1. Field of the Disclosure
The disclosure relates generally to apparatus using a metallic foam, including sealing devices, such as packers, seals or bridge plugs for use down hole.
2. Description of the Related Art
Hydrocarbons such as oil and gas are recovered from a subterranean formation using a well or wellbore drilled into the formation. In some cases the wellbore is completed by placing a casing along the wellbore length and perforating the casing adjacent each production zone (hydrocarbon bearing zone) to extract fluids (such as oil and gas) from the associated a production zone. In other cases, the wellbore may be open hole, i.e. no casing. In an aspect, one or more inflow control devices are placed in the wellbore to control the flow of fluids into the wellbore. These flow control devices and production zones are generally separated by packers installed between them. Packers prevent flow of fluid between selected wellbore locations. For example, packers are used to prevent other fluids from mixing with hydrocarbons extracted from the formation to improve hydrocarbon production. Fluid from each production zone entering the wellbore is drawn into a tubular that runs to the surface.
Sealing devices, including packers, O-rings, etc. are used in various locations in the wellbore to control fluid flow. During production, the sealing devices are subject to extreme temperatures and pressures downhole. For example, an O-ring used to seal a joint between tubular sections is subjected to high pressure as fluid is extracted from the formation. The high pressure, temperature and other downhole conditions can cause portions of sealing devices to break down or deform over time. Replacing or repairing downhole seals can be costly and time consuming.
In one aspect, a device is provided that in one configuration includes a member including a metallic foam and a sealing material coupled to the metallic foam. The sealing material may be in, on or coated on the metallic foam member.
In another aspect, a method of making a device to be deployed downhole includes placing a liquid alloy in a mold of a sealing member, placing beads in the liquid alloy and dissolving the beads to form pores in the liquid alloy. The method also includes hardening the liquid alloy to form a metallic foam sealing member and coupling a sealing material to the metallic foam sealing member.
Examples of the more important features of the disclosure have been summarized rather broadly in order that detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
The advantages and further aspects of the disclosure will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, in which like reference characters designate like or similar elements throughout the several figures of the drawing, and wherein:
The present disclosure relates to apparatus and methods for controlling flow of formation fluids in a well. The present disclosure provides certain exemplary drawings to describe certain embodiments of the apparatus and methods that are to be considered exemplification of the principles described herein and are not intended to limit the concepts and disclosure to the illustrated and described embodiments.
Referring initially to
Each production device 134 includes a downhole-adjustable flow control device 138 made according to one embodiment of the disclosure to govern one or more aspects of flow of one or more fluids from the production zones into the production string 120. The downhole-adjustable flow control device 138 may have a number of alternative structural features that provide selective operation and controlled fluid flow therethrough. As used herein, the term “fluid” or “fluids” includes liquids, gases, hydrocarbons, multi-phase fluids, mixtures of two of more fluids, water and fluids injected from the surface, such as water. Additionally, references to water should be construed to also include water-based fluids; e.g., brine or salt water.
Subsurface formations typically contain water or brine along with oil and gas. Water may be present below an oil-bearing zone and gas may be present above such a zone. A horizontal wellbore, such as section 110b, is typically drilled through a production zone, such as production zone 116, and may extend more than 5,000 feet in length. Once the wellbore has been in production for a period of time, water may flow into some of the production devices 134. The amount and timing of water inflow can vary along the length of the production zone. It is desirable to position packer devices 136 in various locations throughout the wellbore to control flow of unwanted fluids and/or to alter the flow of fluids into the production string 120. As discussed below with reference to
In an exemplary embodiment, the metallic foam 218 forms a frame or support member, wherein the metallic foam 218 comprises a shape memory alloy (“SMA”) with a plurality of pores. The metallic foam 218 frame is formed by pouring heated liquid or molten SMA into a mold of a desired volume, where the mold contains a network of sacrificial soluble beads or spheres. The beads dissolve as the molten SMA is mixed with the beads or is poured into the mold to create the pores 220, thus producing a metallic foam 218 frame in the shape of the mold. After setting and/or hardening, the metallic foam 218 frame is produced with an amount of pores corresponding to desired structural and sealing properties of the device. In some embodiments, the metallic foam 218 may be formed in a mold and then machined to provide a desired shape. A metallic foam or metal is a cellular structure consisting of a solid metal or metal alloy, containing a volume fraction of gas-filled pores. The pores can be sealed (closed-cell foam), or they can form an interconnected network (open-cell foam). In aspects, metallic foams have a high porosity, such as a metallic foam where 75-95% of the volume consists of void spaces. The strength of foamed metal possesses a relationship that is proportional to its density; i.e., a 20% dense material is more than twice as strong as a 10% dense material. Further, metallic foams typically retain some physical properties of their base material. In an exemplary embodiment, the metallic foam 218 frame comprises a SMA, wherein the SMA provides support to the packer 200 to withstand extreme temperatures and pressures in the wellbore. The shape memory alloy exhibits pseudoelastic properties of the metal during the high-temperature (austenitic) phase. For example, the exemplary shape memory alloy exhibits pseudoelastic properties at temperatures between about 20 and 200 degrees Celsius. Thus, the metallic foam 218 frame of the packer 200 is made of shape memory alloy enabling the packer to undergo large deformations in its austenitic state when a force or stress is applied and then revert back to their original shape when the stress is removed. In an example, the metallic foam 218 frame may be a first shape when not stressed, a second shape when compressed and revert back to substantially the first shape when the compressive forces are removed. The metallic foam 218 frame will allow compression while minimizing strain across portions of the metallic foam 218. Specifically, in an exemplary embodiment, when the metallic foam 218 frame comprising SMA is compressed about 15% volumetric compression, no single portion of the metallic foam 218 is subjected to more than an average of about 8% strain. Porosity of metal foams in the range of 30 to 80% are useable in this application based on the specific design criteria. A desired feature for this application is that all of the pores are interconnected. Exemplary shape memory alloys include, but are not limited to: Cu—Al—Ni 14/14.5 wt. % Al and 3/4.5 wt. % Ni, Cu—Sn approx. 15 at. % Sn, Cu—Zn 38.5/41.5 wt. % Zn, Cu—Zn—X (X=Si, Al, Sn), Fe—Pt approx. 25 at. % Pt, Mn—Cu 5/35 at. % Cu, Fe—Mn—Si, Pt alloys, Co—Ni—Al, Co—Ni—Ga, Ni—Fe—Ga, Ti—Pd in various concentrations, Ni—Ti (˜55% Ni), Ni—Ti—Nb and Ni—Mn—Ga.
In an embodiment, the metallic foam 218 frame is coupled to and/or covered by sealing material 216, wherein the sealing material 216 is a suitable durable material that prevents fluid communication between selected regions, such as regions 212 and 214. In an embodiment, the sealing material 216 couples to the metallic foam 218 member, coating the exterior of metallic foam 218 while substantially filling and impregnating pores 220 in the foam. In another embodiment, the metallic foam 218 has the sealing material 216 disposed in or coupled to the pores 220 to restrict fluid flow across the frame. In embodiments, the sealing material 216 includes elastomers, rubbers and/or polymers that exhibit pseudoelastic properties at downhole temperatures ranging from 20 to 200 degrees Celsius. Examples of sealing material 216 include Natural rubber, Synthetic polyisoprene, Butyl rubber, Halogenated butyl rubbers, Polybutadiene, Styrene-butadiene Rubber, Nitrile rubber, Hydrogenated Nitrile Rubbers (HNBR) Therban and Zetpol, Chloroprene rubber, polychloroprene, Neoprene, Baypren, Ethylene propylene rubber, Epichlorohydrin rubber, Polyacrylic rubber, Silicone rubber, Fluorosilicone Rubber, Fluoroelastomers, Perfluoroelastomers, Polyether block amides, Chlorosulfonated polyethylene, Ethylene-vinyl acetate, Thermoplastic elastomers, Thermoplastic vulcanizates, Thermoplastic polyurethane, Thermoplastic olefins, Proteins resilin and elastin and Polysulfide rubber.
Still referring to
Thus, in one aspect the disclosure provides a device that includes a first member comprising a metallic foam and a sealing material coupled to the metallic foam. The device may be configured for use in any suitable application, including a device configured for use downhole. In one aspect, the metallic foam may be in a first state when a force is applied to the first member and in a second state when the force is removed from the first member. In another aspect, the metallic foam may be in a pseudoelastic state between a selected temperature range. In one aspect, the temperature range may be between 20 degrees and 250 degrees Celsius. In another aspect, the first member prevents a fluid flow when positioned adjacent to a second member. The second member may be a wellbore while the first member may comprise a packing element configured to prevent flow between regions of the wellbore. The metallic foam includes a plurality of pores within a shape memory alloy. In one configuration, the sealing material impregnates substantially all the plurality of pores. In aspects, the metallic foam comprises a shape memory alloy with elastic properties to allow bulk compression of about 15% of the device while maintaining less than about 8% average strain. In aspects, the sealing material may comprise a polymer that maintains favorable elastic properties within a desired temperature range. In aspect, the temperature range may be between 20 degrees to 250 degrees Celsius.
It should be understood that
This application takes priority from U.S. Provisional Application Ser. No. 61/393,610, filed on Oct. 15, 2010, which is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
61393610 | Oct 2010 | US |