
where Erms is the RMS value of the field strength, the symbol ∇ is the symbol for gradient-operation, εm is the dielectric permittivity of the medium, and χDEP is the particle polarization factor (or dielectrophoretic polarization factor), given by:
“Re” refers to the real part of the “complex number”. The symbol εx*=εx−jσx/2πf is the complex permittivity (of the particle x=p, and the medium x=m) and j={square root}{square root over (−1)}. The parameters εp and εp are the effective permittivity and conductivity of the particle, respectively.
When a particle exhibits a positive dielectrophoretic polarization factor (χDEP>0), the particle is moved by dielectrophoretic forces toward regions where the field is the strongest. On the other hand, when a particle exhibits a negative dielectrophoretic polarization factor (χDEP<0), the particle is moved by dielectrophoretic forces away from those regions where the field is strongest and toward those regions where the field is weakest.
The traveling wave dielectrophoretic force for an ideal traveling wave field acting on a particle of radius r an subjected to a traveling-wave electrical field E=E cos(2π(ft−z/λ0){right arrow over (a)}x (for example the x-component of an E-field traveling in the {right arrow over (a)}x-direction, the phase value of the field x-component being a linear function of the position along the z-direction) is given by:
where where E is the magnitude of the field strength, εm is the dielectric permittivity of the medium. ζTWD is the particle traveling-wave dielectrophoretic polarization factor, given by
“Im” refers to the imaginary part of the “complex number”. The symbol εx*=εx−jσx/2πf is the complex permittivity (of the particle x=p, and the medium x=m). The parameters εp and σp are the effective permittivity and conductivity of the particle, respectively. These parameters may be frequency dependent.
The traveling wave dielectrophoretic force acts on a particle that is either oriented with or against that of the direction of propagation of the traveling-wave field, depending upon whether the traveling wave dielectrophoretic polarization factor is negative or positive. If a particle exhibits a positive traveling wave dielectrophoretic polarization factor (ζTW-DEP>0) at the frequency of operation, the traveling wave dielectrophoretic force will be exerted on the particle in a direction opposite that of the direction in which the electric field travels. On the other hand, if a particle exhibits a negative traveling wave dielectrophoretic polarization factor (ζTW-DEP<0) at the frequency of operation, the traveling wave dielectrophoretic force will be exerted on the particle in the same direction in which the electric field travels.
Thus, the movement of a particle in a non-uniform electric field depends in part on the size (r), permittivity (εp), and conductivity (σp) of the particle. The size of a particle in part determines the magnitude of the dielectrophoretic force, whereas the conductivity and permittivity of a particle influence the direction and the magnitude of a particle's movement in a non-uniform field. Accordingly, particles that have different dielectric properties but are subjected to identical electrical fields will experience different dielectrophoretic forces and different traveling wave dielectrophoretic forces.
The following discussion of the dielectric properties of particles is provided as background information for factors to be considered in the selection and derivation of particle suspending media or solution for dielectrophoretic positioning and manipulation of particles such as cells. The applicants provide this model as background only, and expressly do not wish to be limited to any mechanism of action described herein.
The permittivies and conductivities of particles depend upon the composition of the particles. For example, a homogeneous particle such as a polystyrene bead has a single permittivity value that determines the effective permittivity of the bead, and a single conductivity value that determines the effective conductivity of the bead. These properties may be independent of the field frequency in a wide frequency range, for example, between 1 Hz and 100 MHz. Particles that have a homogeneous bulk composition may have net surface charges. When such charged particles are suspended in a medium, electrical double layers may form at the particle/medium interfaces. Externally applied electric field may interact with the electrical double layers, causing changes in the effective conductivity and effective permittivity of the particles. The interactions between the applied field and the electrical double layers are generally frequency dependent. Thus, the effective conductivity and effective permittivity of such particles may be frequency dependent.
In contrast, non-homogeneous particles such as cells have a membrane permittivity and an internal permittivity, and a membrane conductivity and an internal conductivity. The effective permittivity and the effective conductivity of a non-homogeneous particle is dependent on both its membrane properties and its internal properties. The effective permittivity and effective conductivity of a non-homogeneous particle are dependent on the field frequency. Different dielectric models have been developed to represent different cell types. In particular, single-shell modeling has been applied to mammalian cells, in which cells are modeled as conducting spheres (corresponding to cell interiors) surrounded by poorly-conducting thin shells (corresponding to cell membranes). The effective cell dielectric property is then determined by dielectric parameters of the cell interiors and membranes and can be calculated according to:
Here is the complex permittivity εx* of a cell (x=cell), or its membrane (x=mem) or its interior (x=int). The parameters r and d refer to the cell radius and membrane thickness, respectively.
The frequency dependence of the dielectrophoretic polarization factor (χDEP) and the traveling wave dielectrophoretic polarization factor (ζTW-DEP) of non-homogeneous particles such as cells arises from the frequency dependence of the particles' dielectric properties. The dielectric properties of a mammalian cell are influenced by cell size, membrane thickness, the dielectric properties of the cell membrane, and the dielectric properties of the cell interior. Typically, a viable cell has a poorly-conducting membrane (membrane conductivity is typically small, less than 10−4 Siemens/m) which encloses a moderately conducting cell interior (interior conductivity is typically high, larger than 0.1 Siemens/m). At low frequencies, the applied field the cell membrane drops across the cell membrane, and the cell membrane dominates the dielectric properties of the whole cell. Under these conditions the cell may have negative values for the dielectrophoretic polarization factor (χDEP<0) and exhibit negative dielectrophoresis. As frequency is increased, the applied field gradually penetrates through the cell membrane into the cell interior, and the cell's dielectrophoretic polarization factor changes from negative to positive (χDEP>0). In such a frequency range, the interaction between the cell and the applied field tends to cause the cell to exhibit positive values for the traveling wave polarization factor (ζTW-DEP>0). As the frequency is increased further, the cells interior properties (at first the effective conductivity and then the effective permittivity) determine the cell's responses. The cell first exhibits positive values for the dielectrophoresis polarization factor (χDEP>0) and then at even higher frequencies exhibits gradually decreasing values for χDEP. In this frequency range, the cell exhibits negative values for the traveling wave dielectrophoretic polarization factor (ζTW-DEP<0). The exact frequency ranges for these different regimes of dielectrophoresis and traveling wave dielectrophoresis polarization factors depend on the cell's dielectric properties and the electrical conductivity of the solution in which the cells are suspended.
Some cells, notably bacterial, fungal, and plant cells, have a cell wall in addition to a cell membrane. The dielectric properties of such complex particles are complex, with the electrical permittivities and conductivities of each of the cell wall, cell membrane, and cell interior dominating the dielectrophoretic behavior of the cells at particular field frequencies. The determination of electrical properties of the cell walls of micro-organisms and the dielectrophoretic behavior of cell wall-containing micro-organisms is described in Markx et al. (Microbiology 140: 585-591 (1994)).
The overall size of a particle or a component of a sample also determines its response to an electric field, and thus is herein considered a dielectric property. A sample component's conductivity, permittivity, or size, or any combination of these properties, can be altered by a solution of the present invention.
Various electrode arrays can be used to test behavior of particles in suspending solution or media. For example, positive or negative dielectrophoresis of particles can be observed after applying an electric field. For example, a particle suspended in solution can be pipetted onto a polynomial electrode array and a sinusoidal signal at certain frequencies (for example, between about 10 Hz to about 500 MHz) and at certain magnitude (<20 V peak-to-peak) can be applied to the electrodes. Particles that experience positive dielectrophoresis collect at the electrode edges, while components that experience negative dielectrophoresis collect at the central region between the electrodes (Huang and Pethig, Meas. Sci. Technol. 2: 1142-1146 (1991).
Tests for manipulation or positioning of particles by dielectrophoresis can use detectable labels, where at least one particle in a sample is detectably labeled. For example, a biological sample having a population of particles such as cells can be subjected to a dielectrophoretic manipulation procedure, one cell type can be labeled using antibodies that recognize that cell type and not other cell types or components of the sample. The antibodies can be bound to a detectable label, such as, for example, a fluorescent molecule, such as rhodamine, fluorescein, Texas red, phycoerythrin, phycocynanin, green fluorescent protein, cyan fluorescent protein, blue fluorescent protein, yellow fluorescent protein, D.s. red protein, etc. Another cell type can optionally be labeled with a different antibody and a different detectable label. In this way, the positions of the cells carrying the fluorescent labels can be visualized and the quality of dielectrophoretic separation and positioning using particle positioning means of the present invention can be assessed.
The dielectric manipulation and positioning of particles such as cells can also be monitored by loading cells with detectable labels, such as dyes, as they are known in the art. For example, cells can be loaded with BCECF-AM (available from Molecular Probes, Eugene, Oreg.) a flourescein probe that can be taken up by viable cells and their position after dielectric positioning can be determined (Gascoyne et al. IEEE Transcactions 33:670-678 (1997)). A chip on which positioning of particles such as cells has been tested can be viewed microscopically.
Separation, manipulation or positioning of particles in a sample in a chamber can occur through the application of a non-uniform electric field. Preferably, separation, manipulation or positioning of particles occurs on a chip that is part of a chamber, and application of the non-uniform electric field can be by means of controls that are external to a chamber and a chip. One or more power sources or electrical signal generators, which may be capable of varying voltage, frequency, phase, or any combination thereof, can transmit at least one electrical signal to one or more electrodes to create a spatially non-homogeneous alternating electric field. The voltage applied to the electrodes can be in the range of from about 0 to about 100 volts, more preferably from about 0 to about 15 volts, and the frequency of the electrical signal can be in the range of from about 0.01 kHz to about 500 MHz, and preferably from between about 1 kHz to about 20 MHz. These frequencies are exemplary only, as the frequency of the separation, manipulation or positioning of particles will depend upon a dielectric property of the particles to be separated, manipulated or positioned and the conductivity of the solution the particles are suspended in. In one exemplary embodiment, particles under electrophysiological measurement are mammalian cells that are suspended in typical extracellular solutions having physiologically compatible pH and ionic strength. The cells exhibit negative dielectrophoresis over almost entire frequency spectrum in the range between <1 KHz and >200 MHz. A frequency range usable for dielectrophoretically positioning mammalian cells is, for example, between 10 kHz and 1 MHz. Other frequency range may also be used.
Separation, manipulation or positioning of particles by dielectrophoretic forces can occur by any dielectrophoretic mechanism, for example, by dielectrophoretic retention, dielectrophoretic migration, dielectrophoretic/gravitational field flow fractionation, or traveling wave dielectrophoresis-based separation, or 2-D dielectrophoresis. The following examples of separations, manipulations or positionings are given by way of illustration, and not by way of limitation. Dielectrophoretic retention can be employed, in which the particle is selectively retained in one or more areas of the chamber and other components of the sample are optionally washed out of the chamber by fluid flow. In a different approach of dielectrophoretic migration, one or more particles can be dielectrophoretically translocated to one or more areas of a chip and one or more other components of a sample can be dielectrophoretically repelled from those areas. It is also possible to effect a dielectric separation, manipulation or positioning using dielectrophoretic/gravitational field flow fractionation, in which different particles are levitated to different heights, or in which one or more particles is levitated while other particles are directed to one or more locations on the chip, and fluid flow through the chamber comprising the chip carries different sample components out of the chip at different speeds. It is also possible to direct one or more particles out of the chamber using traveling wave dielectrophoresis, to effect a separation, manipulation or positioning from the other components. It is also possible to use 2-dimensional dielectrophoresis in which both dielectrophoretic forces and traveling-wave dielectrophoretic forces are exploited for separation, manipulation or positioning of one or more particles from a sample (De Gasperis et al., Biomedical Microdevices 2: 41-49 (1999)).
Because a sample can comprise components whose behaviors in various dielectric field patterns is unknown, separation and positioning of particles can be achieved and optimized by altering such parameters as electrode geometry, electric field magnitude, and electric field frequency.
Separation can be achieved by collecting and trapping the positive dielectrophoresis-exhibiting moieties on electrode edges while removing other cells with forces such as fluidic forces. Similar methods may be applied for the case of using negative dielectrophoresis-exhibiting particles for selective separation of target cells from cell mixtures where most or many cell types exhibit positive dielectrophoresis. In aspects where dielectrophoretic/gravitational field-flow fractionation, traveling wave dielectrophoresis, or 2-dimensional dielectrophoresis is used, the separation can be achieved by collecting fractions of the sample-sample solution mixture as they “elute” or flow out of, a chamber experiencing fluid flow and dielectrophoretic forces.
There are a number of dielectrophoretic methods for separating and manipulating cells, bioparticles and moieties from a sample mixture that can also be applied to the positioning of particles on biochips of the present invention. These methods include, but not limited to, dielectrophoretic migration, dielectrophoretic retention, dielectrophoretic/gravitational field flow fractionation, traveling-wave dielectrophoresis, and 2-D dielectrophoresis. Those who are skilled in the art of dielectrophoretic manipulation and dielectrophoretic separation may readily use and apply these methods for separating moieties of interest or particles of interest from a mixture in combination with the sample solution of the present invention. The following articles provide detailed descriptions of a number of dielectrophoretic manipulation and dielectrophoretic separation methods: Wang, et al., Biochim. Biophys. Acta. 1243:185-194 (1995), Wang, et al., IEEE Trans. Ind. Appl. 33:660-669 (1997) (various electrode structures, manipulation by dielectrophoresis and traveling wave dielectrophoresis); Wang, et al., Biophys. J. 72:1887-1899 (1997) (concentration, isolation and separation using spiral electrodes using traveling wave dielectrophoresis); Wang, et al., Biophys. J. 74:2689-2701 (1998), Huang, et al., Biophys. J. 73:1118-1129 (1997) and Yang, et al., Anal. Chem. 71(5):911-918 (1999) (levitation, repulsion from electrodes and separation by dielectrophoretic/gravitational field-flow-fractionation); Gascoyne, et al., IEEE Trans. Ind. Apps. 33(3):670-678 (1997), Becker, et al., Proc. Natl. Acad. Sci. USA 92:860-864 (1995) and Becker, et al., J. Phys. D: Appl. Phys. 27:2659-2662 (1994) (trapping, repulsion, redistribution and separation, separation by dielectrophoretic migration, separation by dielectrophoresis retention); Huang, et al., J. Phys. D: Appl. Phys. 26:1528-1535 (1993) (transportation, separation and trapping by traveling-wave-dielectrophoresis); and Wang, et al., J. Phys. D: Appl. Phys. 26:1278-1285 (1993) (trapping, separation and repulsion, separation by dielectrophoretic migration). All the above cited papers are incorporated in the present application by reference. Other examples of manipulation and separation methods that are reported in the literature and may be adapted for manipulating and positioning particles using the present methods include: separation of bacteria from blood cells, and of different types of microorganisms (Hawkes, et al., Microbios. 73:81-86 (1993); and Cheng, et al., Nat. Biotech. 16:546-547 (1998)); enriching CD34+ stem cells from blood (Stephens, et al., Bone Marrow Transplantation 18:777-782 (1996)); DEP collection of viral particles, sub-micron beads, biomolecules (Washizu, et al., IEEE Trans. Ind. Appl. 30:835-843 (1994); Green and Morgan, J. Phys. D: Appl. Phys. 30:L41-L44 (1997); Hughes, et al., Biochim. Biophys. Acta. 1425:119-126 (1998); and Morgan, et al., Biophys J. 77:516-525 (1999)); dielectrophoretic levitation for cell characterization (Fuhr, et al., Biochim. Biophys. Acta. 1108:215-233 (1992)); single-particle homogeneous manipulation (Washizu, et al., IEEE Trans. Ind. Appl. 26:352-358 (1990); Fiedler, et al., Anal. Chem. 70:1909-1915 (1998); and Müller, et al., Biosensors and Bioelectronics 14:247-256 (1999)); dielectrophoretic field cages (Schnelle, et al., Biochim. Biophys. Acta. 1157:127-140 (1993); Fiedler, et al. (1995); Fuhr, et al. (1995a); Fiedler, et al. (1998); Müller, et al. (1999)); traveling-wave DEP manipulation of cells with linear electrode arrays (Hagedorn, et al., Electrophoresis 13:49-54 (1992); Fuhr, et al., Sensors and Actuators A: 41:230-239 (1994); and Morgan, et al., J. Micromech. Microeng. 7:65-70 (1997)) All the above cited papers are incorporated in the present application by reference.
Dielectric Focusing Structures
Dielectric focusing structures refer to any electrode structure elements fabricated or machined onto a chip substrate that have the following property: The electrode elements can produce electric fields in the spaces around the chip when they are connected with and energized with electrical signals provided by an AC (alternating current) signal source such as a function generator. Such electric fields may be non-uniform AC electric fields, traveling-wave electric fields, or non-uniform traveling wave electric fields, or electric fields of any other configuration. These electric fields preferably can exert dielectrophoretic forces and traveling wave dielectrophoretic forces on the particles that are suspended or placed in the solutions that are in contact with the electrode elements. Such dielectrophoretic and/or traveling-wave dielectrophoretic forces can then direct or focus or move the particles onto certain specific locations, for example, towards the ion transport measuring means located on the chip.
In operation, a biochip is constructed that comprises at least two electrodes for producing dielectrophoretic and/or traveling wave dielectrophoretic forces and engages two or more chambers or fluidic compartments. A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The appropriate electrical signals are applied to the electrodes to produce an electrical field that exert dielectrophoretic and traveling-wave dielectrophoretic forces that can direct or focus or move the particles to the specific locations on the chip. Those locations correspond to the positions at which the ion-transport measuring means are located.
Non-limiting examples of the dielectric focusing structures include spiral electrode structures, circular electrode structures, squared spiral electrode structures, traveling wave dielectrophoresis structures, particle switch structures, quadropole electrode structures, and electrorotation structures.
Spiral electrode structures include multiple, parallel, linear spiral electrode elements. For example, the structure can include three, four, five or even more, parallel, linear spiral elements. AC electrical signals of same frequency, but different phases from an AC electrical signal source are connected to and applied to these multiple electrode elements to generate a traveling wave electric field towards or away from the center of the electrode array. In order to produce such traveling wave electric field, phases of the signals applied to these electrode elements should be 0, 360/N, 2*360/N, . . . (N−1)*360/N, where N is the number of the spiral elements. The structure and operational principle of a spiral electrode array (N=4) is described in “Dielectrophoretic manipulation of cells using spiral electrodes by Wang et al., Biophys. J., 72:1887-1899 (1997)”, which is incorporated in its entirety by reference.
In operation, a biochip is constructed that comprises spiral electrodes and engages two or more chambers or fluidic compartments. A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The electrical signals of appropriate phase, voltage and frequencies from an AC electrical signal source are connected to and are applied to the electrodes to produce an electrical field that exert dielectrophoretic and traveling-wave dielectrophoretic forces that can direct or focus or move the particles to the center regions of the spiral electrode elements. Those locations correspond to the positions at which the ion-transport measuring means are located.
The details for choosing such operation conditions for the maximum response effects in a 4-phase spiral electrode system are described and discussed in “Dielectrophoretic manipulation of cells using spiral electrodes by Wang et al., Biophys. J., 72:1887-1899 (1997)”. Based on the details on this article, those who are skilled in dielectrophoresis and traveling-wave dielectrophoresis can readily choose the operation conditions for other spiral electrode structures with different numbers of the parallel elements. An ion transport measuring means (or ion transport measuring structure) is located at the central region of the spiral electrode structures. For example, a hole of appropriate size and geometry is at the center of the spiral electrode. After the particles are moved or focused to the center of the spiral electrodes and over the hole at the center of the spiral electrode elements, appropriate electrophysiological measurements are performed on the particles to determine the electrical functions and properties of the ion channels (or ion transports or other proteins or non-peptide entity that permit the passage of the ions) on the surface of the particles. In one example, electrophysiological measurement include the procedure of obtaining and testing high-resistance electrical seal between the cell and the chip or the hole, obtaining whole cell access by rupturing membrane patch in the hole, recording the whole-cell current through the ion channels located in the cell membrane under various voltage-clamp protocols.
Concentric circular electrodes are electrode structures that include multiple concentric circular electrode elements. The circular electrode elements are connected to external AC electrical signal source through electrode lines cutting cross these circular elements. These electrode lines have to be fabricated into a different layer on the chip and have to be isolated from the circular elements. In order to produce a traveling electric field, the electrical signals applied to the circular elements have to be phase-sequenced. For example, the signals with the phase values of 0, 90, 180, 270 can be applied sequentially to the circular elements. If we number the circular elements from outermost element (as No. 1) to the innermost as 1, 2, 3, 4, 5, 6, . . . , then the electrode elements 1, 5, 9, . . . etc are connected with 0 phase signal, the elements 2, 6, 10, . . . etc are connected with 90 phase signal, the elements 3, 7, 11, . . . etc are connected with 180 phase signal, the elements, 4, 8, 12, . . . etc are connected with 270 phase signals. Other phase combinations can be used and applied so long as a complete phase sequence (0 to 360 degree) can be established over the electrode elements. For example, signals having phase values of 0, 120 and 240 degrees can be used to energize three neighboring electrode elements.
The operational principle of the concentric circular electrodes is similar to the spiral electrode elements (see, Wang et al., “Dielectrophoretic manipulation of cells using spiral electrodes by Wang et al., Biophys. J., 72:1887-1899 (1997)”).
In operation, a biochip is constructed that comprises a concentric electrode structure and engages two or more -chambers or fluidic compartments A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The electrical signals of appropriate phase, voltage and frequencies from an AC electrical signal source are connected to and are applied to the electrodes to produce an electrical field that exert dielectrophoretic and traveling-wave dielectrophoretic forces that can direct or focus or move the particles to the center regions of the concentric electrodes. Those locations correspond to the positions at which the ion-transport measuring means are located.
The details as for how to choose such operation conditions for the maximized response effects in a 4-phase spiral electrode structure are described and discussed in “Dielectrophoretic manipulation of cells using spiral electrodes by Wang et al., Biophys. J., 72:1887-1899 (1997)”. Based on the details on this article, those skilled in dielectrophoresis and traveling-wave dielectrophoresis can readily choose the operation conditions for the concentric electrode structures. An ion transport measuring structure is located at the central region of the concentric electrode elements. For example, a hole of appropriate size and geometry is at the center of the concentric electrode structure. After the particles are moved or focused to the center of the concentric electrode structure and over the hole at the center of the concentric circular electrode elements, appropriate electrophysiological measurements are performed on the particles to determine the electrical functions and properties of the ion channels (or ion transports or other proteins or non-peptide entity that permit the passage of the ions) on the surface of the particles.
Squared-spiral electrodes are electrode structures that include multiple squared-spiral electrode elements. The operation principle of the squared-spiral electrodes is similar to that of a spiral electrode structure, and the traveling wave dielectrophoretic forces produced by the squared spiral electrodes are directed to be normal the linear electrode segments in these electrode elements.
In operation, a biochip is constructed that comprises a squared spiral electrode structure and engages two or more chambers or fluidic compartments. A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The electrical signals of appropriate phase, voltage and frequencies from an AC electrical signal source are connected to and are applied to the electrodes to produce an electrical field that exerts dielectrophoretic and traveling-wave dielectrophoretic forces that can direct or focus or move the particles to the center regions of the squared-spiral electrode structures. Those locations correspond to the positions at which the ion-transport measuring means are located.
The details as for how to choose such operation conditions for the maximized response effects in a 4-phase spiral electrode structure are described and discussed in “Dielectrophoretic manipulation of cells using spiral electrodes by Wang et al., Biophys. J., 72:1887-1899 (1997)”. Based on the details on this article, those skilled in dielectrophoresis and traveling-wave dielectrophoresis can readily choose the operation conditions for the squared-spiral structures. An ion transport measuring structure is located at the central region of the squared-spiral electrode elements. For example, a hole of appropriate size and geometry is at the center of the squared-spiral electrode structure. After the particles are moved or focused to the center of the squared spiral electrodes and over the hole at the center of the squared-spiral electrode elements, appropriate electrophysiological measurements are performed on the particles to determine the electrical functions and properties of the ion channels (or ion transports or other proteins or non-peptide entity that permit the passage of the ions) on the surface of the particles. In one example, electrophysiological measurement include the procedure of obtaining and testing high-resistance electrical seal between the cell and the chip or the hole, obtaining whole cell access by rupturing membrane patch in the hole, recording the whole-cell current through the ion channels located in the cell membrane under various voltage-clamp protocols.
Traveling Wave Dielectrophoresis Structures
Traveling wave dielectrophoresis structure generally refers to an electrode structure that can produce traveling wave electric fields and exert traveling wave dielectrophoresis forces on the particles. Examples of traveling wave dielectrophoresis structures include, but are not limited to, spiral electrode structures, squared electrode structures, concentric circular electrode structures, and particle switch structures. Another example of a traveling wave dielectrophoresis structure is a set of linear, parallel electrodes that can be energized with phase-sequenced signals and can induce traveling electric fields. A number of traveling wave dielectrophoresis structures are disclosed and described on the co-pending U.S. applications (Ser. No. 09/678,263), titled “AN APPARATUS FOR SWITCHING AND MANIPULATING PARTICLES AND METHOD OF USE THEREOF” by Wang et al., filed on Oct. 3, 2000, which is incorporated by reference in its entirety. These electrode structures can be utilized for the manipulation and positioning of particles such as cells and cell fragments for ion channel or ion transport measurement described herein. An ion-channel measuring means (or a means to measure electrical responses of ion channels, ion transports and any other molecules or entities that permit ion passage across an enclosed membrane envelope or across a spread-out membrane area) is located at appropriate locations in respect to the traveling wave dielectrophoresis structures. For example, it is preferred that the ion transport measuring means are located at the regions where the particles can be manipulated into when appropriate electrical signals are applied.
In one specific embodiment, traveling wave dielectrophoresis structures take the form of a set of linear, parallel electrode elements. An ion transport measuring means (or a means to measure electrical responses of ion channels, ion transports and any other molecules or entities that permit ion passage across an enclosed membrane envelope or across a spread-out membrane area) is located on one end of the linear set of the electrodes. These structures are provided on a chip substrate.
In operation, a biochip is constructed that comprises linear parallel electrode structures and engages two or more chambers or fluidic compartments. A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The electrical signals of appropriate phases, voltages and frequencies from an AC electrical signal source are connected to and are applied to the electrode elements to produce an electrical field that exert dielectrophoretic and traveling-wave dielectrophoretic forces that can direct or focus or move the particles to the end of the linear set of the electrodes (the end where an ion transport measuring means is located).
Those are skilled in dielectrophoresis and traveling-wave dielectrophoresis can readily choose the operation conditions for such linear parallel electrode structures. The ion channel measuring means, for example, may comprise a hole at the end of the linear set of the electrodes. After the particles are moved or focused to the center of the spiral electrodes and over the hole at the end of the linear electrode elements, appropriate electrophysiological measurements are performed on the particles to determine the electrical functions and properties of the ion channels (or ion transports or other proteins or non-peptide entity that permit the passage of the ions) on the surface of the particles. In one example, electrophysiological measurement include the procedure of obtaining and testing high-resistance electrical seal between a particle and the ion transport measuring structure, obtaining whole cell access by rupturing membrane patch positioned at the ion transport measuring structure, and recording the whole-cell current through ion transports located in the cell membrane under various voltage-clamp protocols.
Particle Switch Structures
Particle switching structures generally refer to an electrode structure that can transport, switch, and move the particles in certain directions defined by the traveling wave electric fields generated by such particle switching electrodes when electrical signals of appropriate phase. A number of example for the particle switching structures are provided in the co-pending U.S. patent application Ser. No. 09/678,263, titled “AN APPARATUS FOR SWITCHING AND MANIPULATING PARTICLES AND METHOD OF USE THEREOF” by Wang et al., filed on Oct. 3, 2000. The U.S. patent application, Ser. No. 09/678,263 also disclosed methods for manipulation, transportation, separation and positioning of particles such as cells by applying appropriate electrical signals. An ion transport measuring means is located at appropriate locations in respect to the particle switching structures. For example, it is preferred that the ion transport measuring means are located at the regions where the particles can be manipulated into when appropriate electrical signals are applied.
In operation, a biochip is constructed that comprises particle switching structures and engages two or more chambers or fluidic compartments. A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The electrical signals of appropriate phase, voltage and frequencies from an AC electrical signal source are connected to and are applied to the particle switch structures to produce an electrical field that exert dielectrophoretic and traveling-wave dielectrophoretic forces that can direct or focus or move the particles to certain locations of the particle switching electrode structures where the ion transport measuring means is located. The co-pending U.S. patent application Ser. No. 09/678,263, entitled “AN APPARATUS FOR SWITCHING AND MANIPULATING PARTICLES AND METHOD OF USE THEREOF” by Wang et al., filed on Oct. 3, 2000, disclosed details of the choice of appropriate electrical conditions for moving and transporting particles. The ion transport measuring means, for example, may comprise a hole located at appropriate positions with respect to the particle switching electrode structures. After the particles are moved or focused to the regions of ion transport measuring means and over the hole, appropriate electrophysiological measurements are performed on the particles to determine the electrical functions and properties of the ion channels (or ion transports or other proteins or non-peptide entity that permit the passage of the ions) on the surface of the particles. In one example, electrophysiological measurements include the procedure of obtaining and testing a high-resistance electrical seal between the cell and the chip or the hole, obtaining whole cell access by rupturing membrane patch in the hole, recording the whole-cell current through the ion transports located in the cell membrane under various voltage-clamp protocols.
Electromagnetic Structures
Magnetic particles that are capable of being translocated in response to magnetic field and to electromagnetic forces can comprise any magnetic material (such as γFe2O3 and Fe3O4, γFe2O3 is the γ-phase of Fe2O3). Paramagnetic particles are preferred whose dipoles are induced by externally applied magnetic fields and return to zero when the external field is turned off. Suitable paramagnetic materials include, for example, iron compounds. Magnetic materials can be combined with other materials, such as polymers, in or on magnetic particles. Surfaces of magnetic particles of the present embodiment can optionally be coated with one or more compounds to facilitate attachment of specific binding members or to promote direct or indirect binding of particles such as cells or target cells. Magnetic particles that can be used in the present invention can be of any shape. Preferably magnetic particles are spherical or ellipsoid, but this is not a requirement of the present invention. The use of magnetic particles is well known in the biological and biochemical separation arts, and magnetic particles, including magnetic particles coupled to a variety of specific binding members are also commercially available (Dynal Biotech, Lake Success, N.Y.). In the ensuing discussion, magnetic particles will be referred to as magnetic microparticles or simply microparticles, to avoid confusion with particles whose ion transport properties are to be measured.
More than one preparation of magnetic microparticles can be used in the methods of the present invention. In embodiments using more than one preparation of magnetic microparticles, different magnetic microparticles can have different surface properties, such that they can bind different particles in a sample. In this way, more that one type of particle can be separated or positioned using the methods of the present invention. Different surface properties of magnetic microparticles can be conferred, for example, by coating the magnetic microparticles with different compounds, or by reversibly or irreversibly linking different specific binding members to the surfaces of the magnetic microparticles.
The particles to be manipulated or positioned can be coupled to the surface of the binding partner such as magnetic microparticles with any methods known in the art. For example, the particles such as cells can be coupled to the surface of the binding partner (for example magnetic microparticles) directly or via a linker. A particle can also be coupled to the surface of the binding partner (for example magnetic microparticles) via a covalent or a non-covalent linkage. Additionally, a particle can be coupled to the surface of the binding partner (for example magnetic microparticles) via a specific or a non-specific binding. The linkage between the particle and the surface of the binding partner (for example magnetic microparticles) can be a cleavable linkage, for example, a linkage that is cleavable by a chemical, physical or an enzymatic treatment.
Linkers can be any particle suitable to associate the particle (for example, cells or cell fragments) and the binding partner (for example magnetic microparticles). Such linkers and linkages include, but are not limited to, amino acid or peptidic linkages, disulfide bonds, thioether bonds, hindered disulfide bonds, and covalent bonds between free reactive groups, such as amine and thiol groups. Other linkers include acid cleavable linkers, such as bismaleimideothoxy propane, acid labile-transferrin conjugates and adipic acid dihydrazide, that would be cleaved in more acidic intracellular compartments; cross linkers that are cleaved upon exposure to UV or visible light and linkers, such as the various domains, such as CH1, CH2, and CH3, from the constant region of human IgG1 (Batra et al., Molecular Immunol., 30:379-386 ((1993)). In some embodiments, several linkers may be included in order to take advantage of desired properties of each linker. Other linkers, include trityl linkers, particularly, derivatized trityl groups to generate a genus of conjugates that provide for release of the particle at various degrees of acidity or alkalinity (U.S. Pat. No. 5,612,474). Additional linking particles are described, for example, in Huston et al., Proc. Natl. Acad. Sci. U.S.A., 85:5879-5883 (1988), Whitlow, et al., Protein Engineering, 6:989-995 (1993), Newton et al., Biochemistry, 35:545-553 (1996), Cumber et al., Bioconj. Chem., 3:397-401 (1992), Ladurner et al., J. Mol. Biol., 273:330-337 (1997) and in U.S. Pat. No. 4,894,443. In some cases, several linkers may be included in order to take advantage of desired properties of each linker. The preferred linkages used in the present methods are those effected through biotin-streptavidin interaction, antigen-antibody interaction, ligand-receptor interaction, or nucleic complementary sequence hybridization. Linkers for binding a particle to a binding partner such as a microparticle and methods of coupling linkers to microparticles are further described in U.S. patent application Ser. No. 09/636,104, entitled “Methods for Manipulating Moieties in Microfluidic Systems”, naming Xiaobo Wang, Lei Wu, Jing Cheng, Weiping Yang, and Junquan Yu as inventors and on filed Aug. 10, 2000 and corresponding PCT Application Number PCT/US00/25381, entitled “Method for Manipulating Moieties in Microfluidic Systems”, filed Sep. 15, 2000, and naming Xiaobo Wang, Lei Wu, Jing Cheng, Weiping Yang, and Junquan Yu as inventors, and herein incorporated by reference in its entirety.
There are two general purposes for using magnetic microparticles in the present invention. The first is to bind to a particle (for example a cell containing ion channels in its plasma membrane) or target particle (for example a target cells within a cell mixture) to a magnetic microparticle for the purpose of separating the particle or target particle from other particles, such as in a population of particles in a sample mixture. The separation can be achieved using magnetic or electromagnetic elements, structures or means on, within or outside of a chip. The second is to position particles (for example the cells that contain ion channels in their plasma membranes) bound with magnetic microparticles in proximity of ion transport detection structures of the present invention. The positioning can be achieved using magnetic or electromagnetic elements, structures or means on, within or outside of a chip. In certain instances, the magnetic microparticles can aid in engaging a particle with such an ion transport detection structure. In one aspect of the present invention, particles (for example cells) are selectively attached to magnetic microparticles, such as through specific binding members, such as antibodies against specific antigens, receptors or other proteins or molecules on particle surface (for example on a cell surface). The particles (for example, cells) labeled with magnetic microparticles are then separated using electromagnetic elements of the present invention and can be manipulated or positioned at or near an ion transport detection structure. The particle (for example a cell)_is engaged with such ion transport detection structure and ion transport function or properties can be determined.
In one aspect of the present invention, particles, such as cells, can express or over-express an exogenous surface peptide or over-express an endogenous surface protein, such as a cell surface marker not endogenous to the cell. A specific binding member bound to a magnetic microparticle would specifically bind with that cell and allow for that cell to be separated from a sample including a mixture of cells using magnetic elements and/or electromagnetic elements. The magnetic microparticle bound to a particle (for example a cell) would also facilitate manipulation of the particle and positioning at, on, or near an ion transport measuring structure such as a hole or capillary. Particles such as cells having such cell surface markers can be made by introducing an expression vector into the cells. The expression vector would include a regulatory element such as a promoter operable in the host cell being used operably linked to a nucleic acid sequence encoding the exogenous or endogenous cell surface protein. Methods of making such constructs, introducing the vector into the cells and expression are known in the art.
In another aspect of the present invention, particles such as cells can co-express two proteins, one the exogenous cell surface marker or over-expressed endogenous cell surface marker discussed above and the second an exogenous ion transport protein or over-expressed endogenous ion transport protein. These particles such as cells thus express a surface marker that can be specifically bound with another particle such as a magnetic microparticle. These bound particles can be separated, manipulated and positioned with appropriate particle manipulation devices, such as magnetic, electromagnetic devices. The particles that are positioned in this way include the ion transport proteins which can then be interrogated using structures and methods of the present invention.
In some cases, after manipulating or separating the particle-binding partner, for example, cell-magnetic microparticle, the binding partners do not interfere with reactions or measurements the particles (for example cells) are to be subsequently involved in. Thus, it may not be necessary to decouple the particles (for example cells) from the magnetic microparticles. However, in other cases, it may be desirable or necessary to decouple the particles (for example cells) from the magnetic microparticles after the manipulating step. The nature of the decoupling step depends on the nature of the particle, the particular magnetic microparticle, the surface modification of the magnetic microparticle, in particular the specific binding partner, linker, or coupling agent that may be on the magnetic microparticle, and the manipulation step. In some cases, the condition of the decoupling step is the opposite of the conditions that favor the binding between the particle and the magnetic microparticle. For example, if a particle binds to the magnetic microparticle at a high salt concentration, the particle can be decoupled from the magnetic particle at a low salt concentration. Similarly, if a particle binds to the magnetic microparticle through a specific linkage or a linker, the particle can be decoupled from the magnetic microparticle by subjecting the linkage to a condition or agent that specifically cleaves the linker.
Paramagnetic microparticles are preferred whose magnetic dipoles are induced by externally applied magnetic fields and return to zero when external field is turned off. For such applications, commercially available paramagnetic or other magnetic microparticles may be used. Many of these magnetic microparticles are between below micron (for example, 50 nm-0.5 micron) and tens of microns. They may have different structures and compositions. One type of magnetic microparticles has ferromagnetic materials encapsulated in thin latex, for example, polystyrene, and shells. Another type of magnetic microparticles has ferromagnetic nanoparticles diffused in and mixed with latex for example polystyrene, surroundings. The surfaces of both these microparticle types are polystyrene in nature and may be modified to link to various types of molecules.
Separations, manipulations or positioning of particles such as target cells using magnetic microparticles are performed on electromagnetic chips, where the source of the electromagnetic force is in part separate from the chip and in part integral to the chip. An electrical current source is external to an electromagnetic positioning chip of the present invention, allowing the operator to control the electromagnetic force, whereas the electromagnetic elements are fabricated onto the chip. The electromagnetic elements can produce magnetic fields and exert electromagnetic forces on magnetic microparticles. The electromagnetic elements can be of various structural geometries. For example, the electromagnetic elements can be a loop of conducting material, such as metal, that goes around a ferromagnetic body and that can be sputtered, electroplated, or deposited on a chip. An electromagnetic chip can have one or more electromagnetic units as described in the U.S. Pat. No. 06,355,491, naming Zhou et al. as inventors, and U.S. patent application Ser. No. 09/685,410, filed Oct. 10, 2000, entitled “Individually Addressable Micro-Electromagnetic Unit Array Chips in Horizontal Configurations” and naming Lei Wu, Xiaobo Wang, Jing Cheng, Weiping Yang, YuXiang Zhou, LiTian Liu, and JunQuan Xu as inventors, each of which are herein incorporated by reference. For use of these electromagnetic chips for characterizing the ion transport responses in the method of the present invention, these electromagnetic chips may further comprise ion transport measuring means. Ion transport measuring means are fabricated or made at appropriate locations with respect to the electromagnetic elements.
Other examples of such electromagnetic elements include, but not limited to, those described in the following articles such as Ahn, C., et al., J. Microelectromechanical Systems. Volume 5: 151-158 (1996); Ahn, C., et al., IEEE Trans. Magnetics. Volume 30: 73-79 (1994); Liakopoulos et al., in Transducers 97, pages 485-488, presented in 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Jun. 16-19, 1997; U.S. Pat. No. 5,883,760 by Naoshi et al. The above publications are incorporated in the present application by reference. These publications, and the U.S. Pat. No. 06,355,491, and the and the U.S. patent application Ser. No. 09/685,410, filed Oct. 10, 2000, entitled “Individually Addressable Micro-Electromagnetic Unit Array Chips in Horizontal Configurations” and naming Lei Wu, Xiaobo Wang, Jing Cheng, Weiping Yang, YuXiang Zhou, LiTian Liu, and JunXuan Xu, as inventors, both herein incorporated by reference, further disclose the materials, methods and protocols that may be used to fabricate the electromagnetic structures on a chip.
The electromagnetic chip can be fabricated on a number of materials such as ceramics, polymers, copolymers, plastics, rubber, silicon, or glass. An electromagnetic chip can be from about 1 mm2 to about 0.25 m2. Preferably, the size of the chips useable in the present methods is from about 4 mm2 to about 25 cm2. The shape of the chips useable in the present methods can be regular shapes such as square, rectangular, circular, or oval, or can be irregularly shaped. Chips useable in the methods of the present invention can have one or more wells or one or more channels that can be etched or bored into a chip or built onto the surface of a chip. For use of these electromagnetic chips for characterizing the ion channel responses/functions/properties or ion transport response/function/properties in the method of the present invention, these electromagnetic chips may further comprise ion transport detection (or measuring) structures. The ion transport measuring detection structures are fabricated or made at appropriate locations with respect to the electromagnetic elements.
An electromagnetic chip can be a part of a chamber and/or a cartridge, or can engage one or more chambers, where a chamber is a structure capable of containing a fluid sample. A chamber or cartridge may have one or more fluidic compartments. A chamber can comprise any fluid-impermeable material, for example, silicon, glass, metal, ceramics, polymers, plastics, acrylic, glass, etc. Preferred materials for a chamber include materials that do not interfere with electromagnetic manipulation of particles in a sample. The chamber can also include an ion transport measuring structure.
A chamber that comprises an electromagnetic chip with an ion transport measuring means useable in the methods of the present invention can comprise one or more ports, or openings in the walls of a chamber. Preferably, a port is of a shape and size that allows a conduit to engage a port for the dispensing of a sample into the chamber. A conduit can be any tube that allows for the entry of a fluid sample into the chamber. Preferred conduits for use in the present invention include tubing, for example, rubber or polymeric tubing, for example, tygon or teflon or PEEK tubing. Alternatively, a port can provide an opening in a wall of a chamber for the dispensing of sample into the chamber by, for example, pipetting or injection.
Conduits that engage one or more ports of the sample can introduce a sample by means of a pump (for example, a peristaltic pump or infusion pump), pressure source syringe, or gravity feed. One or more reagents, buffers, or measurement solutions, including extracellular solutions, intracellular solutions, cell suspensions, test compound solutions, can be added to the chamber before, after, or concurrently with the addition of a sample that comprises the particles to be measured by electrophysiological methods to a chamber. It is also within the scope of the invention to mix the sample with a reagent, buffer, or solution, before adding the sample to the chamber. Such mixing can optionally occur in one or more conduits leading to a chamber, or in one or more reservoirs connected to conduits.
The chamber can be of any size or dimensions, and preferably can contain a fluid sample of between 0.001 microliter and 50 milliliters, more preferably between about 1 microliters and about 10 milliliters, and most preferably between about 10 microliters and about 1 milliliter. A chamber can comprise any suitable material, for example, silicon, glass, metal, ceramics, polymers, plastics, etc. and can be of a rigid or flexible material.
The chips may be fabricated on flexible materials so that the chips can be folded to form tube like chambers. Multiple chips may be configured into a same chamber. The electromagnetic elements may have to have certain configurations so that effective electromagnetic forces may be generated in the region of the interest in the chamber.
The manipulation and positioning of particles such as target cells on an electromagnetic chip requires the magnetic field distribution generated over microscopic scales. One approach for generating such magnetic fields is the use of microelectromagnetic units. Such units can induce or produce magnetic field when an electrical current is applied. The on/off status and the magnitudes of the electrical current applied to these units will determine the magnetic field distribution. The structure and dimension of the microelectromagnetic units may be designed according to the requirement of the magnetic field distribution. The examples of the electromagnetic units include, but not limited to, those described in the following articles such as Ahn, C., et al., J. Microelectromechanical Systems. Volume 5: 151-158 (1996); Ahn, C., et al., IEEE Trans. Magnetics. Volume 30: 73-79 (1994); Liakopoulos et al., in Transducers 97, pages 485-488, presented in 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Jun. 16-19, 1997; U.S. Pat. No. 5,883,760 by Naoshi et al. Other examples of the electromagnetic units are provided in the U.S. Pat. No. 06,355,491, and the U.S. patent application Ser. No. 09/685,410, filed Oct. 10, 2000, entitled “Individually Addressable Micro-Electromagnetic Unit Array Chips in Horizontal Configurations” and naming Lei Wu, Xiaobo Wang, Weiping Yang, YuXiang Zhou, LiTian Liu, and JunXuan Xu as inventors, both herein incorporated by reference.
Manipulation and positioning of particles includes the directed movement, focusing and trapping of magnetic particles. The motion of magnetic microparticles in a magnetic field is termed “magnetophoresis”. Theories and practice of magnetophoresis for cell separation and other applications may be found in various literatures (for example, Magnetic Microspheres in Cell Separation, by Kronick, P. L. in Methods of Cell Separation, Volume 3, edited by N. Catsimpoolas, 1980, pages 115-139; Use of magnetic techniques for the isolation of cells, by Safarik I. And Safarikova M., in J. of Chromatography, 1999, Volume 722(B), pages 33-53; A fully integrated micromachined magnetic particle separator, by Ahn C. H. et al., in J. of Microelectromechanical systems, 1996, Volume 5, pages 151-157). Use of are electromagnetic chip to separate, manipulate or position particles bound to magnetic microparticles is disclosed in U.S. patent application Ser. No. 09/399,299, filed Sep. 16, 1999, naming Zhou et al. as in ventors, and U.S. patent application Ser. No. 09/685,410, filed Oct. 10, 2000, entitled “Individually Addressable Micro-Electromagnetic Unit Array Chips in Horizontal Configurations” and naming Lei Wu, Xiaobo Wang, Jing Chen, Weiping Yang, YuXiang Zhou, LiTian Liu, and JunXuan Xu as inventors, both herein incorporated by reference.
Micro-electromagnetic units are fabricated on substrate materials and generate individual magnetic fields when electric currents from a DC (for example DC current power supply) or AC signal source are connected and applied. One example of the unit is a single loop of electrical conductor wrapped around a ferromagnetic body or core and connected to an electric current source through electronic switches. Such a loop may be a circle, ellipse, spiral, square, triangle or other shapes so long as a flow of electric current can be facilitated around the ferromagnetic body. If the loop is single, it should be complete or nearly complete. The loop may be in the form of a plurality of turns around the ferromagnetic body. The turns may be fabricated within a single layer of the microstructure, or, alternatively, each turn may represent a separate layer of the structure. The electric conductor may be a deposited conductive trace as in an electroplated, sputtered or deposited metallic structure, or the conductor can be formed within a semiconductor layer through selective doping. A preferred arrangement of array of a plurality of micro-electromagnetic units has a column and row structure of the form common in microelectronics. That is, the columns and rows are mutually perpendicular although the columns and rows can readily be offset at different angles (for example 80 degrees). For use of the electromagnetic chips for characterizing the ion channel responses in the methods of the present invention, the electromagnetic chips may further comprise ion transport detection (or measuring) means at appropriate locations with respect to the electromagnetic elements.
Other Structures
Quadropole Electrode Structures
Quadropole electrode structures refer to structures that include four electrodes that are arranged around a locus such as a hole or capillary or a needle on or within a biochip or chamber. Appropriate electrical signals can be applied to such an electrode structure to produce dielectrophoretic forces on particles. For example, negative dielectrophoretic forces can be produced so that the particles are directed away from the electrode elements to the central regions between the electrode structures. An ion transport measuring means is located at appropriate locations in respect to the quadropole electrode structures. For example, it is preferred that the ion channel measuring structures are located at the central regions between the quadropole electrode structures so that particles can be manipulated and positioned onto the central regions between the electrode structures. A number of quadropole electrode structures have been disclosed in the U.S. patent applications (Ser. No. 09/643,362), titled “APPARATUS AND METHOD FOR HIGH THROUGHPUT ELECTROROTATION ANALYSIS”, filed on Aug. 22, 2000, naming Jing Cheng et al. as inventors, which is incorporated by reference in its entirety. It is particularly important to know that an array of quadropole electrode structures, coupled with appropriate ion transport measuring means can be fabricated and produced on a single chip so that a number of individual cells or particles, which are located in each quadropole electrode structure, can be assayed and analyzed simultaneously with the ion transport measuring means. All the electrode structures described in this application such as spiral electrode structures, circular electrode structures, squared spiral electrode structures, traveling wave dielectrophoresis structures, particle switch structures, quadropole electrode structures, electrorotation structures, dielectrophoresis guide electrode structures, dielectric focusing structures and other electrode structures that are not described here but with the capabilities for moving and directing particles or cells to certain defined locations can be fabricated into an array format on a biochip. Each of these electrode structure units within the array preferably has an associated ion transport measuring means. Such a biochip can be utilized for assaying and analyzing the functions and properties of ion channels or other ion-passage proteins or non-peptide entities that are located on in a number of individual cells or other particles.
In operation, a biochip is constructed that comprises a quadropole electrode structure and engages two or more chambers or fluidic compartments. A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The electrical signals of appropriate phase, voltage and frequencies from an AC electrical signal source are connected to and are applied to the quadropole electrode structures to produce an electrical field that exerts dielectrophoretic forces that can direct or focus or move the particles to certain locations of the quadropole electrode structures where an ion transport measuring means is located. For example, particles can be directed to the central regions between the quadropole electrode elements. The ion transport measuring means, for example, may comprise a hole located at the center between the quadropole electrode structures. After the particles are moved or focused to the center regions and over the hole, appropriate electrophysiological measurements are performed on the particles to determine the electrical functions and properties of the ion transports on the surface of the particles. In one example, electrophysiological measurements include the procedure of obtaining and testing high-resistance a electrical seal between the cell and the chip or the hole, obtaining whole cell access by rupturing membrane patch in the hole, and recording the whole-cell current through the ion channels located in the cell membrane under various voltage-clamp protocols.
Electrorotation Structures
Electrorotation structures refer to structures that include four or more electrodes that are arranged around a locus such as a hole or capillary or a needle on or within a biochip or chamber. The electrorotation structure can produce a rotating electric field. Preferred electrorotation structures include a plurality of electrodes that are energized using phase-offset signals, such as 360/N degrees, where N represents the number of the electrodes in the electrorotation structure. For electrorotation structure suitable for positioning particles in the present invention, N is preferably an even number (N=4, 6, 8, 12, etc). A number of the electrorotation structures are disclosed in the U.S. patent application (Ser. No. 09/643,362) entitled “APPARATUS AND METHOD FOR HIGH THROUGHPUT ELECTROROTATION ANALYSIS”, filed on Aug. 22, 2000, naming Jing Cheng et al. as inventors. A rotating electrode structure can also produce dielectrophoretic forces for positioning the particles the certain locations, such as the center between the electrodes, under appropriate electrical signals or excitations. For example, when N=4 and electrorotation structure corresponds to a quadropole electrode structure. For producing rotating electric field, phase-offset signals are needed to apply to the electrodes. For producing dielectrophoretic forces for positioning particles such as cells, either phase-offset AC electrical signals or regular AC electric signals from an AC signal source can be connected to and applied to the electrodes. When negative dielectrophoretic forces are used for positioning particles, particles are positioned to the central region between the electrode structures. When positive dielectrophoretic forces are used for positioning the particles, particles are positioned to the electrode edges. Thus, depending on which type of dielectrophoretic forces are used to position particles, the structures within an ion transport measuring means are located on either the regions between the electrode structures or close to the electrode edges. An array of electrorotation electrode structures, coupled with appropriate ion transport measuring means can be fabricated and produced on a single chip so that a number of individual cells or particles, which are positioned into each electrorotation electrode structure, can be assayed and analyzed simultaneously with ion-channel measuring means. The U.S. patent application (Ser. No. 09/643,362) entitled “APPARATUS AND METHOD FOR HIGH THROUGHPUT ELECTROROTATION ANALYSIS”, filed on Aug. 22, 2000, naming Jing Cheng et al as inventors, disclosed a number of types of electrorotation electrode structure array.
In operation, a biochip is constructed that comprises an electrorotation structure and engages two or more chambers or fluidic compartments. Alternatively, a biochip that comprises spiral electrodes is constructed that engages one or more chambers or fluidic compartments. A sample that includes particles such as cells is introduced into a chamber that engages the biochip. The electrical signals of appropriate phase, voltage and frequencies from an AC signal source are connected to and are applied to the electrorotation electrode structures to produce an electrical field that exert dielectrophoretic (and traveling-wave dielectrophoretic forces) that can direct or focus or move the particles to certain locations within the electrorotation electrode structures where the ion transport measuring means is located. For example, particles can be directed to the central regions between the electrorotation electrode elements. The ion transport measuring means, for example, may comprise a hole located at the center between the electrorotation electrode structures. After the particles are moved or focused to the center regions and over the hole, appropriate electrophysiological measurements are performed on the particles to determine the electrical functions and properties of the ion channels (or ion transports or other proteins or non-peptide entity that permit the passage of the ions) on the surface of the particles.
In some embodiments, it may be preferred that a number of concentric independent quadropole or electrorotation electrode structure unit can be used as the particle positioning means. In such a case, the particles will be positioned first by the outer quadropole electrode structure, moving to the central region between these outer electrode structures. The particles will then be further positioned with improved accuracy by other inner electrode structures. An example having two sets of concentric quadtopole electrode structures is provided in
All the electrode structures described in this application (for example spiral electrode structures, circular electrode structures, squared spiral electrode structures, traveling wave dielectrophoresis structures, particle switch structures, quadropole electrode structures, electrorotation structures, dielectrophoresis guide electrode structures, dielectric focusing structures) and other electrode structures that are not described here can be utilized for cell separation purposes with appropriate electrical signals applied onto them. Various dielectrophoresis separation techniques can be employed. Thus one embodiment of the biochip may comprise the following elements, a dielectrophoresis separation electrode structure, a particle positioning means, and an ion transport measuring means. The dielectrophoresis separation electrode structures can be coupled to the particle positioning means so that the target particles, after being separated from an original mixture sample on a dielectrophoresis separation electrode structure, can be positioned and manipulated to specific desired locations for ion channel measurement (or ion transport assay or other assays that are for determining the electrical properties and functions of ion passage proteins or entities that are located on the particle surfaces). Non-limiting examples of integrating the dielectrophoresis separation electrode structures and a particle switching structure (for positioning and transporting particles) can be found in the co-pending U.S. patent application Ser. No. 09/678,263, entitled “AN APPARATUS FOR SWITCHING AND MANIPULATING PARTICLES AND METHOD OF USE THEREOF” by Wang et al., filed on Oct. 3, 2000. Those who are skilled in dielectrophoresis and traveling wave dielectrophoresis can readily design various electrode structures that can be used for as dielectrophoresis separation electrode structures and particle positioning means based on the present disclosure and patent applications, patents and references disclosed herein and available in the art.
Dielectrophoresis Guide Electrode Structures
Dielectrophoresis (DEP) guide electrode structures are electrode structures on a chip that are capable of guiding and directing particles that are carried with a fluid flow to certain locations.
In one configuration of the system, DEP guide electrodes are fabricated on the surface of the patch clamp biochip, where two sets of parallel DEP electrodes are arranges at an angle directed towards the patch clamp recording aperture (top panel of
DC Electric Field Induced Fluid Motion Structures
DC electric field induced fluid motion structures refers to structures that can induce or produce fluidic motions when a DC electric field of appropriate magnitude and direction is applied. When a DC electric field is applied to a solution by applying a DC electrical voltage from a DC signal source to electrodes that are in contact with the solution, under certain conditions, a fluid motion can be induced. For example, a DC electric field across a thin fluidic channel can cause fluid motion within the fluidic channel if the channel wall (for example the surface of the channel wall) has appropriate charge distributions. In this case, surface charged thin fluidic channels are DC electric field induced fluid motion structures. Such induced fluidic motion can be exploited for positioning particles such as cells to an ion transport measuring means (such as a hole) that is in fluidic communication with the charged, fluidic channel. In some cases, a hole that extends through a biochip and has a charged interior surface can also be a DC electric field induced fluid motion structure. The fluidic motion generated in the hole can be exploited for pulling or pushing particles such as cells to the hole.
In a preferred aspect of the present invention, a DC electric field induced fluid motion structure comprises a hole that extends through a biochip and connects to a fluidic channel, and the interior surfaces of the hole and the fluidic channel are charged.
In another aspect of the present invention, DC electric field applied in a fluidic channel that are in fluidic communication with the ion transport measuring mean scan result in certain electrohydrodynamic effects. These electrohydrodynamic effects may result from the interaction between the applied DC electric field and the volume charges within the fluid in the fluidic channel. Such volume charges within the fluid may be produced by adding charged nano-particles (e.g., 10 nm) to the fluid in the fluidic channel. DC electric field induced electrohydrodynamic effects in the fluidic channel can be used for moving, transporting and manipulating and positioning particles on a biochip of the present invention. In this case, the DC field induced fluidic motion structure comprises the fluidic channel and the charged nano-particles in the channel.
In some embodiments of the present invention, a DC electric field induced fluid motion structure can be used for enhancing the sealing between a particle surface and an ion transport measuring means. In this case force from the fluid motion can push or pull a particle against an ion transport measuring means and promote sealing of the particle with the ion transport measuring means. A particle can first be positioned such that it is aligned with an aperture that forms at least a part of an ion transport measuring means. An aperture can be, as non-limiting examples, a hole in a biochip, a capillary on a biochip, an aperture in the wall of a fluidic channel, or an aperture that forms a junction between a fluidic channel and a fluidic subchannel.
For simplicity, we discuss here an example in which the particles that are being analyzed are mammalian cells. The ion transport measuring means in this example is a hole that is etched through the chip substrate, as exemplified in
After the cell positioning means moves the cell over the hole, a DC electric field is produced through the hole (for example 12, 16 in
Such a sealing can be monitored through the measurement of the total resistance or impedance between the solution on either side of the chip. Depending on the specific electrophysiological measurement approach, certain resistance or impedance values may be required for achieving electronic sealing strong enough to minimize electronic noise. (The seal process on a chip is similar to the electronic sealing procedure of the cell membrane onto a glass pipette tip that is widely used in electrophysiological ion channel recording.)
Not intending to be limited to a mechanism of action, it is worthwhile to point out that generating a sufficiently strong DC electric field through the hole to induce fluidic motion through the hole requires that the cell not be sealed to the hole with a high resistance. If the cell has sealed to the hole with a high resistance, then a major percentage of DC voltage applied to the top and bottom chamber will be across on the cell because of much higher resistance of cell membrane in comparison with the resistance of the solution in the hole so that a very small electrical field is produced through the hole. Such a small field may not be sufficient for producing the DC field induced fluidic motion. Thus, during the process of I sealing between the cell membrane and the hole on the chip, the DC field induced fluidic motion is being reduced. In practice, the DC field induced fluidic motion may be stopped before a very high resistance (for example>1 giga ohm) seal is achieved. In many instances, if the hole surface is treated to have appropriate surface properties, there will be a “near-spontaneous” sealing process to a very high resistance seal once the sealing process is initiated. Thus, in some preferred embodiments of the present invention where DC field induced fluidic motion is used, it can be used to initiate the sealing process of a particle positioned in close proximity to (such as directly over or opposite, or on) an ion transport measuring means. In other preferred methods, the above described DC field induced fluidic motion can be used to position cells toward the recording hole or aperture from distances farther away from the ion transport measuring means.
In one preferred example of using a DC field induced fluidic motion structure for particle positioning, the ion transport measuring means takes the form of a hole that extends through the chip. The hole is connected to a fluidic channel. The surface of the fluidic channel is electrically charged. When a DC field is generated along such a fluidic channel, a fluidic motion along the fluidic channel is produced. Such a fluidic motion can result in pressure in (or applied to) the hole or aperture. This pressure can be used for positioning (for example, pushing or sucking) particles to the hole, for example, from distances of at least 10 micron away from the aperture. In one example, depicted in
After an appropriate electronic sealing is achieved, various measurement methods can be implemented to record the ion transport responses. Specific measurement methods utilized will depend on the type of ion transports and depend on whether single-channel or whole-cell recording is used, and depend on what functions or properties the measurements are targeted for. Those who are skilled in ion channel recording may determine specific methods that may be used for specific ion channels or other ion transports. In the following, we describe several whole-cell recording approaches.
In one example, whole-cell recording is performed on the cell after a membrane patch that has been pulled into the hole on the chip is ruptured. There may be various methods for rupturing such membrane patches and preferably the electronic sealing between the cell membrane and the holes is maintained during the rupturing process.
As an example, one method for rupturing such membrane patches may be the application of a short electrical voltage pulse applied through the electrodes that are in contact with the solutions on the top surface of the chip and the electrodes that are in contact with the solutions on the bottom surface of the chip. Appropriate voltage-pulse amplitudes (for example, >˜0.5 V) and durations (between ˜0.01 and 100 milli-seconds) are required for making such membrane ruptures. Such a rupturing method is similar to the electrical voltage pulse method for rupturing membrane patch in a glass capillary that is used in manually operated patch clamp methods. Those who are skilled in ion channel recording may determine the electronic pulse conditions in terms of the pulse amplitude and pulse duration. In one exemplary method, a series of voltage pulses with different amplitudes (for example, increasing amplitudes for each sequential pulse) having same or different time width may be used sequentially to act on the membrane patch whilst a continuous or intermittent monitoring of the resistance between the solutions on the top surface and the bottom surface of the chip is performed until the membrane is ruptured (as monitored and optionally determined by the resistance between the solutions on the top surface and the bottom surface of the chip and especially by a change in the charging and discharging capacitive and resistive transients during the applied pulse) at which time the voltage pulses are reduced or discontinued.
As another example, a method for rupturing a membrane may be the application of a negative pressure pulse applied from the bottom surface of the chip or positive pressure pulse on the top surface so that the pulse of pulling force is applied to the membrane patch inside the hole. Appropriate pressure-pulse amplitudes and durations are required for making such membrane ruptures. Such a rupturing method is similar to the negative pressure pulse method for rupturing membrane patch in a glass capillary that is used in manually operated patch clamp methods. In one exemplary method, a series of negative-pressure pulses with different amplitudes (for example, increasing amplitudes for each sequential pulse) having the same or different time duration may be used sequentially to act on the membrane patch whilst a continuous or intermittent monitoring the resistance between the solutions on the top surface and the bottom surface of the chip is performed until the membrane is ruptured (as monitored by the resistance between the solutions on the top surface and the bottom surface of the chip and especially by a change in the charging and discharging capacitive and resistive transients during the applied pulse). In another exemplary method, a pressure is continuously applied (negative pressure from the bottom surface of the chip or positive pressure from the top surface) and the pressure amplitude is gradually increased until the membrane rupture occurs (as monitored by the resistance between the solutions on the top surface and the bottom surface of the chip and especially by a change in the charging and discharging capacitive and resistive transients during the applied pulse) at which time the voltage pulses are reduced or discontinued.
In another ion channel whole-cell recording method, the membrane is actually not ruptured. However, perforating or permeablizing agents such as nystatin or amphotericin B may be used to form pores or perforations on the membrane patch or a conductance through the membrane patch. These perforation agents may be introduced to the membrane patch from the bottom surface side of the chip. The use of these perforation agents for making pores on the membrane patch that is bound within the hole of the chip is similar to the use of such agents for making pores on the membrane patch inside the glass capillary. Those who are skilled in ion channel recording may readily choose the concentrations of such agents for making perforations in the cell membranes.
In a variation of this ion channel recording method, the ionophores, permeabilizing, or perforating agents are instead added to the same chamber that contains the cell. In this case the conductance through the membrane that is not bound within the hole ensures that no unknown electrical potential energies remain uncontrolled behind a high resistance membrane that is not the object being measured.
In another ion channel recording method, the membrane is actually not ruptured, nor perforated. In this case, the membrane patch remains intact and is sealed against the ion transport measuring means. If the ion transport measuring means is a hole on a chip, the membrane patch is brought into contact with the surfaces immediately surrounding the hole such that a very large sealing resistance (for example, Giga-Ohm) between the solutions at the two ends of the hole is generated. In this way, the whole cell remains intact or almost intact. This technique is referred as the “cell-attached” recording. Thus, the electrical voltages applied between the electrodes that are in contact with the solutions at the two ends of the hole are applied to the membrane patch in the hole as well as to the large-area membrane surface, which includes areas other than the membrane patch in the hole. The conductance of the larger area of membrane that is not bound within the hole will usually be so much larger than the conductance of the patch of membrane bound by the hole that the measurement of the ion channels located within the patch of membrane bound by the hole is unaffected (or is affected to a small extent) by the presence the larger area of membrane that is intact and not bound by the hole. The ion transports located within the attached membrane patch are measured or studied by using various recording protocols. Those who are skilled in low noise ion channel recording may readily choose the appropriate protocols for making such measurements for different cell types and for different ion channel or ion transport types (or ion transport species).
In another ion channel recording method, ion channel activities for the ion channels that are located in the membrane patch are recorded. In this case, the membrane is actually not ruptured, nor perforated. Indeed, the membrane patch remains intact while remaining membrane of the cells is ruptured or removed from the attached membrane patch. In this way, the “inner surface” of the attached membrane patch that is in contact with the cytoplasm before the removal of other parts of the cells is now made in contact with external cell bathing medium. This is called “inside-out” configuration. Again, the membrane patch needs to have a very high resistance sealing (for example giga ohm sealing) against the measurement structures. Thus, the measured current response from the membrane patch corresponds to the ion channel activities from single or multiple ion-channels or ion transports that are located in the membrane patch. This is one approach for “single-channel recording” technique.
In another ion channel recording method, ion channel activities for the ion channels that are located in the membrane patch are recorded. In this case, the membrane is ruptured after achieving a high-resistant seal to form a whole-cell configuration. After that, the cell is slowly and gently moved away from the ion transport measuring structure, leaving behind a thin tread of membranous structure connecting the cell and the sealed hole. Further stretching of the cell away from the hole would result in the breakage of the membrane connection between the cell and the hole. The piece of membrane that was broken away from the cell and was left behind at the hole would reseal itself to form a continuous membrane patch with the side originally facing the cellular content facing towards the hole, while the side originally facing extracellular solution now still facing away from the hole to the bath. This configuration is called “outside-out” configuration. Again, the membrane patch needs to have a very high resistance sealing (for example, giga ohm sealing) against the measurement structures. Thus, the measured current response from the membrane patch corresponds to the ion channel activities from single or multiple ion-channels or ion transports that are located in the membrane patch. This is another technique used in “single-channel recording”.
Actual electronic recording of ion channel responses may depend on specific measurement protocols used. In one example, the resting membrane potential may be measured. In another example, a series of fixed electronic voltage pulses may be applied to the membrane, and the current going through the ion channels located on the cell membranes is determined by measuring the applied current necessary to clamp the voltage. This method is particularly useful for analyzing the electrophysiological properties of voltage-gated ion channels. In another example, the current going through the ion channels on the membranes is measured as a function of the concentrations of the specific chemical ligands or chemical molecules in the solution under voltage clamp conditions. The specific chemical ligands or molecules are in the solutions above the chip. Such a method is particularly useful for ion-channels that are extra-cellular ligand-gated ion channels. The specific chemical ligands or molecules are in the solutions below the chip and are in contact with intracellular space through the holes on the chip. Such a method is particularly useful for ion-channels that are intracellular ligand-gated ion channels. The above-mentioned methods can also be utilized for measuring the current or other electrical parameters for ion transports. It is important to know that if the ion transport involves the use of energy sources such as ATP, then the ATP molecules should be added into the solutions. For non-energy consuming ion transports, appropriate solutions should also be utilized.
For other specific types of ion channels such as stretch-activated ion channels, appropriate mechanical stresses should be applied to the cell that has been patch clamped. The electronic current or other electronic parameters may be measured as a function of the physical or mechanical stresses that are applied to the patch clamped membrane (for example, sheer, osmosis, stretch, temperature, pH, etc).
Electroosmosis Structures
Electroosmosis refers to the fluid motion induced by the application of a DC electric field. The DC field is applied when a DC electrical signal (voltage or current) is connected to and applied to the electrodes that are in contact with a solution. Electroosmosis can be exploited for moving, transporting, or manipulating and positioning particles. Electroosmosis structures refer to the structures that can generate electroosmosis effects when an appropriate DC electrical field is applied. For example, when the ion transport measuring means comprises a hole through the chip and the chip comprises recording electrodes or microelectrodes that are on both side of the chip and are in contact with the solutions at the two sides of the chip, electroosmosis can be generated in the hole. In this example, the electroosmosis structure comprises the hole having a charged interior surface. The electrosmosis effects generated in the hole can be utilized for positioning particles to the hole and/or for enhancing the electric seal between the particle surface (e.g. cell membrane) and the hole. Other examples of electroosmosis structures are fluidic channels that comprise or connect to holes or apertures, where at least a portion of the fluidic channels have appropriate charge distributions such that an applied DC field can generate electroosmotic effects in the fluidic channels. The electroosmostic effects in the fluidic channels may result in a pressure in (or applied to) the holes or apertures so that particles under such the influence of such a pressure are positioned to the holes or apertures.
In some embodiments of the present invention, an electroosmosis structure can be used for enhancing the sealing between a particle surface and an ion transport measuring means. In these cases electrosmosis can push or pull a particle against an ion transport measuring means and promote sealing of the particle with the ion transport measuring means. A particle can first be positioned such that it is aligned with an aperture that forms at least a part of an ion transport measuring means. An aperture can be, as nonlimiting examples, a hole in a biochip, a capillary on a biochip, a hole in the wall of a fluidic channel, or an aperture that forms a junction between a fluidic channel and a fluidic sub-channel.
For simplicity, we discuss here an example in which the particles that are being analyzed are mammalian cells. The ion transport measuring means in this example is a hole that is etched through the chip substrate, as exemplified in
Such a sealing can be monitored through the measurement of the total resistance or impedance between the solution over the chip and the solution below the chip. Depending on the specific electrophysiological measurement approach, certain resistance or impedance values may be required for achieving electronic sealing tight enough to minimize electronic noise. This process is similar to the electronic sealing procedure of the cell membrane onto a glass pipette tip that is widely used in electrophysiological ion channel recording.
While intending not to be limited to a mechanism of action, it is worthwhile to point out that generating a sufficiently strong DC electric field through the hole to induce electroosmosis requires that the cell not be sealed to the hole with a high resistance. If the cell is sealed with a high resistance, then the major percentage of DC voltage applied to the top and bottom chamber will be across the cell due to much higher resistance of the cell membrane in comparison with the resistance of the solution in the hole so that only a very small electrical field is produced through the hole. Such a small field may not be sufficient for producing electroosmosis effect. Thus, during the process of sealing between the cell membrane and the hole on the chip, the electroosmosis is being reduced. In practice, the electromosis effect may be stopped before a very high resistance (for example>1 giga ohm) seal is achieved. In many instances, if the hole surface is treated to have appropriate surface properties, there will be a “near-spontaneous” sealing process to a very high resistance seal once the sealing process is initiated.
Thus, in some preferred embodiments of the present invention where electroosmosis is used, it can be used to initiate the sealing process of a particle positioned in close proximity to (such as directly over or opposite, or on) an ion transport measuring means. In other preferred methods, the above described electroosmotic effects can be used to position cells toward the recording hole or aperture from distances farther away from the ion transport measuring means.
After the appropriate electronic sealing is achieved, various measurement methods can be implemented to recording the ion channel responses. All the methods described in the context of “DC electric field induced fluid motion structures” can be utilized.
An electroosmosis effect in other fluidic structures within, on, or engaging the chip may also be utilized. In one example, the ion transport measuring means can take the form of a hole through a chip. The hole is connected to a fluidic channel. The surface of the fluidic channel is electrically charged. If a DC field is generated along such a fluidic channel, a fluidic motion along the fluidic channel will be produced. Such a fluidic motion may result in pressure being applied to the hole. This pressure may be used for positioning or sucking cells to the hole from distances of at least 10 microns away from the aperture. In one example, depicted in
Electrophoretic Structures
Electrophoresis refers to the motion of the charged particles (such as cells or cell fragments) in an appropriate fluidic medium under the application of a DC electric field. The DC field is applied when a DC electrical signal (voltage or current) is connected to and applied to the electrodes that are in contact with a solution. Electrophoresis can be exploited for moving, transporting and manipulating and positioning particles. Electrophoresis structures refer to the structures that can generate electrophoresis effects on charged particles, for example, electrodes positioned appropriately to generate electrophoretic forces on charged particles. For example, when the ion transport measuring means comprises a hole through a chip, an electrophoretic structure comprises electrodes or microelectrodes that are on both sides of the chip and are in contact with solutions at the two sides of the chip, electrophoretic forces can be exerted on charged particles near the hole to move and position the charged particle closer to the hole.
In some embodiments of the present invention, an electrophoresis structure can be used for enhancing the sealing between a particle surface and an ion transport measuring means. For simplicity, we discuss here an example in which the particles that are being analyzed are mammalian cells. The ion transport measuring means in this example is a hole that is etched through the chip substrate, as exemplified in
After the positioning means moves the cell onto the hole, a DC electric voltage is applied between the electrodes that are located on the top surface and the bottom surface of the chip. A DC field is produced in the regions near the hole. Such a DC field can exert the electrophoresis forces on charged particles such as cells, driving the cells closer to the hole. Furthermore, the electrophoretic forces on the cell would result in a net pulling force on the cells so that a cell is pulled into the hole. During this process, sealing between the cell membrane and the hole on the chip occurs.
Such a sealing can be monitored through the measurement of the total resistance or impedance between the solution over the chip and the solution below the chip. Depending on the specific electrophysiological measurement approach, certain resistance or impedance values may be required for achieving electronic sealing tight enough to minimize electronic noises. This seal process on a chip is similar to the electronic sealing procedure of the cell membrane onto a glass pipette tip that is widely used in electrophysiological ion channel recording.
Not intending to be limited to a mechanism of action, while the electrophoretic effect may in theory be used for pulling the cell into the hole and for enhancing the electric seal between the cell and the hole, the electrophoretic effect, dependent on the charge on the cell and the electric field strength experienced by the cell, may be too small to be of much practical value for pulling the cell into the hole or for enhancing the seal between the cell membrane and the hole. In the cases where electrophoretic effect cannot be used for enhancing the seal, other methods can be used. For example, negative pressure may be applied from the bottom chamber so that the cell is sucked into the hole to form a high resistance seal.
After the appropriate electronic sealing is achieved, various measurement methods can be implemented to recording the ion channel responses. Specific measurement methods utilized will depend on the type of ion channels and depend on whether single-channel or whole-cell recording is used, and depend on what functions or properties the measurements are targeted for. Those who are skilled in ion channel recording may determine specific methods that may be used for specific ion channels. In a prior section of this application having the heading ‘DC Electric Field Induced Fluid Motion Structures’, several ion transport recording approaches were described that can be utilized in this context.
Acoustic Structures
Acoustic structures refer to the structures that can generate acoustic field and thus exert acoustic forces on the particles. For example, a portion of a biochip could be made from a piezoelectric material and when electrical field is applied across the biochip, the mechanical vibrations can be generated on a biochip and an acoustic field can be generated in the solutions that are in contact with such a biochip. The electrical field applied across the acoustic biochip is achieved by connecting an AC electrical signal of appropriate frequency and magnitude from an AC signal source to the electrodes on the acoustic chip. In this case, the piezoelectric structures include the biochip with its piezoelectric material and the electrodes on the chip.
In one example, an acoustic structure can be used for positioning the particles and for enhancing the sealing between the particle surface and the ion transport measuring means.
For simplicity, we discuss here an example in which the particles that are being analyzed are mammalian cells. The acoustic structure is a piezoelectric substrate with electrodes on both major surfaces and is located as the top plate of a chamber. The chamber bottom plate is a chip substrate that comprises the ion transport measuring means, as illustrated in
After the cell positioning means moves the cell onto the hole, electric signals from an AC signal source are applied between the electrodes that are located on the top surface and the bottom surface of the top plate of the chamber. An acoustic field is produced in the chamber. Either standing wave acoustic fields or traveling wave acoustic fields can be produced. These acoustic fields can exert an acoustic force on the cell, driving it towards the hole. Furthermore, the acoustic force on the cell would result in a net pushing force on the cell so that the cell is pushed against the hole. During this process, sealing between the cell membrane and the hole on the chip can occur.
Such a sealing can be monitored through the measurement of the total resistance or impedance between the solution over the chip and the solution below the chip. Depending on the specific electrophysiological measurement approach, certain resistance or impedance values may be required for achieving electronic sealing tight enough to minimize electronic noise. This sealing is similar to the electronic sealing of the cell membrane onto a glass pipette tip that is widely used in electrophysiological ion channel recording.
The acoustic structure can also be attached onto the bottom plate of a chamber that is beneath a biochip. The acoustic waves from such structures can be coupled through the chamber plate and into the solutions above the chamber plate. The acoustic wave or acoustic field in the solution could also be exploited for moving the particles as well as for enhancing electronic sealing between the particle surface and the chip surfaces.
The acoustic structures can also be attached onto the top plate of a fluidic chamber or fluidic cartridge in which a iochip comprising the ion transport measuring means is located between a top fluidic compartment and a bottom fluidic compartment. In such a case, the ion transport measuring means is located on a biochip and the acoustic structure is located on another chip that is attached to the top plate of the top fluidic compartment. The acoustic waves from the acoustic structures can be coupled into the solutions in the top fluidic compartment. The acoustic wave or acoustic field in the solution could also be exploited for moving the particles to ion transport measuring means (for example a hole through a biochip) as well as enhancing electronic sealing between the particle surface and the ion transport measuring means (for example a hole through a biochip).
After the appropriate positioning and electronic sealing is achieved, various measurement methods can be implemented to recording the ion channel responses. Specific measurement methods utilized will depend on the type of ion channels and depend on whether single-channel or whole-cell recording is used, and depend on what functions or properties the measurements are targeted for. Those who are skilled in ion channel recording may determine specific methods that may be used for specific ion channels. In a prior section of this application having the heading ‘DC Electric Field Induced Fluid Motion Structures’, several ion transport recording approaches were described that can be utilized.
Pressure Control Structures
Pressure control structures can be negative pressure control structures or positive pressure control structures that can be used to position a particle. Negative pressure control structures refer to the structures that can generate negative pressures near the ion transport measuring means and thus exert pressure-induced forces on the particles. For example, fluidic pumps can be used for generating such negative pressures on the particles that are in chambers or fluidic channels that are connected to holes etched through a chip. Such fluidic pumps may be integral to the chip or may be located outside the chip. Fluidic pumps located outside the chip may be connected to a fluidic chamber via inlet and/or outlet ports of fluidic chambers (for example see the bottom chamber in
Positive pressure control structures refer to the structures that can generate positive pressures near the ion transport measuring means and thus exert pressure-induced forces on the particles. For example, fluidic pumps or valves directly or indirectly connected to certain containers of compressed gasses or even a hydrostatic column can be used for generating positive pressures on the particles that are in chambers or fluidic channels that are connected to a hole etched through a chip. Structures such as pumps and valves can be integral to a chip or can be located outside a chip of the present invention. Fluidic pumps located outside the chip may be connected to the fluidic chamber via the inlet and/or outlet ports of the fluidic chambers (for example see the top chamber in
In some preferred embodiments of the present invention, pressure control structures can be used for positioning the particles and for enhancing the sealing between the particle surface and the ion transport measuring means, such as a hole.
For simplicity, we discuss an example in which the particles that are being analyzed are mammalian cells. In this instance, the pressure control structure is a fluidic pump that is connected to the fluid in a chamber for ion channel or ion transport measurement. Such a fluidic pump may be optionally integral to the chip onto which the ion transport measuring means are incorporated. For example, microfbaricated fluidic pumps described by M A Unger, H P Chou, T Thorsen, A Scherer, S R Quake in an article entitled “Monolithic microfabricated valves and pumps by multilayer soft lithography” in Science, volume 288, page 113-116, 2000 may be used for such purposes. The chamber bottom plate is a chip substrate comprising ion transport measuring means, as illustrated in
After the cell positioning means moves the cell above the hole, one or more fluidic pumps is set to a certain flow rate to pull or push the fluid toward or away from the chamber for a certain length time to achieve an electronic seal between the cell membrane and the surface of the hole. Such a fluidic pressure change in the chamber may result in a pulling or pushing force on the cell, driving the cell against the hole. During this process, sealing between the cell membrane and the hole on the chip can occur.
Such a sealing can be monitored through the measurement of the total resistance or impedance and capacitance between the solution over the chip and the solution below the chip. Depending on the specific electrophysiological measurement approach, certain resistance or impedance values may be required for achieving an electronic sealing tight enough to minimize electronic noise. This sealing is similar to the electronic sealing of the cell membrane onto a glass pipette tip that is widely used in electrophysiological ion channel recording.
After the appropriate electronic sealing is achieved, various measurement methods can be implemented to record the ion channel responses. Specific measurement methods utilized will depend on the types of ion channels and depend on whether single-channel or whole-cell recording is used, and depend on the functions or properties the measurements are targeted for. Those who are skilled in ion channel recording may determine specific methods that may be used for specific ion channels. In a prior section of this application having the heading ‘DC Electric Field Induced Fluid Motion Structures’, several ion transport recording approaches were described that can be utilized.
While the above example discusses the use of a pressure control structure such as a fluid pump or valves controlling to fluid pressure sources for enhancing the electronic seal between a cell membrane and an ion transport measuring means, pressure may also be generated by other methods.
In particular, other pressure generating structures can be used. Such pressure generating structures can comprise configurations of one or more fluidic channels and ion transport measuring means that can provide positive or negative pressure to direct particles toward an ion transport measuring means when an electric field or current is employed. This type of pressure generating structure comprises at least one fluidic channel or subchannel connected to an ion transport measuring means, in which at least a portion of the one or more fluidic channels or subchannels connected to an ion transport means has a surface charge distribution that can, when a solution is present in at least one channel or subchannel, such that the solution contacts the ion transport measuring means, and an electric field or current is applied, promote electroosmotic forces or DC field induced forces sufficient to transport particles distances of at least one micron, preferably at least five microns, and most preferably at least ten microns. This type of pressure generation structure has also been described in prior sections of this application having the headings ‘DC Electric Field Induced Fluid Motion Structures’ and ‘Electroosmosis Structures’.
For example, an ion transport measuring means can take the form of a holeor aperture connected to at least one microfluidic or fluidic channel. The hole or aperture can be a hole or aperture through a chip, a hole through a wall of a fluidic channel, an aperture that is part of an ion transport measuring means that occurs within the diameter of a fluidic channel, or an ion transport measuring means that occurs at a junction between two or more fluidic channels, including between channels and subchannels. At least a portion of the surface of at least one fluidic channel comprising or connected to an ion transport measuring means is electrically charged when a solution is present in the fluidic channel. When a DC field is generated along such a fluidic channel that comprises a fluid (such as, for example, a measurement solution), a fluidic motion along the fluidic channel will be produced. Such a fluidic motion can result in a negative pressure being produced near the hole. This negative pressure can be used for positioning or sucking cells to the hole or aperture, for example, from distances of at least 10 micron away from the hole or aperture. In this case, a fluidic channel on the biochip which is connected to the ion transport measuring means serves as a negative pressure structure. A charged surface of the fluidic channel is an important factor for generating negative pressure in the hole or aperture using a DC electrical field.
In one example, illustrated in
Horizontal Positioning Means and Vertical Positioning Means
In general, the present invention is not limited to any particular orientation of a chip or an ion transport measuring means. For simplicity, however, we refer to positioning means that promote the movement of a particle over the surface of a chip to be horizontal positioning means. Horizontal positioning means are exemplified but not limited to traveling wave dielectrophoresis structures, dielectric focusing structures, spiral electrodes, concentric electrodes, dielectrophoresis guide electrode structures and particle switch structures, electromagnetic structures that can guide the path of a particle to an ion transport measuring means. For simplicity, we refer to vertical positioning means as those that promote the movement of a particle mainly in the direction normal to the chip surface towards an ion transport measuring means, such as a hole. Vertical positioning means are exemplified by but not limited to acoustic structures, electroosmotic structures, DC electric field induced motion structures, electrophoretic structures, electromagnetic structures, pressure control structures. Other vertical positioning means may include vertical acceleration means such as centrifugation. Horizontal positioning means such as dielectric focusing structures, spiral electrodes, concentric electrodes, quadropole electrode structures, dielectrophoresis guide electrode structures and electrorotation electrode structures may also be used for vertical positioning of a particle (for example a cell).
In general, a chip can have a major surface, onto which a sample that can include particles such as cells is introduced. The chip preferably has one or more particle positioning means that are at least in part integral to the chip. The forces acting on the particles in any direction within a plane parallel to the major surface are horizontal forces whereas the forces acting on cells in a direction approximately normal to the major surface are vertical forces.
Particles such as cells to be analyzed may initially be randomly distributed above the surface of a chip, such as in a fluidic chamber above the chip. Thus, it can be desirable if one or more positioning means could produce forces in the horizontal plane, the vertical plane or both. In this way, these forces can be used for rapid, efficient and effective positioning of the particles. In one preferred aspect of the present invention, both horizontal positioning means and vertical positioning means are included in whole or in part within or on a chip or can be provided in whole or in art on or within ancillary structures, such as a fluidic chamber or housing that comprises one or more chips.
These positioning means can be integral, such as a single type of structure element (for example electromagnetic structure, pressure control structure) that can be used for generating both a horizontal force and a vertical force, but that need not be the case and separate structures can be used. For example, the vertical and horizontal positioning means can be separate, for example, one structure can be used for producing one or more vertical forces and the other type for producing one or more horizontal forces. The positioning means can include two or more structures, each of the structures optionally capable of producing both horizontal and vertical forces on the particles to be positioned. In the alternative, at least one of the structures is capable of producing at least one horizontal force and at least one vertical force. Such structures can be used in combination with other structures.
In general, certain forces generated by force generating means (for example pressure generating means, electromagnetic structures) can have both horizontal and vertical force components. The forces with both vertical and horizontal components can be generated by a single type of force generating structure or by multiple structures. Such force generating structures can have a single or multiple types of signal application modes. In other aspects of the present invention, the horizontal force is generated, preferably primarily generated, by one structural element and the vertical force is generated, preferably primarily generated, by a second type of structural element, but that need not be the case. In further aspects of the present invention, the horizontal and vertical forces can be generated by two or more force generating structures, each of which is capable of generating forces in both horizontal and vertical directions. In another alternative, a combination of force generating structures can be used to produce forces in both the horizontal and vertical directions.
Ion Transport Measuring Means
An ion transport measuring means is a structure that can be used to detect or measure ion transport function or properties. Preferably, an ion transport measuring means that is part of a biochip of the present invention comprises a structure suitable for whole cell recording, single channel recording, or both whole cell and single channel recording. Ion transport measuring means can further include electrodes or recording electrodes for detecting ion transport activities or properties.
Ion transport measuring means include holes or capillaries that can extend through a chip or other surface, such as the wall of a fluidic channel. An ion transport measuring means can also be an aperture that forms or is part of a junction between two fluidic channels, including a channel and a subchannel. An ion transport measuring means can also be a needle that can contact a particle such as a cell or a portion thereof. An ion transport measuring means of the present invention has a form and dimensions such that a seal can be formed between the surface of a particle (such as a cell or portion thereof) and the ion transport measuring means. Preferably a tight seal or a high resistance electric seal between a particle and an ion transport measuring means can be obtained, preferably with over several hundred mega ohm seal resistance and more preferably with over one giga ohm seal resistance. In preferred aspects of the present invention, an ion transport measuring means can comprise electrodes or application specific integrated circuits (ASICs) that can measure ion transport activity and properties, but this is not a requirement of the present invention. For example, a biochip can comprise a hole that extends through the chip, and both chip surfaces can have electrode structures that are integral to the chip and in close proximity to the hole. Similarly, electrodes, such as recording electrodes, or electronic circuitry can be integrated into a biochip proximal to capillaries on a biochip, or proximal to apertures in fluidic channels or channel junctions on a biochip, such that they can be employed in patch clamp detection methods. In these cases, a hole or aperture or capillary plus associated ion-transport-measuring electrodes makes up an ion transport measuring means. Needles are an example of an ion transport measuring means that comprises integral electrode structures.
It is also within the scope of the present invention to have a biochip that comprises at least one ion transport measuring means where the ion transport measuring means (and, in some cases, the biochip) does not comprise electrodes or electronic circuitry. For example, a biochip can comprise a hole that serves as an ion transport measuring means, and when in use, the biochip can engage a platform or apparatus that supplies electrodes and recording circuits (e.g., patch clamp amplifiers) for measuring ion transport activities or properties.
As shown in
The holes in the substrate can be of any appropriate size, but the opening that is to directly or indirectly contact the particle is generally between about 0.1 micrometers and about 100 micrometers in diameter and more preferably between about 0.5 micrometers and about 10 micrometers in diameter, most preferably between about 0.8 micrometer and about 3 micrometers. The diameter of a hole refers to the minimum diameter value if the hole changes in size along its length direction. In the aspect of the invention where funnel shaped holes are used, the widest diameter is preferably between about 0.2 micrometers and about 200 micrometers in diameter and more preferably between about 0.5 micrometer and about 20 micrometers in diameter.
In one aspect of the invention, the hole in the substrate may comprise two or more interconnected pores or holes through the substrate, as illustrated in
For example, a fabrication method that can produce the holes with a maximum aspect ratio of 15 for a given material is used to fabricate a 1.5 micron hole through a substrate of 150 micron thick and of this material. The minimum hole diameter with this fabrication method is 10 micron (=150 micron thickness divided by the aspect ratio of 15). Fabricating two inter-connected holes or pores would allow a 1.5 micron hole produced on one side of the susbtrate. As an example, a first hole can be fabricated having an aspect ratio of 4.5 with a large diameter of 30 micron and a large depth (135 micron). This leaves behind 15 micron thick material on the substrate at the region corresponding to the first hole. A second hole can then fabricated into the substrate material in the region corresponding to the first hole and the second hole can have an aspect ratio of 10 with a 1.5 micron diameter and 15 micron depth. In this way, a 1.5 micron diameter hole is produced on one surface of the substrate and particles such as cells can be positioned to or over such a 1.5 micron hole. In the case, the large pore having diameter of 30 micron and a depth of 135 micron is called a counter pore and the small pore having a 1.5 micron diameter is a measurement pore or aperture. In this example, the hole comprises two inter-connected pores, a counter pore and a measurement pore. Other structures of the hole may comprise two or more counter pores.
In the example discussed above, both counter pore and measurement pore are assumed to have a cylinder shape. This need not to be the case. Counter pores and measurement pores can have other geometries, for example, funnel shapes with various tapering angles. As an example, on a 200 micron thick substrate, a counter pore can be fabricated having a depth between 160 and 190 microns with a 100 micron diameter on one end of the counter pore and a 80 micron diameter on the other end of the counter pore. A measurement pore with a funnel shape can be fabricated, having a depth between 10 and 40 microns, a 5-15 micron diameter on the end of the measurement pore connecting to the counter pore and a 1-2 micron diameter on the other end of the measurement pore that are on the substrate surface.
Holes in a coating can generally be made more accurately and precisely due to the characteristics of the material and the thickness of the coating. These holes or apertures can be of any shape or size, as long as the holes, with or without the coating, allow adequate electronic seals (high resistance seals, for example, in the mega ohm and giga ohm ranges) between the membranes of the particles (for example cells, artificial vesicles) and the substrates or the holes for appropriate electrophysiological measurement of ion transports located in the membranes. The holes are preferably generally circular when viewed from the top or bottom. These holes are generally between about 0.1 micrometer and about 100 micrometers in diameter and more preferably between about 0.5 micrometers and about 10 micrometers in diameter, most preferably between about 0.8 micrometer and about 3 micrometers. The diameter of a hole refers to the minimum diameter value if the hole changes in size along its length direction. To achieve appropriate electronic seals between the membranes of the particles (for example cells, artificial vesicles) and the substrates or the holes, the holes should have appropriate geometry, surface texture (for example smoothness), electrical charge and/or surface hydrophilicity or hydrophobicity.
The holes in the substrate or coating can be made using any appropriate method for the material that makes up the substrate. Micromachining, laser ablation, molding, dry or wet etching or masking are methods that are preferable. In one aspect of the present invention, the holes in the substrate are made by first etching the substrate using chemicals, such as acid etching of glass or DRIE of silicon materials. Such etching can form the funnel structures (20, 22) as generally set forth in
As shown in
Alternatively, the coating can include specific binding members, such as ligands, receptors, antibodies or active fragments thereof. This is particularly true for the configurations set forth in
The coating can be made by modification, such as by chemical modification or chemical treatment (for example, treated in acid, and/or base for specified lengths of time), of the substrate. For example, treatment of a glass chip comprising a hole through the chip as an ion transport measuring means with acid and/or base solutions may result in a cleaner and smoother surface in terms of surface texture for the hole. In addition, the treatment of the surface of a biochip or fluidic channel that comprises an ion transport measuring means (such as a hole or aperture) or treating the surface of a capillary with acid and/or base may alter the surface composition, and/or modify surface hydrophobicity and/or change surface charge density and/or surface charge polarity. The surface with modified properties may facilitate electric seal or sealing between a particle surface and the ion transport measuring means. Furthermore, the coating can be made by spraying, dipping or otherwise contacting liquid or semisolid material onto the substrate, wherein the material is then solidified such as through cooling, gelling, solidifying or polymerization. Another category of methods for producing the coating or the functional layer on a biochip for ion channel measurement is physical means, in which the biochip is subjected to certain physical treatment. For example, the biochip can be subjected to a baking procedure at certain temperature for certain lengths of time, which may result in some changes in surface compositions of the biochip. In another example, at least a portion of the biochip surface can be subjected a treatment by applying high energy radiation (including UV radiation), oxygen plasma, reactive chemical compounds. In still another example, the surface or the portion of the surface of a biochip made of glass may be subjected to a laser of appropriate wavelength and intensity so that the surface can be smoothed or polished.
The present invention also includes methods of modifying an ion transport measuring means to enhance the electrical seal of a particle or membrane with the ion transport measuring means. As used herein, “enhance the electrical seal” means increase the resistance of an electrical seal, increase the efficiency of obtaining a high resistance electrical seal (for example, reducing the time necessary to obtain one or more high resistance electrical seals), or increasing the probability of obtaining a high resistance electrical seal (for example, the number of high resistance seals obtained within a given time period). The method comprises: providing an ion transport measuring means, modifying said ion transport measuring means to become more electronegative, to become more smooth, or to become both more electronegative and more smooth.
An ion transport measuring means can be any ion transport measuring means, including a pipette, hole, aperture, or capillary. An aperture can be any aperture, including an aperture in a channel, such as within the diameter of a channel (for example, a narrowing of a channel), in the wall of a channel, or where a channel forms a junction with another channel. (As used herein, “channel” also includes subchannels.) In some preferred aspects of the present invention, the ion transport measuring means is on a biochip, on a planar structure, but the ion transport measuring means can also be on a non-planar structure. The ion transport measuring means can comprise any suitable material. Preferred materials include silica, glass, silicon, plastic materials, polydimethylsiloxane (PDMS), or oxygen plasma treated PDMS. In some preferred aspects of the present invention, the ion transport measuring means comprises SiOH surface groups. In such cases, the surface density of said SiOH surface groups is preferably more than about 1%, more preferably more than about 10%, and yet more preferably more than about 30%. The SiOH group can be on a surface, for example, that comprises glass, quartz glass, borosilicate glass, thermally oxidized SiO2 on silicon, deposited SiO2, polydimethylsiloxane (PDMS), or oxygen plasma treated PDMS.
The method preferably comprises treating said ion transport measuring means with acid, base, plasma, or peroxide, by laser polishing said ion transport measuring, or by performing any combinations thereof. An acid used for treating an ion transport measuring means can be any acid, as nonlimiting examples, HCl, H2SO4, HNO3, HF, H3PO4, ABr, HCOOH, or CH3COOH can be used. The acid can be of a concentration between about 0.05 M and about 14 M. Optimal concentrations for treating an ion transport measuring means to enhance its electrical sealing properties can be determined empirically (see examples). The ion transport measuring means can be placed in a solution of acid for any length of time, preferably for more than one minute, and more preferably for more than about five minutes.
An ion transport measuring means can be treated with a base, such as a basic solution, that can comprise, as nonlimiting examples, NaOH, KOH, or Ca(OH)2. The base can be of a concentration between about 0.05 M and about 14 M. Optimal concentrations for treating an ion transport measuring means to enhance its electrical sealing properties can be determined empirically (see examples). The ion transport measuring means can be placed in a solution of base for any length of time, preferably for more than one minute, and more preferably for more than about five minutes.
In some aspects of the present invention, it can be preferable to store an ion transport measuring means that has been treated to have enhanced sealing capacity by storing it in an environment having decreased oxygen or carbon dioxide relative to the ambient environment. This can preserve the enhanced electrical sealing properties of the ion transport measuring means. Such an environment can be, for example, water, acetone, a vacuum, one or more drying agents or an inert gas. An an ion transport measuring means with enhanced sealing properties can also be transported under conditions that maintain the enhanced capacity of the ion transport measuring means to form a high resistance electrical seal with a particle or membrane. Such conditions can be those that provide an environment with decreased oxygen or carbon dioxide relative to the ambient environment, for example, in water or acetone, under vacuum, or in the presence of one or more drying agents or an inert gas.
The present invention also includes ion transport measuring means treated to have enhanced electrical sealing properties, such as by methods disclosed herein. The present invention also includes chips, pipettes, substrates, cartridges, and apparatuses having ion transport measuring means treated to have enhanced electrical sealing properties.
In an embodiment of the present invention, the ion transport measuring means also includes at least one recording electrode. The recording electrode is preferably connected to a detection device or recording circuit, such as a device that can detect, monitor and preferably record a variety of electric parameters, such as electric current, voltage, resistance and capacitance of the membrane being patched, including a cellular membrane or artificial membrane In one aspect of the present invention, the ion transport measuring means includes a needle electrode that can be used in the ion transport detection methods.
As depicted in
In one aspect of the present invention, a chip can include application specific integrated circuits (ASIC). Typically, a patch clamp recorded ionic current is of a mall magnitude, such as in the pico Amp, nano Amp or micro Amp range. For accurate and precise measurement and recording of currents in these ranges, it is preferred to have the ASIC located within the closest distance from the particles such as cells that are being measured. Thus, it is preferred to have ASICs that can be incorporated at least in part onto or within a chip of the present invention. The ASIC can optionally include the same functions as a head-stage that is commonly used in traditional patch clamp recording systems, as they are known in the art.
ASIC can have one or more features, such as high input impedance and relatively small output impedance. In one aspect of the present invention, an ASIC can convert the electronic current to electronic voltage. There are certain advantages of having an ASIC integral at least in part to a chip or provided in the vicinity of a chip. One advantage is that the small distance from the source of the ionic current to the measurement circuit can reduce electronic noise which results in reduced signal loss. Another advantage is the reduction of stray capacitance effect, which is related to potentially long signal connection wires. Also, the weak current signal can be converted to a voltage signal that can be connected to an appropriate signal amplifier.
In one embodiment of the present invention, an ASIC can convert an electronic current to an electronic voltage. In general, operational amplifiers are used for achieving such purposes. As known in the art of microelectronics, operational amplifiers typically have high input impedance; very large open-loop gains and can drive different kinds of impedance loads. Two modes of operational amplifiers can be designed to achieve conversion of electronic current to voltage, for example, resistive feedback and capacitive feedback. In the resistive feedback mode, the current is passed through “feedback resistor” and generates a voltage across the feedback resistor. This voltage can be monitored and recorded. In the capacitive feedback mode, the current is passed through the “feedback capacitor” to charge up the capacitor. Thus the voltage across the feedback capacitor will ramp up with time as a result of the current charging up the capacitor. Capacitive feedback mode has advantages including low electronic-noise but has disadvantages that the voltage across the capacitor cannot ramp forever in one direction so that a reset of this charging-voltage is needed once in a while (for example, periodically). Resistive feedback mode has the advantage that it does not require reset but it can have a relative large thermal noise component.
Those who are skilled in the art of microelectronics can readily design circuits for achieving the operational amplifiers with either resistive or capacitive feedback configurations or both, and can then realize and implement these circuit designs into Integrated Circuits.
A number of functions or features can be included into the ASIC. These may include:
(1) Potential-offset. In some applications, the electrolyte solution that is for bathing cells may be different from the electrolyte that is connected with the intracellular compartments. In one exemplary configuration, the ion-channel measuring means comprises a hole etched through the chip. Cells are positioned over the hole before a seals is formed (with or without membrane patch being ruptured) and measurements are conducted for determining the voltage-current relationships between the recording electrodes located on the two sides of the chip when a cell is positioned on the hole. In such a case, the electrolyte solutions on the top side of the chip may be different from those on the bottom side of the chip, thus producing an electrical-potential difference between the top solutions and the bottom solutions. In addition, the recording electrodes (e.g. Ag/AgCl) located on the two sides of the chips are in contact with different solutions and may not be exactly identical so that different electrode-solution interfacial voltages may occur, leading an additional potential difference as measured from the recording electrodes. The potential-offset circuits will be able to offset this potential difference. Because different application settings may use different electrolyte solutions and may result in non-identical “potential-difference”, the potential-offset circuit should be able to compensate for these different values. The exact potential-offset values may be controlled externally or by applying external signals to the potential-offset circuits. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design the circuitry for such potential-offset.
(2) Series resistance compensation. The solution resistances for the solution suspending and for the solution in the recording-aperture (again, we use the chips with holes as examples only) present themselves as series resistors to the ion-channels that are being recorded for their activities. In order to have a fast amplifier response to achieve better temporal resolutions and have better voltage control, these serial resistors should be compensated by certain ASIC. The ASIC may have separate circuits for compensating not only the bulk solution resistances but also the resistances in the hole. In addition, the compensation values may be adjusted in both large-magnitude and small magnitude variations. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design the circuitry for such series-resistor compensation.
(3) Membrane patch ZAP control. In one of the whole cell recording modes, the membrane patch within the recording-aperture (again, we are using the chips with holes as an example only) is ruptured. One way to make this rupture is to apply a brief high voltage pulse in the range between 100 mV to 10,000 volts to the membrane via the recording electrodes. The ASIC may comprise a separate circuit that can deliver variable magnitude and variable duration of electric-potential pulses. The magnitude and temporal duration of the pulses can be changed by external means or by applying certain control signals externally. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design the circuitry for such membrane-patch ZAP control circuits.
(4) Whole cell capacitance neutralization. The whole cell capacitance is acting in parallel to the ion-channels that are being measured. Such capacitances should be neutralized or compensated to achieve better temporal control and accurate measurement of the ionic current. The exact values of the neutralized capacitances may be different for different experiments. Thus, the ASIC may incorporate specific circuits for neutralizing or compensating such whole cell capacitance. The magnitude of the compensation capacitances can be changed by external means or by applying certain control signals externally. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design the circuitry for such whole cell capacitance neutralization. In designing such circuits, the neutralization should be able to “be turned off” when the experiments were for evaluating or measuring the whole cell capacitances.
(5) The chip-capacitance compensation. The chip-capacitance is acting in parallel to the ion-channels that are being measured. (again, we use the chip with recording apertures as examples). Such capacitances should be compensated to achieve better temporal resolution to observe fast kinetic responses of the ion channels. The exact values of the compensated capacitances may be different from different experiments. Thus, the ASIC may incorporate specific circuits for compensating such chip-capacitances. The magnitude of the compensation capacitances can be changed by external means or by applying certain control signals externally. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design the circuitry for such chip-capacitance compensation.
(6) High-quality low-pass filters. The recorded electrical signals tend to be noisy. Thus, appropriate electronic filters may be applied to filter out the high-frequency noises to obtain cleaner signals. For example, multiple-pole (for example 4-pole) Bessel filter may be used. The ASIC may comprise specific filter circuits. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design such filters to remove/filter out the noises.
(7) Seal-Test. The patch-clamp recording requires high-resistance sealing between the cell membrane and the hole in the chip (again, we are using a chip with hole structures as an example only). It is desirable to have a specific circuit that can be operated to test whether a high resistance seal is formed. In the voltage-clamp mode, a small voltage (<10 mV, or ˜10 mV) may be applied and then current responses are monitored. Before sealing, there may be relatively large current response during to the current leaking through the hole. Yet after a high-resistance seal is achieved, the current will be quite small. The magnitude of the current is inversely proportional to the seal resistance.
(8) Independent holding command. In some experiments, it may be desirable to have the ability to independently hold the voltage in the voltage-clamp mode or hold the current in the current-clamp mode. The ASIC may comprise a separate circuit for generating such independently controlled voltages or currents. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design circuits for generating independently held voltage or current.
(9) Leak-subtraction. Since a perfect sealing between the membrane and the chip-recording apertures (again, we are using the chips with holes as examples only) is nearly impossible, the leak current exists in many real recording settings. If such a leak is small, it is of linear voltage-current response in nature, thus a subtraction of such current may be desirable. The ASIC may comprise a specific circuit that can subtract such linear leak current components. Those who are skilled in the art of microelectronics and understanding the patch-clamp processes can readily design circuits for subtracting the leak currents.
Other Structures
A biochip of the present invention can also include additional structures. For example, a biochip can be included in a cartridge that can include one or more ports for the introduction and/or removal of materials. One aspect of such a cartridge is provided in
Particles can be directed to ion transport measuring means using particle positioning means. A particle, such as a cell is then engaged with the ion transport measuring means, such as a hole, using particle-manipulating or particle positioning means. A particle positioning means can also act to aid in forming a tight seal or high resistance electric seal between the particle and the hole. For example, acoustic structures can provide positive downward pressure on particles. In an alternative, electroosmosis effects can be used to provide negative pressure on the particles to direct the particles into the holes. Furthermore, a fluidic means, such as a pump or microfluidics device can be used to provide negative pressure on the particle to direct the particles into the holes.
In operation, the particle positioning means or fluidic means can be used to create a pulse such as an electric pulse or pressure pulse that can rupture the membrane of a particle such as a cell to allow whole cell patch clamp recording.
In one aspect of the present invention, the perfusion means can be used to inject a sample into the chamber. In one experimental setting, the sample preferably includes a test compounds whose ion transport modulating activity is known or unknown. Changes in ion transport function or properties measured by ion transport measuring means with engaged particles is indicative of the ability of a test compound to modulate ion transport function or properties.
In one aspect of the present invention depicted in
In another aspect of the present invention depicted in
In operation, a sample that includes particles such as cells can be introduced into the chamber (140) by way of a conduit (145). A particle is positioned at or near the hole (16) by way of horizontal positioning structures. The particle is then aligned with the hole (16) using vertical positioning structures. The electric seal (70) between the particle and the hole can be enhanced using hole surfaces with modified properties and/or using coatings, such as coatings including specific binding members or particle adhesion moieties, such as cell surface adhesion proteins, such as integrins or basement membrane proteins such as fibronectin. The particle can then be optionally ruptured, such as by the vertical positioning structures such as by pressure pulses. Preferably, the pressure control element (143) performs this function, but that need not be the case. At this point in time, ion transport function or properties of the particle can be determined using methods of the present invention. In one aspect of the present invention, test compounds can be introduced via the inlet port (145) and effluent can be removed via the effluent port (147).
In addition to particle positioning means such as those described herein, other particle manipulating means and structures can be incorporated in whole or in part or on a surface or in proximity with a surface of a chip. In one aspect of the present invention, mixtures of particles such as cells can be separated using certain forces such as those described herein, such as but not limited to pressure, dielectrophoresis, or electromagnetic forces. Pressure systems that can be used in the present invention can include gating systems such as those used in the art of fluorescence activated cell sorting (FACS). The separated particles can then be used for ion channel recordings using appropriate structures provided on chips of the present invention. This type of format is particularly useful for handling mixtures of cells, such as cells isolated from an organism including a mammal, including a human, particularly but not limited to primary cells. Different cell types of a primary cell sample can be separated using positioning means of the present invention, at least in part based on the different physical or biochemical properties of such cells. Such separation can allow target cells to be separated or enriched prior to being engaged on an ion transport measuring means such as those of the present invention and being interrogated using appropriate methods, such as those of the present invention. Alternatively, a population of cells can be directed to ion transport measuring means such as those of the present invention and then engaged and interrogated as appropriate. In one aspect of the present invention, separated or enriched particles can be directed to different loci on a chip of the present invention using the positioning means of the present invention. At such loci, ion transport measuring means can be present and the particles can be engaged and interrogated as appropriate. Thus, a single chip can be used to investigate members or subsets of a population of particles, such as a population of cells.
Furthermore, additional manipulation means and/or measuring means can be incorporated at least in part within a chip, on a chip or in proximity to a chip of the present invention. These structures can be used for high-information content analysis of particles including cells. For example, on-chip, within-chip, partially within chip or off-chip means can be incorporated into a structure of the present invention to measure cellular responses by way of optical or other readouts, particularly fluorescence based readouts. In one aspect of the present invention, either before, during, or after patch clamp recording, other cellular events can be monitored, preferably using optical methods such as fluorescence. For example, a variety of intracellular phenomenon are linked to ion channel activity. One such phenomenon is the modulation of calcium ion levels, in particular free calcium ion levels, within the cell. A variety of fluorescent markers are available that have different fluorescence spectra when bound with calcium. Examples include Fura1 and Fura2. Other ions can be investigated in similar ways. Thus, particles such as cells can be loaded with such fluorescent markers and the particles can be interrogated with electromagnetic radiation, such as light, of appropriate character to allow the fluorescent markers to be activated. Appropriate optical detecting means, such as CCDs optionally coupled with wave-guides, can be used to collect the emission of such fluorescent markers to provide readouts of such markers. In that way, multiple phenomena can be measured using methods of the present invention. Such measurements can be simultaneous with the ion channel detection of the present invention or can be separated in space and/or time. Other methods, such as the use of FRET based systems to measure polarization of membranes can also be used (see, for example, U.S. Pat. No. 5,661,035 issued Aug. 26, 1997 to Tsien and Gonzalez and U.S. Pat. No. 6,107,066 issued Aug. 22, 2000 to Tsien and Gonzalez.) in addition to the patch clamp methods described.
Other cellular events, such as membrane trafficking, protein-protein interactions, protein translocation, diffusion of second messenger molecules inside the particle such as a cell or sub-compartments of the particle such as a cell can be monitored by way of fluorescence based detection technologies such as fluorescent resonance energy transfer (FRET), fluorescence polarization (FP) and fluorescence lifetime methods. Appropriate detection means can be used to detect, measure and analyze the information generated by such methods.
A number of targets or phenomena can be analyzed using such fluorescence based screening. These include but are not limited to morphology changes, viability, apoptosis, cellular differentiation, cytoskeletal changes, cell-cell interactions, chemotaxis, spatial distribution changes such as receptor trafficking, receptor internalization or processing, capping or complex formation.
Furthermore, other measurements of particles can be made using appropriate methods, preferably optical and optionally fluorescence-based methods. For example, the motion or change of morphology of particles such as cells can be measured using appropriate methods. Preferred measurements include but not limited to, cell motility and neurite extension.
In one aspect of the present invention, ion channel recoding of a particle can be coupled with fluorescence imaging, such as high-resolution fluorescence imaging, of a single or multiple targets in the context of particles, particularly intact particles such as intact cells. Such multiple determinations allow for high information content screening of cellular and sub-cellular events as well as high throughput screening. In this aspect of the present invention, increasing the number of assays being performed on a sample, particularly those that are performed substantially in multiple sub-cellular localizations at the same time, can generate a wealth of information beyond the traditional single assay used in high throughput screening methods known in the art.
Multiple, functional screenings can be performed simultaneously, near-simultaneously or separated by time and space on the same particles such as cells. In one aspect of the present invention, a system can be used to perform such assays. Such systems would include the appropriate chips, ancillary reagents, fluidic capabilities, readers, data collection structures and data processing structures, such as those including one or more Central Processing Units (CPUs) and appropriate hardware and software. Preferably, where optical measurements are employed, the individual cell based, multiplexed optical cellular measurements allow for locating and eliminating fluorescent or other optical artifacts and backgrounds. In addition, a system of the present invention can allow for measuring of biological variability of individual cells or subpopulations of cells rather than investigating entire populations of cells.
In one aspect of the present invention, particles such as cells that have been interrogated for ion transport activities or properties can be further analyzed by a variety of methods. For example, a single-particle assay such as single-cell PCR can be used to obtain genetic (DNA or RNA) information of the particle. Furthermore, a single-particle or single-cell gene expression assay or protein detection assay can be performed on the cells. These types of analysis and/or gene expression analysis can be performed on the same biochip that comprises the ion transport measuring means or another chip or alternative structure, such as a chip or other structure in communication with the ion transport measuring means biochip. Fluid communication between biochips, or between a biochip and another structure, device, or apparatus can be by way of appropriate conduits, such as channels, tubes, troughs or the like. These types of analysis can be performed using methods known in the art or adaptable to the chip environment and structure.
If such analyses are performed on a chip, then appropriate structures and reagents can be utilized. For example, manipulation means such as particle transportation, lyses, molecular extraction, molecular separation can be used. One example is that after on-chip ion transport measurement is performed, an on chip PCR or RT-PCR protocol can be performed in situ. After this step, the PCR product, such as amplified nucleic acids such as DNA, can be optionally transported to a detection unit and/or optionally analysis unit on the same chip, a different chip or another structure. (
Microfluidic structures can be utilized in order to facilitate the automation and throughput of assays that utilize a chip of the present invention. Microfluidic structures can be provided on, within or partially within a chip of the present invention. For effective delivery of sample and reagents, such as a particle sample such as a sample including a cell or cells, perfusion buffer or test compounds, into a chip of the present invention, or a chip-chamber combination, a variety of microfluidic structures can be used. In some cases, microfluidic structure can be used, at least in part, to position a particle. Preferred microfluidic structures are channels, troughs or tubing. Such structures can be made using methods known in the art, such as etching, machining or in one alternative to such methods, by selected polymerization (see, for example, U.S. Provisional Patent Application No. 60/258,281 filed Dec. 26, 2000). As set forth in
In one preferred aspect of the present invention, various structural elements useful for microfluidics can be incorporated in whole or in part on or within a chip or provided off-chip. Such elements include but are not limited to pumping mechanisms; electrodes to drive electric-filed induced fluid flow, valves and the like. Such structures can be manufactured using methods known in the art, particularly by MEMS technologies, machining or etching.
One aspect of the present invention is depicted in
A modification of the chip depicted in
As discussed herein, chip configurations can have an upper chamber and a lower chamber, wherein a chamber can take the form of a channel. The chambers can be open, such as in the form of a trough, or closed such as in the configuration of a tube or pipe. In the alternative, the chambers can form open or closed fluid compartments which are larger in size and volume than channels (see, for example, distinction between
For many research approaches, a configuration that includes a chip that includes an open top chamber (or a plurality of open top chamber) and a plurality of sealed bottom chambers connected to a negative pressure source may be used. In this way, multiple measurements can be done simultaneously with a single delivery of test compounds. Optionally, other components can be included, such as a pressure source and electronic apparatus, such as headstage, amplifier and the like.
For safety screening, such as cardiac safety screening, an apparatus comprising a chip with a preferably closed top chamber (or a plurality of closed top chamber) with tubing inlets, and a plurality of bottom chambers with tubing connected to pressure sources is preferred. Cultured cells can be preferred for the safety screening test along with a library of the safety testing compounds. The tubing inlet can be configured to directly or indirectly connect to the source of the cultured cells and also to storage structures, such as microplates, microtiter plates or tubes.
Cardiac safety testing has become a recommended test for screening drugs or potential drugs, due to the realization that many drugs on the market can unexpectedly modulate ion channel activity non-specifically and can unexpectedly interfere with ion channel activity in non-target tissues such as cardiac tissues. For example, the popular drugs Seldane™ and cyclosporin have exhibited unintended modulation of ion channel activity, particularly in cardiac tissues. This phenomenon is of particular concern when the drug does not target ion channel activity as its intended target. Preferred ion channels to investigate for safety screens are HERG and HERG/MIRP, which are present in heart and brain tissues. Other ion channels include KvLQT and Mink, Kv1.5, Kv2.1 and Kv6.2, and Kv4.3, etc.
For primary screening and secondary screening applications such as screening for drug candidates, an apparatus that includes a chip that includes a top chamber (or a plurality of top chambers), preferably closed but optionally open, can be fitted with a number of inlet tubings. A plurality of bottom chambers, preferably closed but optionally open, can be fitted with multiple tubing. At least one side that is pressure sealed is connected to a pressure sources such as a negative pressure source or a positive pressure sources. The upper chamber can be connected to cultured cell suspensions provided in an appropriate vessel, such as a microtiter plate, and the lower chambers can be connected to testing solutions comprising a library of compounds and provided in one or more appropriate containers, such as wells of plates such as microtiter plates or independent tubes.
Primary screening refers to the initial testing of a large collection of chemical entities against an ion channel target for desired modulation using a specific assay format. Secondary screening refers to the testing of focused libraries of chemical entities constructed using the knowledge obtained from primary screening to find related compounds that have improved properties.
In one aspect of the present invention, a chip or a cartridge comprising a chip with or without ancillary structures can be provided in an anti-vibration housing or structure. Such a structure can be desirable to minimize shaking of a particle-hole seal. Motion of a support structure such as a table that is in contact with a chip or ancillary structures can lead to decreased strength of such a seal and lead to increased noise in an ion transport assay. Anti-vibration housings or structures can include heavy air tables such as those made of stone or metal that resist vibration associated with bumping or movement of buildings. Alternatively, an anti-vibration housing can include a housing filled with a fluid that can act to dampen vibrations, or combinations of such structures and methods.
In addition to particles such as cells or subcellular structures or vesicles, synthetic membranes can also be used in the present invention. For example, synthetic membranes such as lipid bilayers that are in various forms including vesicles and comprise ion channels or other ion transporting molecules can be used in the present invention. Such lipid bilayers with and without such molecules can be made using methods known in the art.
In addition, noise reduction in an assay can be accomplished in the present invention based on electrode configuration, structure and materials. For example, ground electrodes in contact with a solution bath are called reference electrodes. In such a case, these types of electrodes are preferably Ag/AgCl or other materials suitable for such reference electrodes. Ag/AgCl can be readily fabricated by way of fabrication methods known in the art. For example, photolithography can be used to pattern a thin silver film (deposited via various means such as evaporation, or sputtering) to form required electrode geometry. The silver electrode is then processed to become Ag/AgCl by electrochemically reacting the Ag electrodes in an appropriate solution containing chloride ions. Preferred reference electrodes can maintain a constant electrode/solution interface potential difference, or junction potential, relatively independent of the electric current driven through the reference electrodes.
Whereas the reference electrodes are preferably made with suitable materials such as Ag/AgCl for their desired electrochemical properties, the electrodes for injecting current or clamping voltages may also be made of these materials (for example Ag/AgCl).
In some embodiments, it is possible that the electrodes for positioning the cells or particles via forces generated by electrical means (for example dielectrophoresis forces, traveling-wave dielectrophoresis forces, electrophoresis forces or electro-osmosis forces) are also used as recording electrodes for recording the electrical activity of ion transports. But this does not have to be the case. In other embodiments, the electrodes for positioning of the cells or particles may be different from the electrodes for recording ion ion transport activity.
Many of the assays, structures and methods described herein relate to whole cell methods. As described further herein, single-channel recording or other modes of recording are also addressed by the present invention.
In aspects of the present invention where an array of ion transport measuring units are provided on a single chip, the units can have a common or separate chambers and/or microfluidic channels. For example, as depicted in
In other aspects of the present invention, an array of biosensors can be made with synthetic or biological membranes in which ion transports or any ion-conducting pathways reside. Opening, closing or other functions and properties of the ion transports can be linked to the detection of a target molecule, pathogen or other substance. Such detection can be chemical, physical, biochemical or biophysical or the like in nature, such as the binding of a target molecular to a sensor molecular device linked to ion transport measurement means described herein. Using such an apparatus can allow highly sensitive single molecule detection of substance in a high throughput low noise manner.
Channel Structures in General
In one aspect of the present invention, microfluidic channels can be used to form at least one chamber of an ion transport function detection unit of the present invention. In this aspect of the present invention, open or closed channels can be made on chips using methods known in the art, such as machining, molding or polymerization. A closed channel can be made by overcoating a channel or providing a layer of material on top of an open channel, such as a layer of polymer or glass, such as a film of polymer or a thin sheet of glass, such as a coverslip. Subchannels can form apertures that function as ion transport measurement structures, where they connect to channels. The connections between subchannel to channels can occur in any orientation, but are preferably parallel to the surface of the wafer. Alternatively, branch points in a matrix of channels can be used to trap particles such as cells in this type of configuration.
Generally, particles are transported through main fluidic channels by forces such as positive or negative pressure, acoustic forces, dielectrophoretic forces, or other appropriate forces. Cells can be drawn into branch microfluidic channels where one or more recording sites, such as sites including ion transport measuring means, such as holes or apertures, are present. Cells can be positioned by dielectrophoretic, acoustic, or other forces close to the ion transport measuring site, for example, a hole in the side of a wall of a microfluidic channel. Pressure, such as positive pressure or negative pressure, or other appropriate forces can be used to seal the particle such as a cell to a hole or aperture to form Giga Ohm seals. Sealed membranes are then ruptured by electric zap and/or negative or positive pressure or other means such as chemical or enzymatic means to generate whole cell patch clamp configurations. Patch clamp recordings are then performed for each recording unit. Each branch microfluidic channel can have multiple recording sites. One main microfluidic channel can have many branch microfluidic channels. And one chip can have multiple main microfluidic channels.
Channel Structures in Dual Vertical Configuration
One aspect of the present invention is a cartridge (199) that includes fluidic channels or chambers that can be connected in a vertical configuration by way of a hole that can function as an ion transport measuring structure. For example, as set forth in
Preferably, the structure depicted in
Another exemplary method for making the structure depicted in
As shown in
In some aspects, the lower channels are depicted in configurations that allow for the introduction and removal of solutions from the fluid compartment at the locus of the ion transport detection means. This arrangement can allow for the exchange of materials and washing steps during the performance of an assay. The upper channels can be configured in the same or similar way.
Aperture Structures in Horizontal Configurations
As depicted in
The structure depicted in
The tree structure of
Channel Structures in Three-Dimensional Configurations
Rather than horizontal-horizontal or vertical-vertical configurations, channels can be made in three-dimensional matrices using appropriate methods. Conduits can be provided between the channels using sacrificial layers as discussed herein. Preferably, a network of channels can be created using sacrificial methods, such as wire sacrificial etching methods. Such sacrificial methods can be combined with other manufacturing methods, such as deposition, patterning or masking, micro-machining, polymerizing or MEMS technologies. In this aspect of the invention, channels and conduits can be mapped out in three dimensional space using wires or other similar structures that are susceptible to subtractive methods, such as acid degradation. The wires can be imbedded in appropriate material, such as insulating material such as resist or polymerized materials. The imbedding material can be provided in one step, such as in a mold, or in layers. In the latter instance, channels and conduits can be formed using deposition (e.g., sputtering), masking and other methods.
Channel Structures in High Information Content Screening Configurations
The different units can be connected to detection devices and structures appropriate for the readout of that unit. For example, for dye exclusion tests for viability, optical methods would be useful to detect the presence and location of dyes such as trypan blue within cells. In some units such as viability units, particles such as cells should remain intact. In other units, such as genomics units or proteomics units, particles such as cells should be lysed.
The optical detection unit can be used to detect the fluorescence readout of several different tests as described herein, such as protein-protein interactions utilizing FRET applications, membrane potential readouts using FRET applications, ion sensitive fluorescent dyes such as fura2 or fura3, enzyme activity using fluorescent readouts and the like.
The proteomics unit can have a variety of tests, such as affinity reactions such as specific binding reactions, such as receptor ligand or antigen antibody reactions in order to detect the presence and optionally amount of a protein in a sample. Such systems can be fabricated on silicon substrates as known in the art. Particles such as cells can be interrogated as whole cells, or can be lysed to release contents such that the cytoplasmic and internal structures such as nuclei can be interrogated.
The genomics unit can include a variety of structures and methods. Whole particle (such as whole cell) applications include in situ hybridization, such as FISH. Alternative methods include ex vivo hybridization methods in which a particle such as cell is lysed prior to being interrogated. The nucleic acid molecules of a cell, including DNA, RNA and combinations thereof can be interrogated using a variety of methods as they are known in the art. Preferably micro array-based methods, such as those using gene chips as they are known in the art (see, for example, Affymetrix patents and literature) can be used.
Thus, using high information content screening (HCS) of the present invention, a single sample can be provided and interrogated for a variety of particle properties and functions. The information generated by these systems can be collected, compared and utilized in bioinformatic applications, such as drug discovery, pharmacogenomics or pharmacokinetics.
Methods of Use
The present invention also includes a method of detecting ion transport activities or properties of a particle, such as a cell. The method includes: contacting a sample comprising at least one particle with a biochip of the present invention; positioning said at least one particle at, on, or near one or more ion transport measuring means; engaging at least one positioned particle with the one or more ion transport measuring means; and measuring ion transport activity or property of at least one particle using the one or more ion transport measuring means. Optionally, the method of detecting ion transport activities or properties of a particle, such as a cell, further includes rupturing the membrane of the at least one particle engaged with the one or more ion transport measuring means. In preferred methods of the present invention, measuring one ion transport activity or property of at least one particle using the one or more ion transport measuring means includes applying voltage or current.
The sample can be any appropriate sample, but preferably includes a biological sample that includes one or more particles, preferably a cell or population of cells.
A measurement solution can optionally be added to a sample before a sample is deposited on a biochip of the present invention or in a chamber that includes a biochip of the present invention. A measurement solution preferably has appropriate ionic composition for use as extracellular solution and/or intracellular solution and may contain one or more compound molecules whose effects on a particle's (such as a cell's) ion transport activities or properties can be measured or detected. A sample can be cells in a suspension prepared from cell culture and a measurement solution can be an extracellular solution used for suspending the cells and for conducting a patch clamp measurement. A sample can also be primary cells prepared from tissue samples of human, animals, and plants. In one embodiment, the sample and measurement solution can be incubated together for any length of time (from less than one second to several hours or even days) before adding the measurement solution-sample mixture to a chamber. For example, the mixing of a sample and a measurement solution mixing can occur in a conduit that leads to a chamber. In another example, a sample can optionally be added to a chamber and a measurement solution can be added to the chamber subsequently. In still another example, it is also possible to add a measurement solution to a chamber before adding the sample to a chamber.
A sample, and optionally, measurement solutions, buffers, or compounds or reagents, can be added to a chamber by any convenient means, such as transfer with a pipette, injection with a syringe, gravity flow through a conduit, such as tygon, teflon, PEEK tubing, through a microfluidic channel etc. Preferably a sample and other reagents such as measurement solutions, buffers, or compounds or reagents are added to a chamber in a continuous flow mode, in which a continuous stream of fluid is injected or pumped into the chamber via at least one inlet port.
The particles are directed towards holes or other ion transport measuring means on a biochip by particle positioning means. The particles then engage such holes or other ion transport measuring means so that an electronic seal is formed. The membrane patch of the particle engaged with the ion transport measuring means is optionally ruptured. The function or properties of ion transports are then determined using the structures and methods described herein. Such determinations are preferably made using patch clamp methods, single channel recording methods, or whole cell recording methods, but other ion transport assay methods can also be used.
The methods of the present invention can also include other steps, including steps that use microparticles that can bind a particle of interest, including a cell. There are two general purposes for using magnetic microparticles or dielectrically responsive particles in the present invention. The first is bind to a particle for the purposes of separating a particle (for example target cell types) from other particles, such as in a population of particles in a sample mixture. The second is to position particles in proximity of ion transport measuring means of the present invention. In certain instances, the magnetic particles or dielectric responsive particles can aid in engaging a particle with an ion transport measuring means. In one aspect of the present invention, magnetic microparticles or dielectric responsive microparticles are selectively attached to particles of interest (such as cells), such as through specific binding members, such as antibodies. The particles labeled with magnetic microparticles or dielectric responsive microparticles are then separated using electromagnetic elements or dielectrophoretic or dielectric elements of the present invention and can be manipulated or positioned at or near an ion transport measuring means. The particle is then engaged with the ion transport measuring means and ion transport function or properties can be determined.
In one aspect of the present invention, particles, such as cells, can express an exogenous surface peptide or over-express an endogenous surface protein, such as a cell surface marker. A specific binding member bound to a magnetic microparticle can specifically bind with that cell and allow for that cell to be separated from a sample including a mixture of cells using magnetic or electromagnetic elements. The magnetic microparticle bound to a particle would also facilitate manipulation of the particle and positioning at or near an ion transport measuring structure such as a hole or capillary. In the alternative, particles having dielectric properties such as latex or polymeric beads can be used instead of magnetic beads and dielectrophoretic or dielectric separating, manipulating and positioning structures can be used in place of the electromagnetic structures. Particles having such cell surface markers can be made by introducing an expression vector such as a plasmid into a cell. The vector would include a regulatory element such as a promoter operable in the host cell being used operably linked to a nucleic acid molecule encoding the exogenous cell surface protein. Methods of making such constructs, transfection and expression are known in the art.
In another aspect of the present invention, particles such as cells can co-express two proteins, one the exogenous cell surface marker or over-expressed endogenous cell surface marker discussed above and the second an exogenous ion transport protein or over-expressed endogenous ion transport protein. These particles thus have a marker that can be specifically bound with another particle such as a magnetic particle or dielectric responsive particle. These bound particles can be separated, manipulated and positioned with appropriate particle manipulation devices, such as magnetic, electromagnetic and/or dielectrophoretic devices. The particles that are positioned in this way include the ion transport protein which can then be interrogated using structures and methods of the present invention.
A number of patch-clamp recording modes, including whole cell recording, macro-patch recording (including without limitation inside-out, outside-out and cell attached configurations), single channel recording (including without limitation inside-out, outside-out and cell-attached configurations) can be performed on the chips of the present invention. In one preferred aspect of the present invention, the following order of operations can be used for a whole cell recording using a chip configuration depicted in
In the cell-attached recording configuration, after the formation of a seal such as a Giga Ohm seal, there may be no need for rupturing of the membrane. Electronic recording is made directed on the attached cell membrane without rupturing and/or removing a membrane patch. Such electronic recording will meausre function, properties and characteristics of ion transports located on the membrane patch that is confined within the ion transport measuring means. Different solutions may be added to the extracellular and intracellular chambers as compared with whole-cell type ion transport measurement.
Particularly for high throughput and high information content assays, software systems that can be used together with a chip of the present invention are desirable. The software can also be used for simultaneous image analysis of cellular phenomena described herein, particularly optical imaging in fluorescent based assays. The software is preferably configured to measure electrophysiological and/or patch clamp data information to look for readouts, such as curves, that are out of the ordinary. For example, an active ion channel or ion transport molecule in a membrane provides for a signature profile under a given set of conditions. One example of such a profile for whole-cell or multiple channel assays is a curve that exhibits an activation phase, a steady-state phase, a deactivation phase and optionally, a deactivation and/or desensitization phase. Parameters to be measured include the peak amplitude, duration and time constants. For single channel application, the open duration, open probability, noise analysis, gating current, latency, open time, dwell time, burst length, time interval omission, close time or statistical analysis of distributions of one or more of the above can be measured and/or analyzed. When an ion channel or ion transport molecule is exposed to a test chemical or test ligand or other environmental condition, the curves and/or parameters may change. Also, the fluorescent or other optical signal can change as well. The software systems of the present invention are capable of determining and storing reference profiles and compare them to experimental profiles. This comparison can be used to identify, preferably automatically, chemical or ligands or conditions that can alter ion channel or ion transport activity. As the amount of information within the software system grows, preferably in the form of an addressable database, the software system can become more powerful and approach artificial intelligence in power. For example, with a large database of structures and profile, a software system having artificial intelligence capabilities can be used to predict the activity of chemicals or ligands using structural information based on historical performance of other chemicals or ligands.
Such software systems can also be used to classify channel responses. Different classes of ion channels or ion transport molecules have different signature responses or responses to certain ligands, chemical or environmental conditions. Families of ion channels or ion transport molecules can be categorized based on these profiles. Furthermore, based on historical or taught limits such as gating, hits and misses can be determined by such software systems based on deviation from standard profiles or historical data.
In one aspect of the present invention, chips of the present invention can be used to measure endocytosis, exocytosis, mitosis or blebbing of membranes, particularly using whole particle or whole cell configurations of the present invention. These biological phenomena result in the change of the surface area of a particle or cell. As the surface area of a particle or cell attached to a whole cell patch configuration of the present invention change, the measured capacitance also changes. Currently there is no available simple or readily automatable methods for measuring these biological phenomena. The present invention provides methods for readily measuring these phenomenon that are related to normal cellular functions and tissue specific functions such as neurotransmitter release and uptake. By measuring the change of cellular capacitance using methods such as patch claiming methods of the present invention, a quantitative approach to measuring these biological phenomena are provided. High throughput assays for endocytosis and exocytosis using the present invention can provide a cost effective and automatable alternative to existing methods. Such capacitance measurement can be performed using structures of the present invention, such as those depicted in
The structures and method of the present invention are well-suited for use in primary or secondary screening in the pharmaceutical or biopharmaceutical industries and are also applicable to safety screening and target identification. The present invention can be adapted for use in primary screening where a compound library is tested against certain in channels or ion transport targets to screen for hits that have modulatory effects on the ion channel or ion transport activities. The present invention can also be used for secondary screening to confirm or otherwise further investigate the structure activity relationships (SARs) discovered using the primary screening methods. Preferably, the chemical structures obtained from the primary hits are further investigated by constructing and screening focused libraries. The same or different screen can be used to further investigate hits from a primary screen. Repeating a screen adds reliability to the screening procedure whereas the use of multiple screens, such as those against different targets or against the same target only under different conditions can provide highly useful information for selectivity, node of action, etc. Safety screening, as discussed herein, can be used to identify potential toxic effects or adverse effects or normal ion transport function, such as that of of leading drug candidates, drugs in the regulatory approval process or approved drugs.
The structures and methods of the present invention can also be used for performing sequences of nucleic acid molecules such as DNA or RNA or both in single, double, or triple stranded configurations or combinations thereof. In such cases, nucleic acid segments can be pulled through a specific ion channel (“nanopore”) located in a membrane sealed to (or integral to or immobilized on) a hole on a chip by a controlled force such as positive or negative pressure, electrophoretic or electroosmotic forces, or the activity of an enzyme such as a polymerase, topoisomerase, helicase etc. When different bases or base pairs pass through the nanopore, the impedance between the top chamber and the bottom chamber will vary according to the type of bases or base pairs, such as A, G, T, C, U and others, going through. Alternatively sensors that include A, G, T, C or a combination of bases can be engineered as an integral part of the nanopore and used to test sequence specific binding of a nucleic acid molecule to the nanopore. Integration of the data obtained from a full combination of possibilities given by AGTC, 41, 42, . . . 46 (n=1, . . . 6, being the number of bases the sensor has) can be used to deduce sequence information. Preferably, the degree, duration, and profile of the block of impedance signals is measured to discriminate between different base pairs or bases. In this way, the impedance sequence would be a direct reflection of the nucleic acid sequences being pulled or being pushed through the nanopore. Preferably, such nucleic acid molecules are manipulated with physical forces driving and/or pulling such molecules through the nanopore. In one aspect of the present invention, step-wise cleavage of individual bases with a nucleic acid molecule can be utilized. Each cleaved base is driven through a nanopore sequentially and the impedance readout can be used for sequence nucleic acid segments.
In one aspect of the present invention, membranes such as artificial membranes or other membranes can be used as a biosensor. For example, a membrane with an inserted ion channels or ion transport molecules can be immobilized over an hole. These ion channels or ion transport molecules may have specific electric-current responses to target analytes to be detected or senses. Thus, when a sample potentially containing a target analyte exposed to the membrane, the target analyte, if present, will alter the ion channel response. In this way, the chips and methods of the present invention can be used as specific detection tools for monitoring target analytes and other molecules. Preferred targets include analytes of interest, including but not limited to biomolecules, impurities, antibodies, hormones, cytokines, bacteria, viruses, parasites, pesticides, toxins, poisons, venoms, drugs, drugs of abuse and analogues, precursors or metabolites thereof. These devices and methods may have a very high sensitivity for detecting target analytes and could represent a low cost alternative to other detection methodologies.
One application of such ion channel chips or ion transport chips is for agricultural applications. Plant ion channels in guard cells and root systems are known in the art. These ion channels have been found to play important roles in regulating water conservation, nutrient absorption and other plant functions. High throughput identification of molecules that modulate these channels can help to develop agri-chemicals that can help plants withstand unfavorable environmental conditions such as draught or to identify ion channels that can be engineered into plants and expressed to alter their ability to withstand environments such as drought or absorb and/or conserve nutrients.
The present invention also includes a biochip that includes an array of capillaries, wherein members of said array comprise ion transport measuring means.
As depicted in
The present invention also includes a method of detecting ion transport function or properties of a particle that includes contacting a sample comprising at least one particle such as a cell with the biochip that includes capillary structures. Positioning the at least one particle, such as a cell, at or near said ion transport measuring means and measuring ion transport function or properties of the sample or particle using said ion transport measuring means. This method is generally depicted in
The present invention also provides a biochip that includes an array of needle electrodes. The biochip can provide needle electrodes that are associated with a capillary or a hole on said biochip. In the alternative, the needle electrodes can penetrate a particle. The particle is preferably a cell or vesicle.
As depicted in
The substrate that comprises one or more needle electrodes (such as an array of needle electrodes) can be of any appropriate size, but preferably, the substrate is between about 1 mm2 and about 2,500 cm2, having a density of needle electrodes between about 1 and about 2,500 needle electrodes per mm2. The needle electrodes can be any appropriate distance apart, but are preferably between about 20 micrometers and about 10 cm apart.
The present invention also includes a method of detecting ion transport function or properties of a particle that includes contacting a sample comprising at least one particle with a biochip that includes needle electrode structures preferably but optionally in an array, positioning at least one particle at, on or near said needle structure; and measuring ion transport function or properties of the sample or particle. This method is generally depicted in
Various specific ion transport assay methods can be used for determining ion transport function or properties. These include but are not limited to patch clamp recording, whole cell recording, perforated patch whole cell recording, vesicle recording, outside out or inside out recording, single channel recording, artificial membrane channel recording, voltage-gated ion transport recording, ligand-gated ion transport recording, recording of energy requiring ion transports (such as ATP), non energy requiring transporters, toxins such a scorpion toxins, viruses, stretch-gated ion transports, and the like. See, generally Neher and Sakman, Scientific American 266:44-51 (1992); Sakman and Neher, Ann. Rev. Physiol. 46:455-472 (1984); Cahalan and Neher, Methods in Enzymology 207:3-14 (1992); Levis and Rae, Methods in Enzymology 207:14-66 (1992); Armstrong and Gilly, Methods in Enzymology 207:100-122 (1992); Heinmann and Conti, Methods in Enzymology 207:131-148 (1992); Bean, Methods in Enzymology 207:181-193 (1992); Leim et al., Neurosurgery 36:382-392 (1995); Lester, Ann. Rev. Physiol 53:477-496 (1991); Hamill and McBride, Ann. Rev. Physiol 59:621-631 (1997); Bustamante and Varranda, Brazilian Journal 31:333-354 (1998); Martinez-Pardon and Ferrus, Current Topics in Developmental Biol. 36:303-312 (1998); Herness, Physiology and Behavior 69:17-27 (2000); Aston-Jones and Siggins, www.acnp.org/GA/GN40100005/CH005.html (Feb. 8, 2001); U.S. Pat. No. 6,117,291; U.S. Pat. No. 6,107,066; U.S. Pat. No. 5,840,041 and U.S. Pat. No. 5,661,035; Boulton et al., Patch-Clamp Applications and Protocols, Neuromethods V. 26 (1995), Humana Press, New Jersey; Ashcroft, Ion Channels and Disease, Cannelopathies, Academic Press, San Diego (2000); Sakman and Neher, Single Channel Recording, second edition, Plenuim Press, New York (1995) and Soria and Cena, Ion Channel Pharmacology, Oxford University Press, New York (1998), each of which is incorporated by reference herein in their entirety.
The present invention also includes a biochip that includes an array of holes through the biochip. Preferably, the holes have negatively charged surfaces when the biochip is in contact with measurement solutions and are capable of engaging a particle such as a biological cell, a vesicle and/or a membrane organelle with high resistance electrical seal. The particle is preferably a cell or vesicle, but that need not be the case. In one preferred embodiment of a biochip of the present invention, the biochip comprises an array of holes through the biochip, wherein the hole surface has optionally been treated in acidic, and/or basic solutions and is capable of engaging a particle such as a biological cell, a vesicle and/or a membrane organelle with high resistance electrical seal.
As depicted in
The present invention also includes a method of detecting ion transport function or properties of a particle such as a cell, including contacting a sample comprising at least one particle with a biochip including an array of holes, positioning the at least one particle at or near said holes; and measuring ion transport function or properties of the particles or sample using said ion transport measuring means. This method is generally depicted in
A systematic investigation was performed in order to understand the physicochemical mechanism of giga-ohm seal between cell membrane and glass capillary. Patch-clamp glass capillaries from World Precision Instruments (WPI, Item No. PG52150-4) having ID (0.86 mm) and OD (1.5 mm) were pulled on a micropipette puller (Sutter Instruments Co., Flaming/Brown Micropipette Puller, Model P-97) and then polished on a WPI microscope (Item No. H602) under the polishing wire (WPI item no.: MF200-H3) connected to a Micro-Forge (WPI item no.: MF 200). The polishing, also referred to as “fire-polishing”, resulted in a tip outer diameter of ˜3 μm and ID of 1-1.5 μm. These glass capillaries were subjected to a variety of surface treatments and then tested for their ability to form giga-ohm seals using a model cell system—RBL-1 (rat blood leukocytes) cells. The results are summarized in Table 1-4 where the seal percentage is defined as the ratio of the number of giga-ohm seals obtained (several giga-ohm to about 20 giga-ohm) to the total number of glass capillaries tested under a specific surface treatment condition.
Table 1 summarizes the effect of acid treatment on seal formation. Whilst FPP (freshly pulled and polished pipette) had an overall seal percentage over 80%, acid treatments of these pipettes gave significantly lower percentages of giga-ohm seals (0% to 30%). On the other hand, acid-treated surfaces were re-activated or significantly-improved (50% -86%) by a number of follow-up treatments such as base-treatment or Ca2+ treatment. Some other follow-up treatments [3-aminopropyltrimeth-oxysilane (APS), sol-gel, organic epoxide] had little effect on the acid-treated surfaces in terms of their capability to form a giga-ohm seal.
Table 2 summarizes the effect of exposure of FPPs (Freshly Pulled and polished Pipettes) to room air or CO2 on seal formation. It can be concluded that prolonged exposure to the air and/or CO2 results in a significant reduction of the giga-ohm seal percentage (0% -50%). Again, like the acid-treated capillaries, the air-exposed or CO2 treated pipettes were re-activated or significantly improved in sealing ability by a number of follow-up treatments such as base treatment, Ca2+ treatment, and/or simply placing in water. In most cases, re-fire-polishing the pipette tip restored its sealability. On the other hand, treatment of FFPs in HCO3− solution abolished their sealability, while storage of pipettes in a room air depleted of CO2 preserved their sealability.
Table 3 summarizes effects of some other treatments. Storing the glass capillaries in 100 mM PBS (phosphate buffered saline) did not greatly affect their sealability whilst PE (phosphatidyl-ethonolamine) treatment inactivated all the capillaries tested.
Based on these investigations, we can conclude that whilst acid-treatment or CO2 treatment may result in the inability of glass capillaries to form giga-ohm seals (“inactivation”), base-treatment and Ca2+ treatment (and sometimes treatment with de-ionized H2O) are able to restore the giga-ohm sealing capabilities. In addition, treatment or storage of FPPs in H2O was able to retain the sealability of the pipettes for over five months.
To further investigate the effects of various treatments on surface charge-properties of the glass capillaries, electro-osmosis experiments were performed on the glass capillaries. In these experiments, the glass capillaries were filled with electrolytes that were colored with a small amount of colored ink. These capillaries were placed in a beaker containing the same electrolytes as those in the capillaries (but without colored ink). DC electrical voltages were applied to the platinum wire electrodes in the glass capillaries and in the beaker. By observing the movement of colored electrolyte solutions in the glass capillaries, we could deduce the polarities of fixed charge on the tip of the capillaries. The results are summarized in Table 4. There is a correlation between the charge polarity and the percentage of giga-ohm seals, for example, negative surface charge on the glass capillaries correlates to improved sealing rate whilst a positive charge or no-charge or little negative charge correlates to a decreased sealing percentage.
To further investigate the effect of these acid/base treatments on the surface charge properties of glass capillaries, electroosmosis flow experiments were performed with fused silica capillaries that were treated with various acid and base solutions using a DMSO elution profile as an indicator of the capillaries' surface charge. The capillaries were 50 micron in inner diameter and about 68 cm long. The length between the sample loading port to the detector is about 46 cm. Typically, the buffer used for electroosmosis testing is a {fraction (1/0)}th-PBS (phosphate buffered saline, pH=7.2, diluted in an de-ionized water in a ratio of 1 to 9 for PBS to water). A DC voltage of 20 kV is applied, resulting a typical current of about 25 μA. A neutral molecule marker DMSO is used and injected to measure the electro-osomosis effect in fused silica capillaries. Table 5 summaries the results of various electro-osmosis flow tests. Several conclusions can be drawn from these measurements:
(1) For fused silica capillaries, base-treatment would result in an increase in electro-osmosis mobility while acid-treatment would result in a decrease (or even reversal) in electro-osmosis mobility. Based on the electro-osmosis flow direction, it was determined that the surface charge in these fused silica capillaries is negative. Thus, a base treatment would result in an electrically more-negative surface or an increased surface negative charge density. On the other hand, an acid treatment would lead to a reduction in the surface negative charge and in some cases (not shown here) an acid treatment would cause a reversal of electro-osmosis flow direction, indicating a positively-charged surface.
(2) The electro-osomsis velocity for fused silica capillaries after the treatment with acid or base depends on how the capillaries are stored, rinsed or processed. For example, as shown in Table 5, a silica capillary treated/rinsed in 5 N NaOH (˜9 min) followed by a {fraction (1/0)}th-PBS rinse (˜9 min) would give an electro-osmosis mobility that is 30% higher than that of fresh capillaries. On the other hand, a silica capillary treated/rinsed in 5N NaOH (˜9 min) followed by a H2O rinse (˜9 min) and a {fraction (1/10)}th-PBS rinse (˜9 min) would give an electro-osmosis mobility that is only about 8% higher than that of fresh capillaries. This indicates that the surface charge density values on these fused silica capillaries change with time and are also dependent on what solutions that have been introduced into the capillaries for rinse/treatment or storage. 5N NaOH treated capillaries have an increased negative surface charge density. The negative surface charge density was decreased when a capillary was rinsed or treated with {fraction (1/10)}th-PBS solution and decreased even more if a de-ionized H2O rinse was also used. The effect of treatment/rinsing conditions on electro-osmosis mobility (and on surface charge density of capillaries) has been studied and published in an article by Williian J. Lambert and David L. Middleton, entitled “pH hysteresis effect with silica capillaries in capillary zone electrophoresis”, in Analytcal Chemistry, vol. 62, pages 1585-1687, 1990. These effects are related to the mechanisms through which a silica surface acquires negative charge. At high pH (for example, pH>5), the ionization of the surface silanol groups (SiOH) is increased, leading to more SiO− groups and more negative surface charge density. At low pH (for example pH<3), the ionization of the surface silanol group is suppressed, leading to less number of SiO− group and a reduced negative surface charge. Thus, the surface charge density of a fused silica capillary depends on the pH of the solution and also depends on whether the surface charge has reached an equilibrium state. The article by Williian J. Lambert and David L. Middleton, entitled “pH hysteresis effect with silica capillaries in capillary zone electrophoresis”, in Analytical Chemistry, vol. 62, pages 1585-1687, 1990 further shows that the equilibration of the surface charge on the fused silica surface is a relatively slow process. In fact it may take several weeks at intermediate pH (for example pH=−4-6). On the other hand, re-equilibration to a pH where the surface become either fully (or nearly-fully) ionized (at a high pH, for example pH=12) or fully un-ionized (at a low pH, for example pH=2) appears to be rather rapid. Thus, in order to evaluate the effect of treatment of acidic solution or basic solution on a fused silica capillary on its surface charge density in terms of electro-osmosis mobility in a buffer with pH between 7 and 8, electro-osmosis mobility determination should be performed shortly after the silica capillary is treated in acidic or basic solutions. The time delay between electro-osmosis mobility determination and the treatment with acidic or basic solutions is preferably within 10 minutes and more preferably within 5 minutes, during which time the silica capillary is rinsed with or filled with or treated with the buffer in which the electro-osmosis mobility is determined.
The glass pipettes (or glass chips, as described below) used for ion channel patch clamping, at least in part because of the silanol group (SiOH) on the surface, will also exhibit a pH dependency for surface charge densities. However, because of their different molecular compositions from that of the fused silica capillaries and are thus expected to have different pH dependency for their surface charge densities. For example, K. D. Lukacs and J. W. Jorgeson demonstrated different pH dependencies for electroosmosis flow velocities for Pyrex glass and fused silica capillary in an article published in Journal of High Resolution Chromatography, Vol. 8, page 407, 1985. In this article, it was shown and demonstrated that Pyrex glass capillary has a higher electroosmotic velocity and has a larger negative surface density than those of a fused silica capillary.
Treating the glass pipettes (and/or glass chips) with acid and/or base solutions will also affect their surface charge densities. Furthermore, because SiO2 are the major composition in glass pipettes or glass chips, and/or because SiOH is the major surface functional group on glass pipettes or glass chips, it is expected that base-treated glass would have a higher negative surface charge density while acid-treated glass would have a lower negative surface charge density. In addition, it is expected that surface charges on glass pipettes and/or glass chips are also dependent on whether the surfaces have reached equilibrium with solutions of different pH values, and thus dependent on how glass pipettes and/or glass chips are handled, stored or preserved after treatment.
In one experiment, freshly pulled glass pipettes were stored in de-ionized water for over five months and such de-ionized water preserved glass pipettes were tested for whole cell patch clamping with similar success rate in giga-Ohm seal and whole cell access to that obtained for freshly pulled pipettes. This indicates or suggests that de-ionized water (pH, ˜8) storage does not seem to affect surface properties of glass pipettes much, or at least does not seem to affect those properties important to high resistance seals.
In another experiment, glass chips with ion transport measuring holes were treated in an acid solution (nitric acid, 6M, 4 h), followed by rinsing and treatment in de-ionized water (1 h) and then in base solution (NaOH, 5N, 45 min), and rinsing again in De-ionized water. Some of glass chips were then used for ion channel patch clamp recording directly and other chips were stored away for 1 month. It was found that de-ionized water preserved glass chips were tested for whole cell patch clamping with similar success rate in high resistance seal (for example, giga-Ohm seal) and whole cell access to that obtained for glass chips that did not undergo water storage. This suggested that de-ionized water (pH, ˜8) storage preserved those surface properties of glass chips important to high resistance seals.
The treatment method involving the use of acidic solutions and basic solutions can be applied to chips (or other forms of ion transport measuring components) made of various materials such as silica, glass, silicon, plastic materials, polydimethylsiloxane (PDMS) and oxygen plasma treated PDMS, or chips coated with various materials such as silica, glass, silicon, plastics, PDMS and oxygen plasma treated PDMS. Particularly, the treatment procedure can be applied to the chip with surface composition containing SiOM surface groups and SiO2 groups. M can be a metal, such as, for example, Na, K, Ca, etc., or can be hydrogen. The surface density of SiOM groups and SiO2 groups taken together on such chips may vary between as low as 0.01% to as high as near 100%. Preferably, however, the surface density of SiOM groups and SiO2 groups taken together on such chips is more than about 1%, more preferably, more than about 10%, and even more preferably, more than about 30%.
All acidic solutions and basic solutions may be used for treatment method described above. Acidic solutions can be chosen from a group consisting of, but not limited to, for example, HCl, H2SO4, HNO3, HF, H3PO4, ABr, HCOOH, CH3COOH. Basic solutions can be selected from the group consisting of, but not limited to, for example, NaOH, KOH, NH4OH, Ca(OH)2. Various concentrations of acid and base from as long as 1 mM to as high as 15 M can be used, provided such treatment would generate surface functional groups facilitating the electrical seal between the particle surface and the surface of the ion transport measuring means on the chip. Treatment time can vary from as short as 1 minute to as long as 24 hrs or days, even though it is expected that, at least for fused silica surfaces, the surface charge can reach an equilibrium determined by the treatment solution quite rapidly (for example, <2 hr) when the pH of the treatment solution is pH<2 or pH>12.
In brief summary, preferred treatment/storage conditions for patch-clamp glass pipettes include:
In addition, when pipettes need to be stored or shipped, they can be preserved and shipped in de-ionized H2O. Pipettes have been shown to retain the same or similar sealability after being stored in de-ionized H2O for up to five months.
For descriptive purposes, we refer to the major-surface side of the wafer the ion transport measuring means after fabrication as the front side and the other major-surface side as the backside. The brief summary of the fabrication process is as follows. The silicon wafer is first grown with a thin layer SiO2 and/or Si3N4, which is then patterned with squared-shaped (or other regular or irregular-shaped) opening to serve as a hard mask for backside etching to produce an opening. Anisotropic etching of the silicon wafer (<100>-oriented silicon) using KOH solutions produces a square-shaped funnel on the backside with an angle of 54.7 degrees. Etching condition and time are carefully controlled so that etching will leave 5-10 micron thickness of silicon from the front-side of the wafer. It is this 5-10 micron thick region over which the ion channel holes are produced. After removing the SiO2 and/or Si3N4 mask layer from the backside, a photoresist is then coated on the front-side of the wafer and is patterned with circular-openings of <1 micron to 3 microns in diameter for producing ion-channel measurement holes. Deep reactive ion etching (a dry etching method) is then used to etch the photoresist-patterned silicon wafer from the front side to produce ion transport measuring holes. The etching time and conditions are controlled so that the ion transport measuring holes are completely etched through the 5-10 micron thickness of silicon. After the ion transport measuring hole is produced, the wafer is then thermally oxidized to produce a layer of SiO2. The thermal oxidation process is controlled so that the final ion-channel measuring hole is in the range of <0.5 micron and 2.5 micron in diameter. The preferred thickness of thermal oxidation layer is 0.2˜3 microns.
Depending on whether the positioning structures are incorporated onto these chips, the wafer is then directly diced to make individual chips, or processed to make the positioning electrodes on the front side. For example, quadrapole electrode structures can be used as the positioning structures. The examples of quadrapole electrodes include, but not limited to, the polynomial electrodes, as described in “Electrode design for negative dielectrophoresis”, by Huang and Pethig, in Measurement Science and Technology, Vol. 2, pages 1142-1146, and a number of electrodes disclosed in U.S. patent application (Ser. No. 09/643,362), titled “Apparatus and method for high throughput electrorotation analysis, filed on Aug. 22, 2000, naming Jing Cheng et al as inventors, which is incorporated by reference in its entirety. Standard photolithography procedures can be utilized in making such positioning electrodes. During fabrication of such positioning electrodes, it is necessary to ensure that the ion transport measuring holes are not covered, or blocked. Thorough cleaning and stripping is used to remove any deposited materials in the holes. Alternatively, the ion transport measuring holes may be protected by, for example, first filling the ion transport measuring holes with materials that can be later removed, then going through the electrode-fabrication, and lastly removing the filling-materials. After the positioning electrodes are fabricated, the wafers are diced into individual chips.
As an alternative to the silicon wafer, a silicon-on-insulator wafer is used for producing ion channel chips. These wafers have a silicon-dioxide (SiO2) layer in the middle, sandwiched between silicon layers on two sides. Looking at such a wafer in a cross-sectional view, a top silicon layer of certain thickness (for example, 5 microns), a thin middle SiO2 layer, and a bottom silicon layer (for example several hundred microns). Fabrication of ion channel chips using such SOI wafers follows a similar procedure to that used for silicon wafers, except for several specific differences.
The brief summary of the fabrication process is as follows. The SOI wafer is first grown with a thin layer SiO2 and/or Si3N4, which is then patterned with square-shaped (or other regular or irregular-shaped) opening to serve as a hard mask to produce an opening using backside etching. Anisotropic etching of the backside silicon (with <100>-orientation) with an angle of 54.7 degree is performed using KOH solutions. This step differs from the procedure for a solid silicon wafer, because the backside wet etching of silicon in this case would stop “automatically” at the middle SiO2 layer, due to the significantly lower etching rate for SiO2 with respect to the etching rate for the silicon layer. Thus, the precise timing of the etching is not as important as that used for a solid silicon wafer, for which special care is taken to ensure that the etching would leave 5-10 micron thick silicon from the front side.
Depending on whether the positioning structures are incorporated onto these chips, the wafer is then directly diced to make individual chips, or processed to make the positioning electrodes on the front side. For example, quadrapole electrode structures can be used as the positioning structures. The examples of quadrapole electrodes include, but not limited to, the polynomial electrodes, as described in “Electrode design for negative dielectrophoresis”, by Huang and Pethig, in Measurement Science and Technology, Vol. 2, pages 1142-1146, and a number of electrodes disclosed in U.S. patent application (Ser. No. 09/643,362), titled “Apparatus and method for high throughput electrorotation analysis, filed on Aug. 22, 2000, naming Jing Cheng et al as inventors, which is incorporated by reference in its entirety. Standard photolithography procedures can be utilized in making such positioning electrodes. During fabrication of such positioning electrodes, it is necessary to ensure the ion transport measuring holes are not covered, or blocked. Thorough cleaning and stripping is used to remove any deposited materials in the holes. Alternatively, the ion transport measuring holes may be protected by, for example, first filling the ion transport measuring holes with materials that can be later removed, then going through the electrode-fabrication, and lastly removing the filling-materials. After the positioning electrodes are fabricated, the wafers are diced into individual chips.
In the third example, glass is used as substrate material for making ion channel chips. The technique of “laser ablation” is used to produce ion transport measuring holes on the glass substrates. During laser ablation, a process called “photo dissociation” takes place when an excimer laser beam with certain energy densities (energy fluence with unit J/cm2) hits the glass substrate. Because the short pulse duration of the laser, there is minimal thermal effect on the glass substrate from the laser-glass interaction. Instead, laser energy is absorbed directly by the electrons of the surface layers of atoms so that the bonds between atoms break, thereby removing layers of materials from the glass substrate. The absorption layer may be sub-micron. By using multiple pulses of laser beams, laser ablation can remove many microns of glass from the substrate. Because laser ablation only occurs at the path of the focused laser beam, a circular laser beam would result in a cylinder-shaped, near-cylinder-shaped, or truncated-cone-shaped hole produced on the glass. Further details about excimer laser and laser ablation can be found in the article by Patzel R and Endert H, titled “Excimer lasers: Once a scientific tool, the excimer laser now fills many roles”, in “The Photonics Design and Applications Handbook, Book 3”, pages H-239-248, published by Laurin Publishing Co., Inc., 1996.
The laser ablation effect is highly dependent on the wavelength of the laser. For example, both Argon/Fluoride 193 nm laser and Kr/Fluoride 248 nm laser may be used for processing various glass substrates. However, for a number of glass substrates, the energy transfer between the laser and the glass substrates for 248 nm laser may not be as efficient as 193nm, and the inefficient energy between the laser and the glass substrates may result in certain undesired effects, for example, cracking on the glass may occur during the laser ablation process. 193 nm and 248 nm lasers are examples of lasers that can be used for processing the glass substrates. Lasers of other wave lengths may also be used. In addition to the laser wavelength, other parameters or conditions that need to be carefully chosen during laser ablation include the laser pulse duration, interpulse time, duty cycle, laser energy density (fluence) and number of pulses. For a given glass type of given thickness, those who are skilled in laser ablation can readily determine and choose appropriate laser wavelengths and laser ablation conditions for producing holes of specified geometries. Alternatively, empirical testing could be used to find optimized conditions for parameters such as laser wavelength, energy density, pulse duration, duty cycle, for producing holes on given types of glasses.
For the glass chips produced for our ion channel applications, both 193 nm and 248 nm lasers were used. Several types of glass were tested and used in the fabrication, Corning AF-45 (SiO2, 50.4%; B2O3, 12.5%; Na2O, 0.2%; Al2O3, 11.6%; BaO 24.1%), Corning 0211 (SiO2, 64%; B2O3, 9%; ZnO, 7%; K2O, 7%; Na2O, 7%; TiO2, 3%, Al2O3, 3%), Erie D263 (composition unknown) and Corning 7740 (SiO2, 80.6%; B2O3, 13%; Na2O, 4%; Al2O3, 2.3%). Thus, essentially all types of glass can be used to fabricate ion channel recording chips. The glass substrates were rectangular in shape, varying from 9 mm by 9 mm to 22 mm by 60 mm, and had thickness between 100 micron and 170 micron. These geometries and dimensions are not limiting factors for use of the glass substrates for making the ion channel chips. Indeed, substrates of other regular or irregular shapes, other sizes, other thickness may also be used. For processing for ion transport measuring holes, a 100 micron diameter counter-pore is first made by using a laser beam to ablate the glass substrate from the back side. This is followed by a second laser beam of smaller diameter that is focused on the exit hole, on the other surface (“front side”). The number of laser pulses and laser beam energy are controlled so that the first laser ablation process leaves behind about 30 micron thick glass and the second laser ablation process can go through the remaining 30 micron. For the second laser ablation, the laser beam comes in at an angle so that the entrance hole from the counter-pore is larger (for example, 6˜8 micron) than the exit hole (for example, ˜1.3±0.2 micron) giving a cone shaped carve-out for the measurement pore. The schematic representation of the laser ablation used to make such ion transport measuring holes is shown in
Ion transport measuring holes with different geometries can have different hole resistance when the hole is filled with measurement solutions and have different access resistance in the whole cell configuration (access resistance is the resistance from the intracellular recording electrode, via the measuring hole, to the cell interior). Smaller access resistance is generally preferred for measuring the whole cell ion transport current. For an ion transport measuring hole comprising a single or more counter pore(s) and a measurement pore, shorter measurement pore, larger entrance hole diameter (on the counter pore side) and larger exit hole diameter (on the chip surface) result in smaller access resistance. On the other hand, exit hole can not made too large since the cells may go through such large ion transport measuring hole. Entrance hole can not be made too large either since this is limited by the size of the exit hole and the maximum tapering angle the laser ablation can provide. In addition, the measurement hole can not be made too short either since this may compromise the chip rigidity and integrity. For example, glass chips were made with measurement pores having a ˜20 micron long, ˜12-15 micron entrance hole and ˜1.5 micron exit hole, showing smaller access resistance compared with chips with measurement pores having a ˜20 micron long, ˜6-8 micron entrance hole and ˜1.5 micron exit hole.
Other procedure of laser ablation may also be used for producing the ion transport measuring holes on glass chips. The laser process can also be used to produce ion transport measuring holes on other materials including, not limited to, plastic materials, polymers and ceramics, although modifications of the holes may be necessary depending on the type of material used.
To mimic the surface compositions of conventional glass capillary electrodes, ion channel chips made from silicon and SOI wafers were coated with Borosilicate glass using vapor phase deposition. Patch clamp glass capillaries (Type 7052 or 7056 glass) were melted and used as the target during glass deposition. Coating was done from both front and back sides of the ion channel chips. Coating thickness was 3000 to 10,000 Å. Prior to use in the ion channel recording, the Borosilicate coating was “flamed” (flame annealed) using a propane torch (propane flame) to relax the stress on the glass. Such a “burning” process also simulates the fire polishing procedure for the patch pipettes.
In one example, for a silicon-wafer-based chip with a 2-2.5 micron hole, after coating with 3000 Å of Borosilicate glass, a 2 giga-ohm seal was obtained on a RBL-1 cell. In the experiment, a RBL-1 cell was sucked into the ion transport measuring hole with a negative pressure (around −30 torr) the resistance quickly rose to 2 giga-ohm after the negative pressure was released. The seal-formation process was quite similar to that with a patch pipette.
In another example, for a SOI-wafer-based chip with a 1.5 micron hole coated with 3000 Å of Borosilicate glass, a high giga-ohm (40 giga ohm) seal was achieved. In the experiment, a RBL-1 cell was sucked into the ion transport measuring hole with a negative pressure (>−50 torr). Repeated suction and release eventually resulted in the formation of a 40 giga-ohm seal.
In still another example, for a SOI-wafer-based chip with a 1.5 micron hole coated with 3000 Å of Borosilicate glass, a whole cell access and recording was achieved. In the experiment, a RBL-1 was sucked into the ion transport measuring hole with a negative pressure (sloping from −30 to −150 torr). The seal resistance increased after the cell was in position with suction applied, and when it reached about 500 M-ohm, the membrane patch within the measurement hole ruptured and electrical signals at the bottom chamber were applied to the cell interior via the ion transport measuring hole. This whole cell access is also sometimes called a “break-in”. With subtraction of leakage current, the ion channel current from this RBL-1 cell was recorded with a voltage-ramp protocol and with a voltage-step protocol.
Glass chips were baked in a muffle furnace at certain temperatures to release the stress within the glass (in particular in the regions close to the ion transport measuring holes) and to clean the chips by combustion of any organic “dirt” substances. First, the temperature of the furnace was raised to the desired value (for example 630° C.). The glass chip placed on a flat surface was then introduced into the furnace and baked for a specified length of time. During this time period, the temperature of the furnace returned to the desired value and was maintained within 1° C. accuracy. The baking time is typically set at 30 min. For 0211 glass, a baking temperature between 570° C. and 630° C. was used. For D263 glass, a baking temperature of 635° C. was used. For AF45, a baking temperature of 720 ° C. was used. Baking of glass chips may not be a necessary step for chip treatment. For glass chips that were processed with certain wavelength lasers, stress within the chips may not be a serious problem for chip handling and mounting. Glass cleaning may use other methods. Yet, in some instances, the glass baking seemed to increase the overall success rate of sealing. A wide range of baking temperatures can be used for cleaning the chips and for releasing the stress within the glass. If the baking time is quite short, then even temperatures higher than the softening point may be used.
A number of surface treatment protocols were tested.
(1) H2O storage and treatment. After baking, the glass chips were stored in de-ionized H2O for many hours (ranging from less than 1 hour to over 2 days). Using this protocol, we achieved a 2 Giga-ohm seal for a RBL-1 cell on a D263 glass chip that was baked at 570° C. for one hour and stored in H2O for ˜2 hours. A good whole cell recording was achieved.
However, the same treatment condition did not result in giga-ohm seal for another 7 chips. The whole cell recording on a RBL-1 cell on this chip for a ramping voltage protocol, in which the voltage applied across the cell membrane linearly varied with time from ˜120 mV to 60 mV at a rate of 120 mV/second, is shown in
(2) Base treatment followed by H2O. After baking, the glass chips were treated in a NaOH solution (1M to 5M) for 10 to 300 minutes (typically 30 min), and were then transferred into de-ionized H2O for storage/treatment. For glass chips made of either D263 or 0211 glasses, after they were treated by this method, we achieved a seal rate of approximately 50%. A sample whole cell recording is shown in
(3) Acid treatment followed by base treatment and H2O. With or without baking the chips, the glass chips were first treated with HNO3 (6 M) for 4 or 5 hours, then treated with NaOH (5M) for 30-45 minutes, and were then transferred into de-ionized H2O (pH=6-7) for storage/treatment. For glass chips (made from 0211 glass) baked at 630° C. followed by the above-described acid-base-treatment, we achieved 54% seal rate.
(4) For glass chip (made from 0211 glass) that were not baked but were treated by acid followed by base solutions, we achieved a 71% seal rate. An exemplary whole-cell recording for a RBL-1 cell recorded on such a glass chip is shown in
(5) Laser polishing followed by Acid treatment and then by base treatment. After the recording hole on the glass chip was made, the area around the hole on the front side of the chips was polished (and cleaned) with an excimer laser. Such laser polishing has several functions: smoothing the chip surfaces and smoothing ion transport measuring holes, removing or smoothing re-deposited glass material, and cleaning off any residual materials remaining on the glass surface. Using another treatment protocol, a non-sticky layer for cells was created on the top surface of the glass substrate using a coating or other treatment as described. In this case, laser polishing also removed the non-sticky surface layer only at the focused center area, creating a cell-sticky area with a polished glass surface surrounding the ion transport measuring hole and a non-sticky area surrounding the cell-sticky area. This surface pattern was to aid positioning by DEP (dielectrophoresis) means and other particle positioning means whilst retaining high cell stickiness near the ion transport measuring hole. Laser polishing can also be used to pattern thin gold film surface electrodes while at the same time polishing the ion transport measuring hole area. The diameter of the polished area was between 20 to 140 μm, although smaller or larger areas can also be used. The laser conditions (laser energy fluence, pulse number etc) used here were different from those used for laser ablation. Whilst those who are skilled in laser ablation of glass may readily determine appropriate laser-polishing conditions, these conditions may also be empirically determined by testing a range of conditions. For several types of glass we tried, it was found that a 248 nm laser with certain energy fluence, attenuation degree, etc, provided the best polishing results. The laser-polished glass chips were then subjected to HNO3 treatment and then NaOH treatment as described above. For such treatment protocols, a near-100% seal rate was achieved with the majority of the seal resistances in the high-giga ohm range (>3 giga-ohms). Exemplary whole cell recording is shown in
Examination of glass chips under optical microscopy revealed that acid treatment affects the glass surface by, at least in part, cleaning the surface. Glass chips that had gone through acid—base —H2O treatment appeared to be cleaner (sometimes much cleaner) than glass chips without the acid treatment step. In examples described above, nitric acid at a high concentration was used. Nitric acid at other concentrations and other acids (for example HCl) of different concentrations may also be used.
Base treatment appears to be an important step in modifying chip surface properties for enhancing or facilitating high resistance electric sealing between the hole on the chip and a cell membrane. In the examples described above, a high concentration of NaOH was used. NaOH at other concentrations and other base types (for example KOH) of different concentrations may also be used. Base treatment of glass surfaces results in a more negatively-charged surface. More negatively-charged surfaces appear to correlate with improved success rate in achieving high resistance electrical seals.
In addition to base treatment for obtaining a negative or more negatively charged surface on glass chips, other surface treatment or surface modification methods can also be used to obtain negatively charged surfaces. For glass chips, the negatively charged surface of the hole arises from or at least in part from negatively charged silanol groups. Glass chips or chips made of other materials can also be modified to contain a surface with other negatively charged groups, such as, but not limited to, sulfate, phosphate, and carboxyl groups. One approach is to modify a surface by providing sulfate groups on the surface. In one strategy, the chip surface can first be pre-modified with vinyl groups and the negatively charged sulfate groups can then be added by co-polymerizing a neutral monomer (for example acrylamide) and a sulfate group containing monomer (for example 2-(sulfooxy)ethyl methacrylate ammonium) with pre-modified vinyl groups (as described in article entitled “Charged surface coating for capillary surface” by M. Huang, G. Yi, J. S. Bradshaw and M. L. Lee, Journal of Microcolumn Separations, volume: 5, page 199-205, 1993). In this way, the surface (negative) charge density can be controlled by using different ratios of acrylamide to 2-(sulfooxy)ethyl methacrylate ammonium. In addition, such negatively charged surface density is pH independent or nearly independent over a pH range between 3 and 9. Chips with different surface charge density values may be used and optimized for different types of the cells to facilitate high resistance electric seals.
In brief summary, preferred treatment/storage conditions for glass chips include:
In addition, for storage and shipping, glass chips can be preserved and shipped in de-ionized H2O with appropriate pH values (for example, pH>7,) or in high ionic strength salt solution (for example, 3 M CaCl2).
Dielectrophoresis-based auto-positioning of cells was demonstrated on a glass-chip with a 150 micron polynomial electrode array (see
10 μL of cell suspension (˜2×106 cells per mL) was added into the chamber and immediately an AC electrical sine wave signal was applied continuously at 125 kHz and 3 V peak-to-peak to the positioning electrodes. With a slight negative pressure (˜−20 torr) applied to the bottom chamber, the resistance between the top chamber and bottom chamber through the ion transport measuring hole was monitored. At one minute after AC signal application, the resistance across the top and bottom chamber jumped from 3 MOhm to about 20 MOhm. Turning on the microscope revealed that one cell had landed on the ion transport measuring hole. The negative pressure (˜−20 torr) was maintained and the resistance continued to increase until about 200 MOhm when whole cell access was achieved. Seal properties continued to improve slightly even after whole-cell access. Whole cell recording was achieved (see
Cells that can be used for patch clamp recording include, but are not limited to, cells prepared from tissue culture including both suspension cells and adherence cells, cells prepared from primary tissues such as human tissues, tissues of animals and tissues of plants. For adherent cells grown in cell culture, in order to be used with biochips and other fluidic devices of present invention, these cells need to be harvested and/or processed from tissue culture plates or flasks. Great care should be taken in processing such cellular samples to minimize the “damaging” effects on the cells. Typically, adherent cells can be released from a culture plate using treatment with diluted Trypsin/EDTA solutions for a short period of time (for example, several minutes). The harvested cells can then be pelleted briefly by a short centrifugation step (˜2 minute) to remove cell debris in the supernatant. Optionally, re-suspended cells can be then filtered by using a filter with appropriate small pore or opening sizes (for example, 8 micron diameter opening) to further remove cell debris. Filtered cells can also optionally be filtered through a large pore membrane (for example, 30 micron) to remove large cells or aggregates. The filtered cells can be collected into the low-adhesion plates (e.g., Costar 3471 ultra low cluster plates from Corning, Inc.). In many applications, cells should be left in the plate for recovery and equilibration for some time (for example 2 hours) before they can be used for electrophysiological measurement.
Various cartridge structures are tested and developed.
For the intracellular chamber, the component (shown in
For the extracellular chamber, the component (shown in
For constructing the recording cartridge, a chip is sandwiched between the top and bottom chamber pieces with PDMS molded seals on each side of the glass substrate, ensuring that the holes on the top chamber, the ion transport measuring hole on the chip, and the opening on the bottom piece are perfectly aligned.
A typical experimental procedure is as follows. After mounting a chip onto the recording cartridge, the bottom chamber (for example, the intracellular chamber) is first loaded with the intracellular solutions. The intracellular solution is then pushed through the ion transport measuring hole to reach the top chamber (for example, the extracellular chamber) so that the ion transport measuring hole is filled with intracellular solutions. Immediately after that, the top chamber is loaded with extra-cellular solutions using a pipette. The cartridge is then loaded onto a microscope stage. Electrical connections from the intracellular electrodes and extracellular electrodes to the connections on the preamplifier head-stage are made. The resistance through the ion transport measuring holes is monitored with an AXON patch clamp amplifier (Axopatch 200B), Digidata 1320 computer interface and pClamp8 software. A small aliquot of cell suspension is then introduced into the top chamber. A slight negative pressure is applied to suck the cells onto the ion transport measuring hole. The landing of a cell on the hole results in an immediate change in the resistance across the top and bottom chambers. Maintaining the negative pressure, or releasing and applying the negative pressure, facilitates sealing. Sealing can be improved by applying a negative bias voltage to the intracellular side of the chamber. Sealing resistance is continuously monitored throughout this procedure. After a giga-ohm seal is achieved, further increasing the pressure results in break-in and whole-cell access (for example, when membrane sealed within the ion transport measuring hole is ruptured by pressure). After optionally compensating for the leakage resistance and capacitance, whole cell recordings can be made.
Ideally, it is required that the surface near the ion transport measuring hole be “sticky” to the cells for easy “sealing” and that the surface away from the hole is “nonsticky” to facilitate positioning of the cells on chip by DEP (dielectrophoresis). In another design, the “hole on a substrate” is inverted so that the intracellular chamber faces upward and the extracellular chamber now is inverted with the hole or holes opening downward from the top of the chamber, as shown in
For drug screening, success rate is crucial because retesting unsuccessfully-assayed compounds is costly. The success rate is defined by the ratio of number of successful measurements to number of total measurements. For whole-cell recording of ion channel currents, the success rate is the percentage of successful whole cell recording with giga-ohm seals with respect to the total cells being measured. In many cases, over 90%, even close to 100%, success rate is required for compound screening and/or testing. For on-chip patch clamping, the success rate of seal formation and whole cell recording may be below 90%. To address this problem, an approach is devised to take advantage of the temporal separation between achieving giga-ohm seal with whole cell access and applying test compounds in “patch clamp” assays.
An alternate design is proposed whereby multiple redundancy is provided at each well by placing multiple ion transport measuring holes into a fluidic path connecting an inflow well to an outflow well. In this format only 8 inflow wells are provided on a single cartridge and these 8 wells are arranged on a cartridge to facilitate delivery of compounds from a single row of a 96-well plate during drug screening. The multiple ion transport measuring holes per well ensure that at least one successful whole-cell access will be available for screening the compound. Multiple cartridges (12) may be used simultaneously to simultaneously screen an entire 96-well plate with high (near 100%) success rate. Such a cartridge may also be used to simultaneously record from all successful whole-cell accesses for each well to provide multiple data points from each inflow well, thereby reducing the costs of pharmaceutical secondary and safety screening. The outflow well of such cartridge may be shared among all the inflow wells and emptied by suction to prevent back-flow (see
In one configuration, a plurality of ion transport measuring holes can be fabricated on a biochip, where each hole is connected to a top chamber (extracellular chamber, or extracellular compartment) and a bottom chamber (intracellular chamber, or intracellular compartment), respectively. Thus, the cartridge in such a configuration comprises a plurality of extracellular and a plurality of intracellular chambers. Extracellular solutions, cells in suspension and compound solutions to be tested can be delivered to each separate top chamber via fluidic channels or tubing using a fluidic pump such as a syringe pump or using other fluid delivering means such as pipetting or injection. Similarly, intracellular solutions can be delivered to the bottom chamber. “Top” and “Bottom” used in this context refer to distinguishable chambers separated by the biochip with the ion transport measuring hole, but do not necessarily refer to spatial locations. The relative locations of the chambers can be reversed, side-by-side, or in other configurations. Each top chamber is connected electrically to a separate ground electrode or a shared ground electrode; each bottom chamber is connected electrically to a separate recording electrode which is connected to a separate patch clamp amplifier or a separate channel of a multi-channel patch clamp amplifier electronics system. Common or independent pressure sources can be used for each chamber to allow for high resistance seal (for example giga-ohm sealing) and whole cell access.
In one configuration, capillary tube array with pre-drilled ion transport measuring holes (of a diameter less than 5 micron) can be sealed against parallel microfluidic channels in a perpendicular or substantially perpendicular manner (
In this configuration of Patch Clamp Bundle (
Both
G-protein-coupled ion channels can provide electrophysiological read-outs for GPCR assays (
Ion channels can also be used as reporter genes, as shown in
All publications, including patent documents and scientific articles, referred to in this application and the bibliography and attachments are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication were individually incorporated by reference.
All headings are for the convenience of the reader and should not be used to limit the meaning of the text that follows the heading, unless so specified.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/428,565, filed May 2, 2003 entitled “Apparatus Including Ion Transport Detecting Structures and Methods of Use” which claims benefit of priority to U.S. patent application No. 60/380,007 filed May 4, 2002 entitled “Apparatus Including Ion Transport Detecting Structures and Methods of Use”, each of which are herein incorporated by reference in there entirety. This application also incorporates by reference U.S. patent application Ser. No. 10/304,300, filed Mar. 22, 2002 entitled “Biochips Including Ion Transport Detecting Structures and Methods of Use” naming Wang et al. as inventors; U.S. patent application No. 60/351,849 filed Jan. 24, 2002 entitled “Biochips Including Ion Transport Detecting Structures and Methods of Use” naming Wang et al. as inventors; U.S. patent application No. 60/311,327 filed Aug. 10, 2001, entitled “Biochips Including Ion Transport Detecting Structures and Methods of Use” naming Wang et al. as inventors; U.S. patent application No. 60/278,308 filed Mar. 24, 2001, entitled “Biochips Including Ion Transport Detecting Structures and Methods of Use” naming Wang et al. as inventors; each of which is incorporated herein by reference in its entirety. The following patents and patent applications are also incorporated by reference herein: U.S. patent application Ser. No. 09/678,263 entitled “Apparatus for Switching and Manipulating Particles and Methods of Use Thereof” filed on Oct. 3, 2000 and naming as inventors Xiaobo Wang, Weiping Yang, Junquan Xu, Jing Cheng, and Lei Wu; U.S. patent application Ser. No. 09/643,362 entitled “Apparatus and Method for High Throughput Electrorotation Analysis” filed on Aug. 22, 2000, naming as inventors Jing Cheng, Junquan Xu, Xiaosan Zhu, Litian Liu, Xiaobo Wang and Lei Wu, and related application WO01/69241 entitled “Apparatus and Method for High Throughput Electrorotation Analysis” filed on Mar. 8, 2001, along with CN 00104350.1 filed Mar. 15, 2000 and CN 00124086.2 filed on Aug. 18, 2000; U.S. patent application Ser. No. 09/679,024 entitled “Apparatuses Containing Multiple Active Force Generating Elements and Uses Thereof” filed Oct. 4, 2000, and naming as inventors Xiaobo Wang, Jing Cheng, Lei Wu, Junquan Xu, and Weiping Yang; U.S. patent application No. 60/239,299, filed Oct. 10, 2000, entitled “An Integrated Biochip System for Sample Preparation and Analysis” and naming as inventors Jing Cheng, Xiaobo Wang, Lei Wu, Weiping Yang and Junquan Xu; U.S. patent application Ser. No. 09/636,104 filed Aug. 10, 2000, entitled “Methods for Manipulating Moieties in Microfluidic Systems”, and to People's Republic of China Patent Application 00122631.2, filed Aug. 8, 2000, and to PCT Patent Application Number PCT/US00/25381 entitled “Method for Manipulating Moieties in Microfluidic Systems” filed Sep. 15, 2000, and naming Xiaobo Wang, Lei Wu, Jing Cheng, Weiping Yang, and Junquan Yu as inventors; U.S. patent application Ser. No. 09/399,299 (and corresponding U.S. Pat. No. 6,355,491) filed Sep. 17, 1999, entitled, “Individually Addressable Micro-Electromagnetic Unit Array Chips”; and to People's Republic of China Application Number 99104113.5, entitled “Individually Addressable Micro-Electromagnetic Unit Array Chips, Electromagnetic Biochips, and Their Applications”, filed Mar. 15, 1999; and PCT Application Number PCT/US99/21417, filed Sep. 17, 1999, entitled “Individually Addressable Micro-Electromagnetic Unit Array Chips”; U.S. patent application Ser. No. 09/648,081 entitled “Methods and Compositions for Identifying Nucleic Acid Molecules Using Nucleolytic Activities and Hybridization” naming as inventors Guoqing Wang, Lei Wu, Xiaobo Wang, Jing Cheng, and WeiPing Yang, and filed on Aug. 25, 2000, along with related PCT Application PCT/US01/26291, filed Aug. 24, 2001; U.S. Patent Application No. 60/258,281 entitled “Active and Biocompatible Platforms Prepared by Polymerization of Surface Coating Films” naming as inventors Huang, Wang, Wu, Yang and Cheng, and filed on Dec. 26, 2000, along with related U.S. patent application Ser. No. 10/022,056 filed Dec. 13, 2001, and PCT Application PCT/US01/48919 filed Dec. 13, 2001; U.S. patent application Ser. No. 09/679,023 entitled “Apparatuses and Methods for Field Flow Fractionation of Particles Using Acoustic and Other Forces” naming as inventors Wang, Cheng, Wu and Xu, and filed on Oct. 4, 2000; U.S. patent application Ser. No. 09/686,737 entitled “Compositions and Methods for Separation of Moieties on Chips” naming as inventors Xu, Wang, Cheng, Yang and Wu, and filed on Oct. 10, 2000, and related PCT Application PCT/US01/30891 filed Oct. 10, 2001; U.S. patent application Ser. No. 09/636,104 entitled “Apparaus and Method for High Throughput Electrorotation Analysis” naming as inventors Wang, Wu, Cheng, Yang and Xu and filed Aug. 22, 2000; related applications WO01/12896 filed Sep. 15 8, 2000 and CN 00122631.2 filed Aug. 8, 2000.
Number | Date | Country | |
---|---|---|---|
60380007 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10428565 | May 2003 | US |
Child | 10760886 | Jan 2004 | US |