Apparatus, method and article for vehicle turn signals

Information

  • Patent Grant
  • 9216687
  • Patent Number
    9,216,687
  • Date Filed
    Thursday, November 14, 2013
    11 years ago
  • Date Issued
    Tuesday, December 22, 2015
    9 years ago
Abstract
A vehicle turn signal system causes a turn signal to turn off when a turn is completed or nearly completed based on the orientation of the vehicle changing to turn to a certain degree in a direction indicated by the turn signal. Current heading, position, location and/or or other such information is electronically received from a compass or other device by a turn signal switch controller. When the vehicle has changed direction from the direction the vehicle was traveling at the time associated with when the turn signal was turned on, a signal is sent to turn off the turn signal and reset the manual turn signal button or lever.
Description
BACKGROUND
Technical Field

The present disclosure generally relates to vehicle systems, and particularly to vehicle turn signal systems.


BRIEF SUMMARY

A turn signal system for a vehicle may be summarized as including at least one controller; and at least one communications line coupled to the at least one controller, wherein the at least one controller is configured to: receive, via the at least one communications line, information indicative of a turn signal of the vehicle having been turned on and information regarding a direction associated with the turn signal; receive, via the at least one communications line, compass information indicative of which direction the vehicle was heading at a time associated with when the turn signal was turned on; receive, via the at least one communications line, compass information indicative of the vehicle having changed direction from the direction the vehicle was heading at the time associated with when the turn signal was turned on; make a determination of whether to send a signal to turn off the turn signal based on the received compass information indicative of the vehicle having changed direction from the direction the vehicle was heading at the time associated with when the turn signal was turned on; and send the signal to turn off the turn signal if a determination was made to send the signal to turn off the turn signal.


The received compass information indicative of the vehicle having changed direction may include information indicative of a current direction in which the vehicle is heading. The at least one controller may be configured to make the determination of whether to send the signal to turn off the turn signal by being at least configured to: determine whether the current direction in which the vehicle is heading is toward the direction associated with the turn signal; determine a difference between the current direction in which the vehicle is heading and the direction the vehicle was heading at the time associated with when the turn signal was turned on; determine whether the difference is greater than a threshold difference value; and if the difference is greater than the threshold difference value and the current direction in which the vehicle is heading is toward the direction associated with the turn signal, make a determination to send the signal to turn off the turn signal based at least on the difference being greater than the threshold difference value. The threshold difference value may be in the range of approximately 70 degrees to approximately 90 degrees. The threshold difference value may be approximately 80 degrees. The at least one controller may be further configured to make the determination of whether to send a signal to turn off the turn signal by being at least configured to: determine whether the current direction in which the vehicle is heading is in a direction substantially opposite the direction the vehicle was heading at the time associated with when the turn signal was turned on; and if the current direction in which the vehicle is heading is substantially opposite the direction the vehicle was heading at the time associated with when the turn signal was turned on, make a determination to not send the signal to turn off the turn signal based at least on the current direction in which the vehicle is heading being substantially opposite the direction the vehicle was heading at the time associated with when the turn signal was turned on.


The turn signal system for a vehicle may further include a compass coupled to the controller and the at least one controller may be configured to receive from the compass the compass information indicative of which direction the vehicle was heading and the compass information indicative of the vehicle having changed direction.


The controller may be part of a compass which is configured to generate the compass information indicative of which direction the vehicle was heading and the compass information indicative of the current direction in which the vehicle is heading.


The turn signal system for a vehicle may further include a turn signal switch coupled to the controller and the at least one controller may be configured to send to the turn signal switch the signal to turn off the turn signal.


The at least one controller may be configured to receive from the turn signal switch the information indicative of the turn signal having been turned on and the information regarding the direction associated with the turn signal. The turn signal switch may be one of the following: a mechanical switch, an electro-mechanical switch. The turn signal switch may be an electronic switch.


The turn signal system for a vehicle may further include a wireless communications module coupled to the communications, and the at least one controller may be configured to receive via the wireless communications module the compass information indicative of which direction the vehicle was heading and the compass information indicative of the vehicle having changed direction.


The at least one controller may be configured to receive from a satellite system via the wireless communications module the compass information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on and the information indicative of the current direction in which the vehicle is heading. The at least one controller may be configured to receive the information indicative of the current direction in which the vehicle is heading by at least being configured to: in response to receiving the information indicative of the turn signal having been turned on and the information regarding the direction associated with the turn signal: send a signal to request the information indicative of the current direction in which the vehicle is heading; and receive the information indicative of the current direction in which the vehicle is heading in response to the signal sent to request. The at least one controller may further include a memory coupled to the at least one controller, and may be configured to receive the compass information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on and receive the information indicative of the current direction in which the vehicle is heading by being at least configured to: over a period of time that includes a substantially current time, receive compass information indicative of which direction the vehicle is heading; store in the memory the received compass information indicative of which direction the vehicle is heading substantially as the compass information indicative of which direction the vehicle is heading is received; within the period of time, and in response to the receiving the information indicative of the turn signal having been turned on, retrieve from the stored compass information the information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on; and after retrieval of the information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on, retrieve from the stored compass information, information stored at the substantially current time as the information indicative of the current direction in which the vehicle is heading. The at least one controller may be further configured to initiate the storing in the memory of the received compass information in response to receipt of the information indicative of the turn signal having been turned on.


A method in an automated turn signal system for a vehicle may be summarized as including receiving, by the automated turn signal system, an electrical signal indicative of a turn signal of a vehicle being on; and sending, by the automated turn signal system, an electrical signal causing the turn signal to turn off automatically based on an orientation of the vehicle changing to turn in a direction indicated by the turn signal at a time associated with when the turn signal was turned on.


The sending the electrical signal causing the turn signal to turn off automatically may include causing a button or lever of a switch of the turn signal to return to a neutral position. The sending electrical signal causing the turn signal to turn off automatically in response to an orientation of the vehicle changing to turn in a direction indicated by the turn signal may include receiving, by the automated turn signal system, compass information indicative of the vehicle having changed direction from a direction the vehicle was heading at a time associated with when the turn signal was turned on; and sending, by the automated turn signal system, the electrical signal causing the turn signal to turn off based at least on the received compass information indicative of the vehicle having changed direction from the direction the vehicle was heading at the time associated with when the turn signal was turned on. The sending the electrical signal causing the turn signal to turn off may be further based on a degree of the changed direction being over a threshold value. The sending the electrical signal causing the turn signal to turn off based on the received compass information may include determining, by the automated turn signal system, whether a current direction in which the vehicle is heading is toward the direction indicated by the turn signal at the time associated with when the turn signal was turned on; determining, by the automated turn signal system, a difference between the current direction in which the vehicle is heading and the direction the vehicle was heading at the time associated with when the turn signal was turned on; determining, by the automated turn signal system, whether the difference is greater than a threshold difference value; if the difference is greater than the threshold difference value and the current direction in which the vehicle is heading is toward the direction indicated by the turn signal, making a determination, by the automated turn signal system, to send the electrical signal causing the turn signal to turn off based at least on the difference being greater than the threshold difference value; and sending, by the automated turn signal system, the electrical signal causing the turn signal to turn off in response to the determination made to send the electrical signal.


A non-transitory computer-readable storage medium may be summarized as having computer executable instructions stored thereon that, when executed by at least one computer processor, cause the at least one computer processor to perform: determining whether a current direction in which a vehicle is heading is toward a direction that was associated with a turn signal when it was turned on; determining a difference between the current direction in which the vehicle is heading and a direction the vehicle was heading at a time associated with when the turn signal was turned on; determining whether the difference is greater than a threshold difference value; if the difference is greater than the threshold difference value and the current direction in which the vehicle is heading is in the direction associated with the turn signal, making a determination to send a signal to turn off the turn signal based at least on the difference being greater than the threshold difference value; and sending the signal to turn off the turn signal in response to the determination made to send the signal.


The computer executable instructions stored thereon, when executed by the at least one computer processor, may further cause the at least one computer processor to perform: over a period of time that includes a substantially current time, receiving compass information indicative of which direction the vehicle is heading; storing the received compass information indicative of which direction the vehicle is heading, the storing occurring substantially as the compass information indicative of which direction the vehicle is heading is being received; within the period of time, and in response to receiving information indicative of the turn signal having been turned on, retrieving from the stored compass information, information indicative of the direction the vehicle was heading at the time associated with when the turn signal was turned on; and after retrieving the information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on, retrieving from the stored compass information, direction information stored at the substantially current time as information indicative of the current direction in which the vehicle is heading.


Non-transitory computer-readable storage medium may be a memory device located within a vehicle. The computer executable instructions stored thereon, when executed by the at least one computer processor, may further cause the at least one computer processor to perform: if the vehicle has been heading in the current direction the vehicle is heading over a particular length of time, then making the determination to send the signal to turn off the turn signal additionally based at least on that the vehicle has been heading in the current direction the vehicle is heading over the particular length of time.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.



FIG. 1 is a top plan view of a vehicle making a right-hand turn showing the right-hand turn signal being automatically turned off once the right-hand-turn is made to a certain degree, according to one non-limiting illustrated embodiment.



FIG. 2 is a block diagram of the turn signal system for the vehicle of FIG. 1, according to one non-limiting illustrated embodiment.



FIG. 3 is a schematic view of a turn signal switch controller of the turn signal system of FIG. 2, according to one non-limiting illustrated embodiment.



FIG. 4 is a flow diagram showing a high level method of operating the automated turn signal system of FIG. 2, according to one non-limiting illustrated embodiment.



FIG. 5 is a flow diagram showing a low level method of operating the automated turn signal system of FIG. 2, according to one non-limiting illustrated embodiment, useful in the method of FIG. 4.



FIG. 6 is a flow diagram showing a low level method of operating the automated turn signal system of FIG. 2, according to one non-limiting illustrated embodiment, useful in the method of FIG. 4 in the step of sending the electrical signal causing the turn signal to turn off.



FIG. 7 is a flow diagram showing a low level method of operating the automated turn signal system of FIG. 2, according to one non-limiting illustrated embodiment, useful in the method of FIG. 6 in causing the turn signal to turn off based on a degree of the changed direction being over a threshold value.





DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with turn signal systems, turn signal switches, wireless technologies, controllers, and communications systems and structures and networks have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.


Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense that is as “including, but not limited to.”


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment.


The use of ordinals such as first, second and third does not necessarily imply a ranked sense of order, but rather may only distinguish between multiple instances of an act or structure.


The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.



FIG. 1 shows a top plan view of a vehicle making a right-hand turn and showing the right-hand turn signal being automatically turned off once the right-hand-turn is made to a certain degree, according to one non-limiting illustrated embodiment.


Although FIG. 1 shows an automobile, the vehicle 108 may be any powered vehicle or powered device with at least two wheels, including electric scooters or motorbikes, motorcycles cars, trucks, airplanes, trains, tractors, utility vehicles, maintenance vehicles, powered toys, etc. The vehicle 108 has a turn signal system (shown in FIG. 2) that senses a current orientation of the vehicle 108. For example, the turn signal system may receive information as output from a compass (e.g., a digital compass), heading indicator, or other information source that provides information regarding the current orientation of the vehicle and that is part of the turn signal system or in communication with the turn signal system. Such information regarding the orientation of the vehicle is generally referred to herein as “compass information.” This compass information may include, but is not limited to, one or more of the following types of information: the current heading or course of the vehicle 108, i.e., the angle of the vehicle 108 relative to a fixed reference point or object (e.g., true north, magnetic north, compass north, the ground, etc.); true heading of the vehicle 108, which is in relation to the lines of meridian (north-south lines); the track of the vehicle 108 (or course over ground), which is the actual path followed by the vehicle 108 from one reference point to another reference point; a current cardinal direction in which the vehicle 108 is oriented, an orientation of the vehicle 108 relative to another reference point, a current orientation of the vehicle relative to the orientation of the vehicle at a point when one of the turn signals was last switched on, etc. Some or all of the values of compass information may be automatically reversed by the turn signal system when the vehicle 108 is in reverse.


Also, some or all of the compass information may be adjusted and/or corrected by the compass, heading indicator, or other information source that is part of the turn signal system or in communication with the turn signal system (shown in FIG. 2), based on compass error, magnetic variation, magnetic deviation such as the vehicle's own magnetic field, or other error. Typically, the heading or course information is measured in degrees from 0° clockwise to 360° in compass convention (0° being north and 90° being east) and, in some embodiments, may be communicated in this or a similar format to the turn signal system. The heading or course information may be expressed in three digits, using preliminary zeros if needed, e.g. 065°, however, the compass information may be expressed and communicated to the turn signal system in any useful format, or in a format which is able to be translated into a useful format by the turn signal system or other compass information source.


The example in FIG. 1 shows the orientation of the vehicle 108 changing over time while making a right-hand turn. This change in orientation happens to be in the direction that was indicated by the right-hand turn signal 110 when it turned on at an example point in time t=0. Also illustrated in the example of FIG. 1, is a compass rose 114 indicating which direction is north relative to the vehicle 108 as it is making the right-hand turn. Note that in the example shown in FIG. 1, north (i.e., 0°) also happens to be the heading of the vehicle 108 at time t=0 when the turn signal was turned on by the driver. However, in many instances this will not be the case. In the example embodiment, the current heading of the vehicle 108 is actually measured relative to the heading of the vehicle 108 when the turn signal was turned on by the driver at t=0 (which happens to be 0° in the example shown in FIG. 1) since this measurement is directly used to determine when to send a signal to automatically turn the turn signal off. However, in the example provided, the current heading of the vehicle 108 relative to north and relative to the heading of the vehicle 108 when the turn signal was turned on by the driver at t=0 are the same for ease of illustration and understanding.


Shortly after the right-hand turn signal 110 was turned on by the driver at t=0, at time t=1 the vehicle's heading was x° as the driver began to make the right-hand turn in the vehicle 108. As the driver continued the right-hand turn, the vehicle's heading continued to grow further away from the original heading of the vehicle 108 of 0° at t=0 (when the turn signal was turned on by the driver). In other words, the angle between the heading at t=0 of 0° when the turn signal was turned on and the current heading of the vehicle 108 grows larger as the vehicle 108 continues to turn right. For example, as shown by the vehicle heading arrow 116, at t=3 the heading was z°, which is further away from the original heading of 0° at t=0 than the vehicle 108 was at t=2 (y°) and yet still further than the vehicle 108 was at t=1 (x°).


This type of heading information is received, monitored and/or stored by one or more components of the turn signal system of the vehicle 108 shown in FIG. 2 while the vehicle is being driven. In some embodiments, the receiving, monitoring and/or storing of this compass information may be triggered by various events, such as by the driver turning on or off the turn signal. For example, when the driver turns on the turn signal, the current orientation of the vehicle and which turn signal was turned on (left or right) may be stored or retrieved from storage immediately and an association made by the turn signal system between the current orientation of the vehicle and the turn signal being turned on at that time. When the vehicle 108 reaches a heading measurement threshold as measured relative to the heading of the vehicle 108 when the turn signal 110 was turned on (at t=0), the turn signal system will automatically send an electronic or electrical signal to activate a switch to turn off the right-hand turn signal 110 if it is still on, thus dispensing with the need for any traditional mechanical turn signal reset mechanism. Also, the turn signal system will use an electronic or electrical signal to automatically cause the button or lever of the driver's manual switch for the turn signal to return to a neutral position.


The heading measurement threshold in the example provided in FIG. 1 is z°, which occurred at t=3, at which point the turn signal system automatically sent an electrical or electronic signal to automatically turn off the right-hand turn signal 110 and reset the button or lever of the driver's manual switch for the turn signal in vehicle 108. In the example shown, z° is in effect a threshold difference between the current direction in which the vehicle 108 is heading and the direction the vehicle was heading at time t=0 that is associated with when the turn signal 110 was turned on. In the example embodiment, the threshold may be expressed as a different heading measurement based on whether the right turn signal 110 or the left turn signal 112 was turned on at t=0, such that the right turn signal does not turn off if the vehicle starts turning left and vice versa, but the basic operation is similar. For example, if the threshold heading z°=80° (for when the right turn signal was turned on at t=0) the corresponding threshold for if and when the left turn signal is turned on may be expressed as a corresponding threshold of 190°. Alternatively, for ease of use and implementation, the threshold settings may be input to the turn signal system as one value (e.g., 80°) which is intended to apply generally as just the threshold expressed as a measure of the difference in degrees between the current heading of the vehicle 108 and the heading of the vehicle when the turn signal was turned on. Any translation, reformatting or calculations that may be required to reformat the values to be expressed within the 0-360° heading format may be performed automatically by the turn signal system internally.


The turn signal system is configurable such that these left- and right-hand turn signal threshold values may be individually programmed, selected or otherwise set by the vehicle, owner, driver, vehicle manufacturer, turn signal system manufacturer, vehicle mechanic, and/or other party. For example, in some embodiments, the right-hand turn signal threshold may be in the range from 70° to 90°, because that is a range in which many vehicle turns are likely to be completed or nearly completed. However, any threshold value may be used. Also, when the vehicle 108 is in reverse, or when the system otherwise detects the vehicle 108 is heading in a direction opposite that of the vehicle 108 when the turn signal was turned on, the system may automatically turn off these features that automatically reset or turn off of the turn signals described herein, or alternatively, the corresponding threshold settings may be reversed automatically and then reversed again to their original values when the vehicle 108 is put in drive again.



FIG. 2 shows a block diagram of the turn signal system for the vehicle of FIG. 1, according to one non-limiting illustrated embodiment.


Shown is a digital compass 204, a turn signal switch controller 206, a turn signal switch 212, turn signal lights 214, and an external device 216. The turn signal switch controller 206 has an input 222 from the digital compass 204 and an input 228 from the turn signal switch 212. The turn signal switch controller 206 may also be in operable wireless communication over a wireless link 230 with the external device 216. The turn signal lights 214 are coupled to the turn signal switch 212 via line 220 between the turn signal switch 212 and the turn signal lights 214 such that they may be controlled by the turn signal switch accordingly.


One or more of the connections between the components in the vehicle turn signal system 200 may be logical or physical connections and communication between the components of the vehicle turn signal system 200 may be via any operable combination of analog, digital, wired or wireless signals.


The turn signal switch controller 206 is configured to control operation of the turn signal switch 212 via input 218 to turn the turn signal switch 212 on or off individually for the left and right turn signals of vehicle 108 (shown in FIG. 1). The turn signal switch 212 in turn controls the turn signal lights 214 via line 220 individually for the left and right turn signals of vehicle 108.


The digital compass 204 may be any device able to provide information regarding the orientation of the vehicle (i.e., compass information) electronically as described above, and in some embodiments, need not be digital. Examples include, but are not limited to, one or more of the following devices, or devices that include one or more of the following: a heading indicator, a magnetometer, microelectromechanical systems (MEMS) magnetic field sensor, a Lorentz-force-based MEMS sensor, a gyrocompass, a fiber optic gyrocompass, an accelerometer, a motion sensor, a global positioning system (GPS) device or receiver, etc. Also, the digital compass 204 may also or alternatively be the external device 216 or be part of the external device 216, such as a handheld device, tablet device, smartphone, etc., and provide the compass information wirelessly to the turn signal switch controller 206 over wireless link 230. The digital compass is physically positioned and/or calibrated such that the heading information that the digital compass 204 provides correlates to the direction in which the front of the vehicle 108 is pointed. Also, in some embodiments, if the vehicle is in reverse, the compass information may be automatically reversed by the digital compass 204 or the turn signal switch controller, one or more of which may additionally be connected to the controller of the drive system for the vehicle 108 in order to receive such information regarding whether the vehicle 108 is in reverse.


The digital compass may either periodically, aperiodically, constantly, continuously (or nearly constantly or continuously) provide the compass information to the turn signal switch controller 206 via input to the turn signal system 200. In some embodiments, the turn signal system 200 will buffer such information in an internal memory (Shown in FIG. 3) of the turn signal system 200 for quick access. Alternatively, the digital compass may output such compass information upon request by the turn signal switch controller received via input 224 to the digital compass 204.


In the present example embodiment, when the driver turns on the turn signal lights 214 either for the left or right turn signal using a button or lever of the turn signal switch 212, one or more signals are output from the turn signal switch 212 via input 228 to the turn signal switch controller 206 indicating that a turn signal has been turned on and which turn signal has been turned on (e.g., the right turn signal). This triggers the turn signal switch controller 206 to retrieve information regarding the current orientation of the vehicle (i.e., “compass information”). The compass information is immediately retrieved from the buffer memory (shown in FIG. 2) of the turn signal system 206 or directly from the digital compass via input 222. An association is made and stored by the turn signal switch controller 206 between the current orientation of the vehicle 108 and the particular turn signal that was turned on at that time. When the vehicle 108 reaches a heading measurement threshold (e.g., 80°) as measured relative to the heading of the vehicle 108 when the turn signal was turned on, the turn signal switch controller 206 will automatically send an electronic or electrical signal via an input 218 to the turn signal switch 212 to activate the turn signal switch 212 to turn off the right-hand turn signal if it is still on, thus dispensing with the need for any traditional mechanical turn signal reset mechanism. Also, the turn signal system will send an electronic or electrical signal via input 218 to the turn signal switch 212 to automatically cause the turn signal switch 212 to reset (or return to a neutral position) the button or lever of the driver's manual switch for the turn signal.


In some embodiments, the turn signal switch controller 206 may be configured to account for when a driver turns on the turn signal after beginning or in the middle of making a turn by temporarily adjusting the heading measurement threshold. For example, when the driver turns on the turn signal lights 214, the turn signal switch controller 206 may immediately retrieve and examine the previously received and stored compass data (which may be stored in the buffer memory of the turn signal switch controller) to calculate the rate at which (and in which direction) the orientation of the vehicle 108 has been changing, if at all, over the past 1 or 2 seconds (or other selected period of time). If this calculated rate at which the orientation of the vehicle 108 has been changing in the direction indicated by the turn signal is over a determined threshold, then the heading measurement threshold at which the turn signal controller 206 will cause the turn signal to be switched off may be reduced to account for the likelihood that the turn is already partially completed. Also, the rate of orientation change threshold may be changed dynamically by the turn signal switch controller 206 proportionally to the calculated rate of orientation change to account for the speed of the turn, and thus, when the turn will be likely be completed.


Also, in some embodiments, the turn signal switch controller 206 may be configured to account for situations like those when a driver quickly changes direction after turning on the turn signal (such as when dodging something in the road soon before the turn, while making the turn, or soon after making the turn) by causing the turn signal to turn off based on a minimum time the vehicle must travel in a current heading that is at, near or over the heading measurement threshold. For example, when the vehicle 108 reaches a heading measurement threshold (e.g., 80°) as measured relative to the heading of the vehicle 108 when the turn signal was turned on, the turn signal switch controller 206 will start a timer to measure the time the vehicle is traveling at the current heading. Once that timer reaches a particular time threshold for the current heading, the turn signal switch controller 206 will automatically send an electronic or electrical signal via an input 218 to the turn signal switch 212 to activate the turn signal switch 212 to turn off the turn signal if it is still on, thus dispensing with the need for any traditional mechanical turn signal reset mechanism. The timer may reset each time the heading of the vehicle changes over a particular number of degrees that is different from the current heading. Both the time threshold and the particular number of degrees that is different from the current heading may be pre-selected and/or configurable by a user, maintenance person, the driver, and/or the manufacturer of the vehicle, and may also be varied dynamically by the turn signal switch controller based on one or more various factors including, but not limited to, driving habits, geographic locations, vehicle attributes, user preferences, etc. This functionality may be used instead of or in conjunction with other functionality described in other embodiments herein, for example, in conjunction with the rate of orientation change threshold being changed dynamically by the turn signal switch controller 206 proportionally to the calculated rate of orientation change to account for the speed of the turn, and thus, when the turn will be likely be completed. FIG. 3 is a schematic view diagram of the turn signal switch controller 206 of the vehicle turn signal system 200 of FIG. 2, according to one non-limiting illustrated embodiment.


The controller 310, for example, is a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application-specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 310 may take the form of a microprocessor (e.g., INTEL, AMD, ATOM). The turn signal switch controller 206 may also be coupled to one or more non-transitory processor- or computer-readable storage media, for example read-only memory (ROM) 312, random access memory (RAM) 314, and other storage 316 (e.g., solid-state storage media such as flash memory or EEPROM, or spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 312, 314, 316 may be in addition to any non-transitory storage medium (e.g., registers) which is part of the controller 310. The turn signal switch controller 206 may include one or more buses 318 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc. As shown, the controller includes input 228 from the turn signal switch 212, input 222 from the digital compass 204, and has an output coupled to the input 218 of the turn signal switch 212 and an output coupled to the input 218 of the digital compass 204 (shown in FIG. 2).


As illustrated, the ROM 312, or some other one of the non-transitory processor- or computer-readable storage media 312, 314, 316, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 310. Execution of the instructions and sets of data or values causes the controller 310 to perform specific acts to determine a current orientation of the vehicle based on the input received via input 222 from the digital compass 204 and also determine when a turn signal has been turned on and which turn signal has been turned on based on the input received via input 228 from the turn signal switch 212. Execution of the instructions and sets of data or values also causes the controller 310 to perform specific acts, store information, and/or perform calculations regarding compass information involving past and/or current orientations of the vehicle 108 to determine when to send a signal to turn off one of the turn signals. Overall, execution of the instructions and sets of data or values causes the controller 310 to perform specific acts to cause operation of the turn signal switch controller 206 as described herein and also below with reference to various flow diagrams (FIGS. 4-7).


The controller 310 may use RAM 314 in a conventional fashion, for volatile storage of instructions or data (e.g., compass data, etc.). For example, the turn signal controller may buffer in RAM 314 compass information indicating the current orientation of the vehicle 108 received from an external source for immediate access. The turn signal controller may also store in RAM 314 an indication received from the turn signal switch of which turn signal is on, how long it has been on or other data. The controller 310 may use data store 316 to log or retain information, for example, compass information or other information regarding position, orientation, movement and direction of the vehicle, turn signal switch information and/or turn signal switch specifications, digital compass information and/or digital compass specifications, codes, credentials, security certificates, passwords, other vehicle information, etc. The instructions are executable by the controller 310 to control operation of the turn signal switch controller 206 in response to input from embedded systems, external devices, or from remote systems such as those of the external device 216 described herein.


The controller 310 may also receive signals from various sensors and/or components (e.g., digital compass) of an external device 216 via the communications subsystem 306 of the turn signal switch controller 206. This information may include information compass information or other information related to orientation of the vehicle 108.


The communications subsystem 306 may include one or more communications modules or components which facilitate communications with the various components of the external device 216 of FIG. 2 (e.g., such as to receive compass information) and/or of other external devices. Also data may be exchanged between the turn signal switch controller 206, or a device to which the turn signal switch controller 206 is connected, and the external device 216 for authentication purposes. The communications subsystem 306 may provide wired and/or wireless communications. The communications subsystem 306 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The communications subsystem 306 may, for example, include components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, satellite, or cellular network), such as for receiving GPS data, and may include one or more modems or one or more Ethernet or other types of communications cards or components for doing so. The remote communications subsystem 306 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.



FIG. 4 shows a high level method 400 of operating the automated turn signal system 200 of FIG. 2, according to one non-limiting illustrated embodiment.


At 402, the vehicle turn signal system 200 receives an electrical signal indicative of a turn signal of a vehicle being on.


At 404, the vehicle turn signal system 200 sends an electrical signal causing the turn signal to turn off automatically in response to an orientation of the vehicle changing to turn in a direction indicated by the turn signal when it was turned on.



FIG. 5 shows a low level method 500 of operating the automated turn signal system 200 of FIG. 2, according to one non-limiting illustrated embodiment, useful in the method 400 of FIG. 4. For example, the method 500 describes in more detail what may occur in causing the electrical signal to turn off the turn signal to be sent.


At 502, the vehicle turn signal system 200 receives compass information indicative of the vehicle having changed direction from a direction the vehicle was traveling at a time associated with when the turn signal was turned on.


At 504, the vehicle turn signal system 200 sends the electrical signal causing the turn signal to turn off based at least on the received compass information indicative of the vehicle having changed direction from the direction the vehicle was traveling at the time associated with when the turn signal was turned on.



FIG. 6 shows a low level method 600 of operating the automated turn signal system 200 of FIG. 2, according to one non-limiting illustrated embodiment, useful in the method of FIG. 4 in the step of sending the electrical signal causing the turn signal to turn off.


At 602, the vehicle turn signal system 200 sends the electrical signal causing the turn signal to turn off based on a degree of the changed direction being over a threshold value.



FIG. 7 shows a low level method 700 of operating the automated turn signal system 200 of FIG. 2, according to one non-limiting illustrated embodiment, useful in the method of FIG. 6 in causing the turn signal to turn off based on a degree of the changed direction being over a threshold value.


At 702, the vehicle turn signal system 200 determines whether a current direction in which the vehicle is traveling is in a direction associated with the turn signal when the turn signal was turned on.


At 704, the vehicle turn signal system 200 determines a difference between the current direction in which the vehicle is traveling and the direction the vehicle was traveling at the time associated with when the turn signal was turned on.


At 706, the vehicle turn signal system 200 determines whether the difference is greater than a threshold difference value.


At 708, the vehicle turn signal system 200, if the difference is greater than the threshold difference value and the current direction in which the vehicle is traveling is toward the direction indicated by the turn signal, makes a determination to send the electrical signal causing the turn signal to turn off based at least on the difference being greater than the threshold difference value.


At 710, the vehicle turn signal system 200 sends the electrical signal causing the turn signal to turn off in response to the determination made to send the electrical signal.


The various methods described herein may include additional acts, omit some acts, and/or may perform the acts in a different order than set out in the various flow diagrams.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via one or more microcontrollers. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits (e.g., Application Specific Integrated Circuits or ASICs), as one or more computer programs executed by one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs executed by one or more controllers (e.g., microcontrollers), as one or more programs executed by one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of ordinary skill in the art in light of the teachings of this disclosure.


When logic is implemented as software and stored in memory, logic or information can be stored on any non-transitory computer-readable medium for use by or in connection with any processor-related system or method. In the context of this disclosure, a memory is a non-transitory computer- or processor-readable storage medium that is an electronic, magnetic, optical, or other physical device or means that non-transitorily contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.


In the context of this specification, a “computer-readable medium” can be any physical element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The computer-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), and digital tape.


The various embodiments described above can be combined to provide further embodiments. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.


While generally discussed in the environment and context of turn signal systems for vehicles, the teachings herein can be applied in a wide variety of other environments, including other vehicular as well as non-vehicular environments.


The above description of illustrated embodiments, including what is described in the Abstract of the Disclosure, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A turn signal system for a vehicle, comprising: at least one controller; andat least one communications line coupled to the at least one controller, wherein the at least one controller is configured to: receive, via the at least one communications line, information indicative of a turn signal of the vehicle having been turned on and information regarding a direction associated with the turn signal;receive, via the at least one communications line, compass information indicative of which direction the vehicle was heading at a time associated with when the turn signal was turned on;receive, via the at least one communications line, compass information indicative of the vehicle having changed direction from the direction the vehicle was heading at the time associated with when the turn signal was turned on;make a determination of whether to send a signal to turn off the turn signal based on the received compass information indicative of the vehicle having changed direction from the direction the vehicle was heading at the time associated with when the turn signal was turned on wherein the at least one controller is configured to make the determination of whether to send the signal to turn off the turn signal by being at least configured to: determine whether the current direction in which the vehicle is heading is toward the direction associated with the turn signal;determine a difference between the current direction in which the vehicle is heading and the direction the vehicle was heading at the time associated with when the turn signal was turned on;determine whether the difference is greater than a threshold difference value; andif the difference is greater than the threshold difference value and the current direction in which the vehicle is heading is toward the direction associated with the turn signal, make a determination to send the signal to turn off the turn signal based at least on the difference being greater than the threshold difference value; andsend the signal to turn off the turn signal if a determination was made to send the signal to turn off the turn signal.
  • 2. The turn signal system of claim 1 wherein the received compass information indicative of the vehicle having changed direction includes information indicative of a current direction in which the vehicle is heading.
  • 3. The turn signal system of claim 1 wherein the threshold difference value is in a range of approximately 70 degrees to approximately 90 degrees.
  • 4. The turn signal system of claim 1 wherein the threshold difference value is approximately 80 degrees.
  • 5. The turn signal system of claim 1 wherein the at least one controller is further configured to make the determination of whether to send a signal to turn off the turn signal by being at least configured to: determine whether the current direction in which the vehicle is heading is in a direction substantially opposite the direction the vehicle was heading at the time associated with when the turn signal was turned on; andif the current direction in which the vehicle is heading is substantially opposite the direction the vehicle was heading at the time associated with when the turn signal was turned on, make a determination to not send the signal to turn off the turn signal based at least on the current direction in which the vehicle is heading being substantially opposite the direction the vehicle was heading at the time associated with when the turn signal was turned on.
  • 6. The turn signal system of claim 2 further comprising a compass coupled to the at least one controller and wherein the at least one controller is configured to receive from the compass the compass information indicative of which direction the vehicle was heading and the compass information indicative of the vehicle having changed direction.
  • 7. The turn signal system of claim 2 wherein the at least one controller is part of a compass which is configured to generate the information indicative of which direction the vehicle was heading and the compass information indicative of the current direction in which the vehicle is heading.
  • 8. The turn signal system of claim 2 further comprising a turn signal switch coupled to the a least one controller and wherein the at least one controller is configured to send to the turn signal switch the signal to turn off the turn signal.
  • 9. The turn signal system of claim 8 wherein the at least one controller is configured to receive from the turn signal switch the information indicative of the turn signal having been turned on and the information regarding the direction associated with the turn signal.
  • 10. The turn signal system of claim 8 wherein the turn signal switch is one of the following: a mechanical switch, an electro-mechanical switch.
  • 11. The turn signal system of claim 8 wherein the turn signal switch is an electronic switch.
  • 12. The turn signal system of claim 2 further comprising: a wireless communications module coupled to the communications line, and wherein the at least one controller is configured to receive via the wireless communications module the compass information indicative of which direction the vehicle was heading and the compass information indicative of the vehicle having changed direction.
  • 13. The turn signal system of claim 12 wherein the at least one controller is configured to receive from a satellite system via the wireless communications module the compass information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on and the information indicative of the current direction in which the vehicle is heading.
  • 14. The turn signal system of claim 2 wherein the at least one controller is configured to receive the information indicative of the current direction in which the vehicle is heading by at least being configured to: in response to receiving the information indicative of the turn signal having been turned on and the information regarding the direction associated with the turn signal: send a signal to request the information indicative of the current direction in which the vehicle is heading; andreceive the information indicative of the current direction in which the vehicle is heading in response to the signal sent to request.
  • 15. The turn signal system of claim 2 wherein the at least one controller further comprises a memory coupled to the at least one controller, and is configured to receive the compass information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on and receive the information indicative of the current direction in which the vehicle is heading by being at least configured to: over a period of time that includes a substantially current time, receive compass information indicative of which direction the vehicle is heading;store in the memory the received compass information indicative of which direction the vehicle is heading substantially as the compass information indicative of which direction the vehicle is heading is received;within the period of time, and in response to the receiving the information indicative of the turn signal having been turned on, retrieve from the stored compass information the information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on; andafter retrieval of the information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on, retrieve from the stored compass information, information stored at the substantially current time as the information indicative of the current direction in which the vehicle is heading.
  • 16. The turn signal system of claim 15 wherein the at least one controller is further configured to initiate the storing in the memory of the received compass information in response to receipt of the information indicative of the turn signal having been turned on.
  • 17. A method in an automated turn signal system for a vehicle, comprising: receiving, by the automated turn signal system, an electrical signal indicative of a turn signal of a vehicle being on; andsending, by the automated turn signal system, an electrical signal causing the turn signal to turn off automatically based on an orientation of the vehicle changing to turn in a direction indicated by the turn signal at a time associated with when the turn signal was turned on.
  • 18. The method of claim 17 wherein the sending the electrical signal causing the turn signal to turn off automatically includes causing a button or lever of switch of the turn signal to return to a neutral position.
  • 19. The method of claim 17 wherein the sending the electrical signal causing the turn signal to turn off automatically based on an orientation of the vehicle changing to turn in a direction indicated by the turn signal comprises: receiving, by the automated turn signal system, compass information indicative of the vehicle having changed direction from a direction the vehicle was heading at a time associated with when the turn signal was turned on; andsending, by the automated turn signal system, the electrical signal causing the turn signal to turn off based at least on the received compass information indicative of the vehicle having changed direction from the direction the vehicle was heading at the time associated with when the turn signal was turned on.
  • 20. The method of claim 19 wherein the sending the electrical signal causing the turn signal to turn off is further based on a degree of the changed direction being over a threshold value.
  • 21. The method of claim 19, wherein the sending the electrical signal causing the turn signal to turn off based on the received compass information comprises: determining, by the automated turn signal system, whether a current direction in which the vehicle is heading is toward the direction indicated by the turn signal at the time associated with when the turn signal was turned on;determining, by the automated turn signal system, a difference between the current direction in which the vehicle is heading and the direction the vehicle was heading at the time associated with when the turn signal was turned on;determining, by the automated turn signal system, whether the difference is greater than a threshold difference value;if the difference is greater than the threshold difference value and the current direction in which the vehicle is heading is toward the direction indicated by the turn signal, making a determination, by the automated turn signal system, to send the electrical signal causing the turn signal to turn off based at least on the difference being greater than the threshold difference value; andsending, by the automated turn signal system, the electrical signal causing the turn signal to turn off in response to the determination made to send the electrical signal.
  • 22. A non-transitory computer-readable storage medium having computer executable instructions stored thereon that, when executed by at least one computer processor, cause the at least one computer processor to perform: determining whether a current direction in which a vehicle is heading is toward a direction that was associated with a turn signal when it was turned on;determining a difference between the current direction in which the vehicle is heading and a direction the vehicle was heading at a time associated with when the turn signal was turned on;determining whether the difference is greater than a threshold difference value;if the difference is greater than the threshold difference value and the current direction in which the vehicle is heading is in the direction associated with the turn signal, making a determination to send a signal to turn off the turn signal based at least on the difference being greater than the threshold difference value; andsending the signal to turn off the turn signal in response to the determination made to send the signal.
  • 23. The non-transitory computer-readable storage medium of claim 22 wherein the computer executable instructions stored thereon, when executed by the at least one computer processor, further cause the at least one computer processor to perform: over a period of time that includes a substantially current time, receiving compass information indicative of which direction the vehicle is heading;storing the received compass information indicative of which direction the vehicle is heading, the storing occurring substantially as the compass information indicative of which direction the vehicle is heading is being received;within the period of time, and in response to receiving information indicative of the turn signal having been turned on, retrieving from the stored compass information, information indicative of the direction the vehicle was heading at the time associated with when the turn signal was turned on; andafter retrieving the information indicative of which direction the vehicle was heading at the time associated with when the turn signal was turned on, retrieving from the stored compass information, direction information stored at the substantially current time as information indicative of the current direction in which the vehicle is heading.
  • 24. The non-transitory computer-readable storage medium of claim 22 wherein non-transitory computer-readable storage medium is a memory device located within a vehicle.
  • 25. The non-transitory computer-readable storage medium of claim 22 wherein the computer executable instructions stored thereon, when executed by the at least one computer processor, further cause the at least one computer processor to perform: determining whether the vehicle has been heading in a current direction the vehicle is heading over a particular length of time, then making the determination to send the signal to turn off the turn signal additionally based at least on whether the vehicle has been heading in the current direction the vehicle is heading over the particular length of time.
US Referenced Citations (255)
Number Name Date Kind
1387848 Good Aug 1921 A
3470974 Pefine Oct 1969 A
3664450 Udden et al. May 1972 A
3678455 Levey Jul 1972 A
3687484 Cosby Aug 1972 A
3708028 Hafer Jan 1973 A
4087895 Etienne May 1978 A
4129759 Hug Dec 1978 A
4216839 Gould et al. Aug 1980 A
4641124 Davis Feb 1987 A
4669570 Perret Jun 1987 A
5187423 Marton Feb 1993 A
5189325 Jarczynski Feb 1993 A
5236069 Peng Aug 1993 A
5339250 Durbin Aug 1994 A
5349535 Gupta Sep 1994 A
5376869 Konrad Dec 1994 A
5491486 Welles, II et al. Feb 1996 A
5544784 Malaspina Aug 1996 A
5596261 Suyama Jan 1997 A
5627752 Buck et al. May 1997 A
5631536 Tseng May 1997 A
5642270 Green et al. Jun 1997 A
5815824 Saga et al. Sep 1998 A
5839800 Koga et al. Nov 1998 A
5898282 Drozdz et al. Apr 1999 A
5929608 Ibaraki et al. Jul 1999 A
5998963 Aarseth Dec 1999 A
6016882 Ishikawa Jan 2000 A
6154006 Hatanaka et al. Nov 2000 A
6177867 Simon et al. Jan 2001 B1
6177879 Kokubu et al. Jan 2001 B1
6236333 King May 2001 B1
6403251 Baggaley et al. Jun 2002 B1
6429622 Svensson Aug 2002 B1
6494279 Hutchens Dec 2002 B1
6498457 Tsuboi Dec 2002 B1
6515580 Isoda et al. Feb 2003 B1
6583592 Omata et al. Jun 2003 B2
6593713 Morimoto et al. Jul 2003 B2
6614204 Pellegrino et al. Sep 2003 B2
6621244 Kiyomiya et al. Sep 2003 B1
6796396 Kamen et al. Sep 2004 B2
6822560 Geber et al. Nov 2004 B2
6854773 Lin Feb 2005 B2
6899268 Hara May 2005 B2
6917306 Lilja Jul 2005 B2
6952795 O'Gorman et al. Oct 2005 B2
7010682 Reinold et al. Mar 2006 B2
7111179 Girson et al. Sep 2006 B1
7131005 Levenson et al. Oct 2006 B2
7392068 Dayan et al. Jun 2008 B2
7415332 Ito et al. Aug 2008 B2
7426910 Elwart Sep 2008 B2
7495543 Denison et al. Feb 2009 B2
7567166 Bourgine De Meder Jul 2009 B2
7592728 Jones et al. Sep 2009 B2
7596709 Cooper et al. Sep 2009 B2
7617893 Syed et al. Nov 2009 B2
7630181 Wilk et al. Dec 2009 B2
7698044 Prakash et al. Apr 2010 B2
7728548 Daynes et al. Jun 2010 B2
7761307 Ochi et al. Jul 2010 B2
7778746 McLeod et al. Aug 2010 B2
7863858 Gangstoe et al. Jan 2011 B2
7868591 Phillips et al. Jan 2011 B2
7898439 Bettez et al. Mar 2011 B2
7908020 Pieronek Mar 2011 B2
7923144 Kohn et al. Apr 2011 B2
7948207 Scheucher May 2011 B2
7979147 Dunn Jul 2011 B1
7993155 Heichal et al. Aug 2011 B2
8006793 Heichal et al. Aug 2011 B2
8006973 Toba et al. Aug 2011 B2
8013571 Agassi et al. Sep 2011 B2
8035341 Genzel et al. Oct 2011 B2
8035349 Lubawy Oct 2011 B2
8063762 Sid Nov 2011 B2
8068952 Valentine et al. Nov 2011 B2
8098050 Takahashi Jan 2012 B2
8106631 Abe Jan 2012 B2
8118132 Gray, Jr. Feb 2012 B2
8164300 Agassi et al. Apr 2012 B2
8219839 Akimoto Jul 2012 B2
8229625 Lal et al. Jul 2012 B2
8265816 LaFrance Sep 2012 B1
8301365 Niwa et al. Oct 2012 B2
8319605 Hassan et al. Nov 2012 B2
8326259 Gautama et al. Dec 2012 B2
8354768 Cipriani Jan 2013 B2
8355965 Yamada Jan 2013 B2
8378627 Asada et al. Feb 2013 B2
8412401 Bertosa et al. Apr 2013 B2
8437908 Goff et al. May 2013 B2
8447598 Chutorash et al. May 2013 B2
8564241 Masuda Oct 2013 B2
8614565 Lubawy Dec 2013 B2
8725135 Weyl et al. May 2014 B2
20010018903 Hirose et al. Sep 2001 A1
20010052433 Harris et al. Dec 2001 A1
20020023789 Morisawa et al. Feb 2002 A1
20020070851 Raichle et al. Jun 2002 A1
20030052796 Schmidt et al. Mar 2003 A1
20030141840 Sanders Jul 2003 A1
20030163434 Barends Aug 2003 A1
20030209375 Suzuki et al. Nov 2003 A1
20040236615 Msndy Nov 2004 A1
20040246119 Martin et al. Dec 2004 A1
20060047380 Welch Mar 2006 A1
20060208850 Ikeuchi et al. Sep 2006 A1
20060284601 Salasoo et al. Dec 2006 A1
20070026996 Ayabe et al. Feb 2007 A1
20070035397 Patenaude et al. Feb 2007 A1
20070069687 Suzuki Mar 2007 A1
20070090921 Fisher Apr 2007 A1
20070126395 Suchar Jun 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070159297 Paulk et al. Jul 2007 A1
20070208468 Sankaran et al. Sep 2007 A1
20070238164 Kim Oct 2007 A1
20080143292 Ward Jun 2008 A1
20080154801 Fein et al. Jun 2008 A1
20080276110 Indiani et al. Nov 2008 A1
20090024872 Beverly Jan 2009 A1
20090033456 Castillo et al. Feb 2009 A1
20090045773 Pandya et al. Feb 2009 A1
20090082957 Agassi et al. Mar 2009 A1
20090112394 Lepejian et al. Apr 2009 A1
20090158790 Oliver Jun 2009 A1
20090198372 Hammerslag Aug 2009 A1
20090251300 Yasuda et al. Oct 2009 A1
20090261779 Zyren Oct 2009 A1
20090294188 Cole Dec 2009 A1
20100013433 Baxter et al. Jan 2010 A1
20100026238 Suzuki et al. Feb 2010 A1
20100051363 Inoue et al. Mar 2010 A1
20100052588 Okamura et al. Mar 2010 A1
20100089547 King et al. Apr 2010 A1
20100094496 Hershkovitz et al. Apr 2010 A1
20100114798 Sirton May 2010 A1
20100114800 Yasuda et al. May 2010 A1
20100134067 Baxter et al. Jun 2010 A1
20100145717 Hoeltzel Jun 2010 A1
20100161481 Littrell Jun 2010 A1
20100188043 Kelty et al. Jul 2010 A1
20100191585 Smith Jul 2010 A1
20100198535 Brown et al. Aug 2010 A1
20100198754 Jones et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100225266 Hartman Sep 2010 A1
20100235043 Seta et al. Sep 2010 A1
20100250043 Scheucher Sep 2010 A1
20100308989 Gasper Dec 2010 A1
20100324800 Hanft et al. Dec 2010 A1
20110025267 Kamen et al. Feb 2011 A1
20110029157 Muzaffer Feb 2011 A1
20110032110 Taguchi Feb 2011 A1
20110060481 Kang et al. Mar 2011 A1
20110071932 Agassi et al. Mar 2011 A1
20110082598 Boretto et al. Apr 2011 A1
20110082621 Berkobin et al. Apr 2011 A1
20110106329 Donnelly et al. May 2011 A1
20110112710 Meyer-Ebeling et al. May 2011 A1
20110114798 Gemmati May 2011 A1
20110120789 Teraya May 2011 A1
20110148346 Gagosz et al. Jun 2011 A1
20110153141 Beechie et al. Jun 2011 A1
20110160992 Crombez Jun 2011 A1
20110169447 Brown et al. Jul 2011 A1
20110191265 Lowenthal et al. Aug 2011 A1
20110200193 Blitz et al. Aug 2011 A1
20110202476 Nagy et al. Aug 2011 A1
20110218703 Uchida Sep 2011 A1
20110224868 Collings, III et al. Sep 2011 A1
20110224900 Hiruta et al. Sep 2011 A1
20110241824 Uesugi Oct 2011 A1
20110248668 Davis et al. Oct 2011 A1
20110260691 Ishibashi et al. Oct 2011 A1
20110270480 Ishibashi et al. Nov 2011 A1
20110279257 Au et al. Nov 2011 A1
20110282527 Inbarajan et al. Nov 2011 A1
20110292667 Meyers Dec 2011 A1
20110295454 Meyers Dec 2011 A1
20110303509 Agassi et al. Dec 2011 A1
20120000720 Honda et al. Jan 2012 A1
20120013182 Minegishi et al. Jan 2012 A1
20120019196 Fung Jan 2012 A1
20120038473 Fecher Feb 2012 A1
20120062361 Kosugi Mar 2012 A1
20120068817 Fisher Mar 2012 A1
20120078413 Baker, Jr. Mar 2012 A1
20120105078 Kikuchi et al. May 2012 A1
20120109519 Uyeki May 2012 A1
20120123661 Gray, Jr. May 2012 A1
20120126969 Wilbur et al. May 2012 A1
20120143410 Gallagher et al. Jun 2012 A1
20120157083 Otterson Jun 2012 A1
20120158229 Schaefer Jun 2012 A1
20120167071 Paek Jun 2012 A1
20120173292 Solomon et al. Jul 2012 A1
20120194346 Tsai et al. Aug 2012 A1
20120223575 Hachiya et al. Sep 2012 A1
20120233077 Tate, Jr. et al. Sep 2012 A1
20120248868 Mobin et al. Oct 2012 A1
20120248869 Itagaki et al. Oct 2012 A1
20120253567 Levy et al. Oct 2012 A1
20120256588 Hayashi et al. Oct 2012 A1
20120259665 Pandhi et al. Oct 2012 A1
20120271723 Penilla et al. Oct 2012 A1
20120280573 Ohkura et al. Nov 2012 A1
20120296512 Lee et al. Nov 2012 A1
20120299527 Vo Nov 2012 A1
20120299537 Kikuchi Nov 2012 A1
20120299721 Jones Nov 2012 A1
20120316671 Hammerslag et al. Dec 2012 A1
20120319649 Billmaier Dec 2012 A1
20130024306 Shah et al. Jan 2013 A1
20130026971 Luke et al. Jan 2013 A1
20130026972 Luke et al. Jan 2013 A1
20130026973 Luke et al. Jan 2013 A1
20130027183 Wu et al. Jan 2013 A1
20130030580 Luke et al. Jan 2013 A1
20130030581 Luke et al. Jan 2013 A1
20130030608 Taylor et al. Jan 2013 A1
20130030630 Luke et al. Jan 2013 A1
20130030696 Wu et al. Jan 2013 A1
20130030920 Wu et al. Jan 2013 A1
20130031318 Chen et al. Jan 2013 A1
20130033203 Luke et al. Feb 2013 A1
20130046457 Pettersson Feb 2013 A1
20130074411 Ferguson et al. Mar 2013 A1
20130090795 Luke et al. Apr 2013 A1
20130093271 Luke et al. Apr 2013 A1
20130093368 Luke et al. Apr 2013 A1
20130093384 Nyu et al. Apr 2013 A1
20130116892 Wu et al. May 2013 A1
20130119898 Ohkura May 2013 A1
20130127416 Karner et al. May 2013 A1
20130132307 Phelps et al. May 2013 A1
20130151049 Higashitani et al. Jun 2013 A1
20130151293 Karner et al. Jun 2013 A1
20130166119 Kummer et al. Jun 2013 A1
20130179061 Gadh et al. Jul 2013 A1
20130181582 Luke et al. Jul 2013 A1
20130200845 Bito Aug 2013 A1
20130221928 Kelty et al. Aug 2013 A1
20130254097 Marathe et al. Sep 2013 A1
20130282254 Dwan et al. Oct 2013 A1
20130345935 Chang Dec 2013 A1
20140163813 Chen et al. Jun 2014 A1
20140320046 Luke et al. Oct 2014 A1
20140368032 Doerndorfer Dec 2014 A1
20150042157 Chen et al. Feb 2015 A1
20150046012 Chen et al. Feb 2015 A1
20150153967 Chen et al. Jun 2015 A1
Foreign Referenced Citations (115)
Number Date Country
2 865 976 Sep 2013 CA
1211844 Mar 1999 CN
101071953 Nov 2007 CN
101950998 Jan 2011 CN
102064565 May 2011 CN
44 32 539 Jun 1995 DE
10 2007 045633 Apr 2009 DE
10 2010 039075 Feb 2011 DE
0 693 813 Jan 1996 EP
1 177 955 Feb 2002 EP
1 667 306 Jun 2006 EP
1 798 100 Jun 2007 EP
2 101 390 Sep 2009 EP
2 182 575 May 2010 EP
2 230 146 Sep 2010 EP
2 428 939 Mar 2012 EP
5-38003 Feb 1993 JP
5-135804 Jun 1993 JP
07-031008 Jan 1995 JP
7-36504 Jul 1995 JP
8-178683 Jul 1996 JP
9-119839 May 1997 JP
10-117406 May 1998 JP
10-170293 Jun 1998 JP
10-307952 Nov 1998 JP
11-049079 Feb 1999 JP
11-51681 Feb 1999 JP
11-176487 Jul 1999 JP
11-205914 Jul 1999 JP
2000-102102 Apr 2000 JP
2000-102103 Apr 2000 JP
2000-341868 Dec 2000 JP
2001-57711 Feb 2001 JP
2001-128301 May 2001 JP
2002-140398 May 2002 JP
2003-102110 Apr 2003 JP
2003-118397 Apr 2003 JP
2003-262525 Sep 2003 JP
2004-215468 Jul 2004 JP
2005-67453 Mar 2005 JP
2006-121874 May 2006 JP
2007-35479 Feb 2007 JP
2007-60353 Mar 2007 JP
2007-118642 May 2007 JP
2007-148590 Jun 2007 JP
2007-325458 Dec 2007 JP
2008-127894 Jun 2008 JP
2008-219953 Sep 2008 JP
2008-285075 Nov 2008 JP
2009-8609 Jan 2009 JP
2009-512035 Mar 2009 JP
2009-103504 May 2009 JP
2009-171646 Jul 2009 JP
2009-171647 Jul 2009 JP
4319289 Aug 2009 JP
2009-303364 Dec 2009 JP
2010-022148 Jan 2010 JP
2010-108833 May 2010 JP
2010-148246 Jul 2010 JP
2010-179764 Aug 2010 JP
2010-186238 Aug 2010 JP
2010-191636 Sep 2010 JP
2010-200405 Sep 2010 JP
2010-212048 Sep 2010 JP
2010-26986 Dec 2010 JP
2010-540907 Dec 2010 JP
2011-83166 Apr 2011 JP
2011-126452 Jun 2011 JP
2011-131631 Jul 2011 JP
2011-131805 Jul 2011 JP
2011-142704 Jul 2011 JP
2011-142779 Jul 2011 JP
2011-233470 Nov 2011 JP
2012-151916 Aug 2012 JP
2012-526409 Oct 2012 JP
1998-045020 Sep 1998 KR
20040005146 Jan 2004 KR
20100012401 Feb 2010 KR
10-0971278 Jul 2010 KR
20110004292 Jan 2011 KR
20110041783 Apr 2011 KR
20120020554 Mar 2012 KR
200836452 Sep 2008 TW
I315116 Sep 2009 TW
M371880 Jan 2010 TW
M379269 Apr 2010 TW
M379789 May 2010 TW
M385047 Jul 2010 TW
201043986 Dec 2010 TW
201044266 Dec 2010 TW
9821132 May 1998 WO
9903186 Jan 1999 WO
2009039454 Mar 2009 WO
2010005052 Jan 2010 WO
2010033517 Mar 2010 WO
2010033881 Mar 2010 WO
2010035605 Apr 2010 WO
2010143483 Dec 2010 WO
2011138205 Nov 2011 WO
2012085992 Jun 2012 WO
2012160407 Nov 2012 WO
2012160557 Nov 2012 WO
2013024483 Feb 2013 WO
2013024484 Feb 2013 WO
2013042216 Mar 2013 WO
2013074819 May 2013 WO
2013080211 Jun 2013 WO
2013102894 Jul 2013 WO
2013108246 Jul 2013 WO
2013118113 Aug 2013 WO
2013128007 Sep 2013 WO
2013128009 Sep 2013 WO
2013128009 Sep 2013 WO
2013142154 Sep 2013 WO
2013144951 Oct 2013 WO
Non-Patent Literature Citations (154)
Entry
Chen et al., “Apparatus, System, and Method for Authentication of Vehicular Components,” U.S. Appl. No. 13/918,703, filed Jun. 14, 2013, 84 pages.
Chen et al., “Apparatus, System, and Method for Authentication of Vehicular Components ,” U.S. Appl. No. 61/783,041, filed Mar. 14, 2013, 84 pages.
Chen et al., “Apparatus, System, and Method for Authentication of Vehicular Components,” Office Action mailed Nov. 22, 2013, for U.S. Appl. No. 13/918,703, 35 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” U.S. Appl. No. 14/022,134, filed Sep. 9, 2013, 61 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” U.S. Appl. No. 61/601,404, filed Feb. 21, 2012, 56 pages.
Huang et al., “Apparatus, Method and Article for Vehicle Turn Signals,” U.S. Appl. No. 61/727,403, filed Nov. 16, 2012, 41 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048380, mailed Feb. 27, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048382, mailed Feb. 27, 2013, 9 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/063979, mailed Mar. 4, 2013, 10 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048391, mailed Dec. 21, 2012, 9 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048349, mailed Feb. 18, 2013, 9 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048354, mailed Feb. 18, 2013, 11 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048358, mailed Feb. 25, 2013, 9 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048366, mailed Jan. 21, 2013, 10 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048367, mailed Jan. 17, 2013, 8 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048375, mailed Jan. 23, 2013, 9 pages.
International Search Report and Written Opinion for corresponding European Patent Application No. PCT/US2012/048379, mailed Dec. 17, 2012, 9 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Portable Charging Devices and Power Storage Devices, Such as Batteries,” U.S. Appl. No. 14/017,090, filed Sep. 3, 2013, 69 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Portable Charging Devices and Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/773,621, filed Mar. 6, 2013, 69 pages.
Luke et al., “Apparatus, Method and Article for Providing Targeted Advertising in a Rechargeable Electrical Power Storage Device Distribution Environment,” U.S. Appl. No. 61/773,614, filed Mar. 6, 2013, 77 pages.
Luke et al., “Detectible Indication of an Electric Motor Vehicle Standby Mode,” Office Action for U.S. Appl. No. 13/646,320, mailed May 30, 2013, 13 pages.
Luke et al., “Detectible Indication of an Electric Motor Vehicle Standby Mode,” U.S. Appl. No. 61/543,720, filed Oct. 5, 2011, 35 pages.
Luke et al., “Detectible Indication of an Electric Motor Vehicle Standby Mode,” U.S. Appl. No. 61/684,432, filed Aug. 17, 2012, 41 pages.
Luke et al., “Drive Assembly for Electric Powered Device,” U.S. Appl. No. 61/546,411, filed Oct. 12, 2011, 18 pages.
Luke et al., “Modular System for Collection and Distribution of Electric Storage Devices,” U.S. Appl. No. 61/789,065, filed Mar. 15, 2013, 76 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries, Based on User Profiles,” U.S. Appl. No. 61/534,772, filed Sep. 14, 2011, 55 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” U.S. Appl. No. 14/023,344, filed Sep. 10, 2013, 59 pages.
Luke et al., “Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/511,900, filed Jul. 26, 2011, 73 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/534,761, filed Sep. 14, 2011, 55 pages.
Luke et al., “Apparatus, Method and Article for Collection, Charging and Distributing Power Storage Devices, Such as Batteries,” U.S. Appl. No. 61/647,936, filed May 16, 2012, 76 pages.
Luke et al., “Apparatus, Method and Article for Redistributing Power Storage Devices, Such as Batteries, Between Collection, Charging and Distribution Machines,” U.S. Appl. No. 61/534,753, filed Sep. 14, 2011, 65 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, mailed Aug. 14, 2013, 21 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” U.S. Appl. No. 61/511,880, filed Jul. 26, 2011, 52 pages.
Luke et al., “Thermal Management of Components in Electric Motor Drive Vehicles,” U.S. Appl. No. 61/647,941, filed May 16, 2012, 47 pages.
Luke et al., “Thermal Management of Components in Electric Motor Drive Vehicles,” U.S. Appl. No. 61/511,887, filed Jul. 26, 2011, 44 pages.
Luke, “Apparatus, Method and Article for Changing Portable Electrical Power Storage Device Exchange Plans,” U.S. Appl. No. 61/778,038, filed Mar. 12, 2013, 56 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” U.S. Appl. No. 14/017,081, filed Sep. 3, 2013, 81 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” U.S. Appl. No. 61/780,781, filed Mar. 13, 2013, 80 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Notice of Allowance for U.S. Appl. No. 13/559,054, mailed May 30, 2013, 32 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Office Action for U.S. Appl. No. 13/559,054, mailed Dec. 3, 2012, 11 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” U.S. Appl. No. 14/012,845, filed Aug. 28, 2013, 64 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” U.S. Appl. No. 61/557,170, filed Nov. 8, 2011, 60 pages.
Wu et al., “Battery Configuration for an Electric Vehicle,” U.S. Appl. No. 61/716,388, filed Oct. 19, 2012, 37 pages.
Wu et al., “Apparatus, Method and Article for a Power Storage Device Compartment,” U.S. Appl. No. 61/581,566, filed Dec. 29, 2011, 61 pages.
Wu et al., “Apparatus, Method and Article for Providing Information Regarding Availability of Power Storage Devices at a Power Storage Device Collection, Charging and Distribution Machine,” U.S. Appl. No. 14/022,140, filed Sep. 9, 2013, 56 pages.
Wu et al., “Apparatus, Method and Article for Providing Information Regarding Availability of Power Storage Devices at a Power Storage Device Collection, Charging and Distribution Machine,” U.S. Appl. No. 61/601,953, filed Feb. 22, 2012, 53 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action for U.S. Appl. No. 13/559,333, mailed Jul. 3, 2013, 14 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” U.S. Appl. No. 14/022,147, filed Sep. 9, 2013, 56 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action mailed Nov. 27, 2013, for U.S. Appl. No. 13/559,333, 19 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action mailed Nov. 19, 2013, for U.S. Appl. No. 14/022,147, 10 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” U.S. Appl. No. 61/601,949, filed Feb. 22, 2012, 56 pages.
Wu et al., “Apparatus, Method and Article for Security of Vehicles,” U.S. Appl. No. 61/557,176, filed Nov. 8, 2011, 37 pages.
Wu, “Battery Configuration for an Electric Vehicle,” U.S. Appl. No. 14/057,405, filed Oct. 18, 2013, 38 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Office Action mailed Dec. 30, 2013, for U.S. Appl. No. 14/022,134, 20 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048349, issued on Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048354, issued on Jan. 28, 2014, 7 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048358, issued on Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048366, issued on Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048367, issued on Jan. 28, 2014, 4 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048375, issued on Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048379, issued on Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048380, issued on Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048382, issued on Jan. 28, 2014, 5 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2012/048391, issued on Jan. 28, 2014, 6 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048347, mailed Dec. 18, 2012, 8 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2013/070131, mailed Feb. 19, 2014, 17 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Portable Charging Devices and Power Storage Devices, Such as Batteries,” Office Action mailed Jan. 6, 2014, for U.S. Appl. No. 14/017,090, 19 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, mailed Feb. 12, 2014, 24 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” Office Action for U.S. Appl. No. 14/017,081, mailed Jan. 30, 2014, 36 pages.
Wu et al., “Apparatus, Method and Article for a Power Storage Device Compartment,” Office Action for U.S. Appl. No. 13/559,125, mailed Feb. 24, 2014, 28 pages.
“Inrunner,” retreived from URL=http://en.wikipedia.org/w/index.php?title=Inrunner&printable=yes on Sep. 28, 2011, 1 page.
“Outrunner,” retreived from URL=http://en.wikipedia.org/w/index.php?title=Outrunner&printable=yes on Sep. 16, 2011, 2 pages.
Chen et al., “Adjusting Electric Vehicle Systems Based on an Electrical Energy Storage Device Thermal Profile,” U.S. Appl. No. 61/862,854, filed Aug. 6, 2013, 74 pages.
Chen et al., “Apparatus, System, and Method for Authentication of Vehicular Components,” Notice of Allowance mailed Mar. 25, 2014, for U.S. Appl. No. 13/918,703, 7 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Office Action mailed Apr. 9, 2014, for U.S. Appl. No. 14/022,134, 20 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817273.1, dated Mar. 25, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817141.0, dated Mar. 26, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12818308.4, dated Mar. 26, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817696.3, dated Mar. 27, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12817883.7, dated Mar. 27, 2014, 3 pages.
Communication pursuant to Rules 161(2) and 162 EPC, for corresponding European Patent Application No. 12818447.0, dated Mar. 27, 2014, 3 pages.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2012/048344, mailed Feb. 28, 2013, 9 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2012/058930, mailed Mar. 15, 2013, 11 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2012/059931, mailed Mar. 29, 2013, 13 pages.
Luke et al., “Portable Electrical Energy Storage Device,” U.S. Appl. No. 61/872,126, filed Aug. 30, 2013, 39 pages.
Luke et al., “Modular System for Collection and Distribution of Electric Storage Devices,” U.S. Appl. No. 14/202,589, filed Mar. 10, 2014, 76 pages.
Luke et al., “Electric Device Drive Assembly and Cooling System,” U.S. Appl. No. 61/615,144, filed Mar. 23, 2012, 43 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action mailed Feb. 26, 2014, for U.S. Appl. No. 13/559,038, 13 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action mailed Feb. 25, 2014, for U.S. Appl. No. 14/023,344, 12 pages.
Luke et al., “Thermal Management of Components in Electric Motor Drive Vehicles,” Office Action mailed Apr. 2, 2014, for U.S. Appl. No. 13/559,259, 11 pages.
Luke, “Apparatus, Method and Article for Changing Portable Electrical Power Storage Device Exchange Plans,” U.S. Appl. No. 14/204,587, filed Mar. 11, 2014, 56 pages.
Microchip, “AN885: Brushless DC (BLDC) Motor Fundamentals,” Microchip Technology Inc., 2003, 19 pages.
Wu et al., “Apparatus, Method and Article for Providing Information Regarding Availability of Power Storage Devices at a Power Storage Device Collection, Charging and Distribution Machine,” Office Action mailed Mar. 5, 2014, for U.S. Appl. No. 14/022,140, 8 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action mailed Mar. 5, 2014, for U.S. Appl. No. 14/022,147, 12 pages.
Wu et al., “Apparatus, Method and Article for Power Storage Device Failure Safety,” U.S. Appl. No. 14/071,134, filed Nov. 4, 2013, 68 pages.
Wu et al., “Apparatus, Method and Article for Power Storage Device Failure Safety,” Office Action for U.S. Appl. No. 14/071,134, mailed Feb. 12, 2014, 14 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Notice of Allowance mailed Jul. 9, 2014, for U.S. Appl. No. 14/022,134, 10 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Office Action mailed Jun. 18, 2014, for U.S. Appl. No. 13/559,390, 16 pages.
Chen et al., “Systems and Methods for Powering Electric Vehicles Using a Single or Multiple Power Cells,” U.S. Appl. No. 61/862,852, filed Aug. 6, 2013, 46 pages.
International Search Report and Written Opinion, for corresponding International Application No. PCT/US2014/021369, mailed Jul. 2, 2014, 14 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/024757, mailed Jul. 11, 2014, 15 pages.
International Search Report and Written Opinion, for corresponding International Application No. PCT/US2014/022610, mailed Jul. 10, 2014, 12 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Portable Charging Devices and Power Storage Devices, Such as Batteries,” Office Action mailed Jun. 26, 2014, for U.S. Appl. No. 14/017,090, 19 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action mailed Aug. 19, 2014, for U.S. Appl. No. 13/559,038, 14 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, mailed Aug. 19, 2014, 26 pages.
Wu et al., “Apparatus, Method and Article for Providing to a User Device Information Regarding Availability of Portable Electrical Energy Storage Devices at a Portable Electrical Energy Storage Device Collection, Charging and Distribution Machine,” Notice of Allowance mailed Jun. 30, 2014, for U.S. Appl. No. 14/022,140, 5 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Notice of Allowance mailed Jul. 10, 2014, for U.S. Appl. No. 13/559,333, 9 pages.
Wu et al., “Apparatus, Method and Article for Power Storage Device Failure Safety,” Office Action mailed Jun. 9, 2014, for U.S. Appl. No. 14/071,134, 15 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Office Action mailed Jun. 3, 2015, for U.S. Appl. No. 14/179,442, 20 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Notice of Allowance mailed Nov. 3, 2014, for U.S. Appl. No. 13/559,390, 10 pages.
Chen et al., “Apparatus, Method and Article for Providing Vehicle Diagnostic Data,” Notice of Allowance mailed Jun. 23, 2015, for U.S. Appl. No. 14/609,201, 12 pages.
English Translation of Japanese Office Action mailed Feb. 17, 2015, for corresponding Japanese Patent Application No. 2014-523007, 7 pages.
Extended European Search Report dated Apr. 24, 2015, for corresponding EP Application No. 12817097.4, 9 pages.
International Preliminary Report on Patentability and Written Opinion for corresponding International Patent Application No. PCT/US2013/070131, issued on May 19, 2015, 13 pages.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/023539, mailed Sep. 4, 2014, 12 pages.
Japanese Office Action with English Translation dated Jun. 30, 2015, for corresponding JP Application No. 2014-523020, 15 pages.
Japanese Office Action with English Translation dated Mar. 31, 2015, for corresponding JP Application No. 2014-523014, 9 pages.
Japanese Office Action with English Translation, mailed Dec. 16, 2014, for corresponding JP Application No. 2014-523013, 11 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action mailed Jun. 19, 2015, for U.S. Appl. No. 14/023,344, 9 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries, Based on User Profiles,” Office Action mailed May 11, 2015, for U.S. Appl. No. 13/559,010, 26 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such as Batteries,” Office Action mailed Aug. 21, 2014, for U.S. Appl. No. 14/023,344, 13 pages.
Luke et al., “Apparatus, Method and Article for Redistributing Power Storage Devices, Such as Batteries, Between Collection, Charging and Distribution Machines,” Office Action mailed Mar. 13, 2015, for U.S. Appl. No. 13/559,091, 33 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, mailed Jan. 21, 2015, 31 pages.
Luke et al., “Dynamically Limiting Vehicle Operation for Best Effort Economy,” Office Action for U.S. Appl. No. 13/559,264, mailed Jun. 15, 2015, 36 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” Office Action for U.S. Appl. No. 14/017,081, mailed Jul. 21, 2014, 42 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” Office Action for U.S. Appl. No. 14/017,081, mailed Dec. 31, 2014, 59 pages.
Luke, “Apparatus, Method and Article for Providing Information Regarding a Vehicle Via a Mobile Device,” Office Action mailed Jul. 15, 2015, for U.S. Appl. No. 14/017,081, 61 pages.
Park, “A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles,” dissertation, The University of Michigan, 2011, 142 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Office Action mailed Jun. 23, 2015, for U.S. Appl. No. 14/012,845, 11 pages.
Taylor et al., “Apparatus, Method and Article for Physical Security of Power Storage Devices in Vehicles,” Office Action mailed Dec. 10, 2014, for U.S. Appl. No. 14/012,845, 13 pages.
Taylor et al., “Systems and Methods for Utilizing an Array of Power Storage Devices, Such as Batteries,” U.S. Appl. No. 14/601,840, filed Jan. 21, 2015, 51 pages.
Wu et al., “Apparatus, Method and Article for a Power Storage Device Compartment,” Office Action for U.S. Appl. No. 13/559,125, mailed Jun. 16, 2015, 30 pages.
Wu et al., “Apparatus, Method and Article for a Power Storage Device Compartment,” Office Action for U.S. Appl. No. 13/559,125, mailed Sep. 9, 2014, 28 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Office Action mailed Aug. 6, 2014, for U.S. Appl. No. 14/022,147, 17 pages.
Wu et al., “Apparatus, Method and Article for Providing Locations of Power Storage Device Collection, Charging and Distribution Machines,” Notice of Allowance mailed Nov. 25, 2014, for U.S. Appl. No. 14/022,147, 5 pages.
Wu et al., “Apparatus, Method and Article for Providing to a User Device Information Regarding Availability of Portable Electrical Energy Storage Devices at a Portable Electrical Storage Device Collection, Charging and Distribution Machine,” U.S. Appl. No. 14/511,137, filed Oct. 9, 2014, 56 pages.
Wu et al., “Apparatus, Method and Article for Security of Vehicles,” Office Action mailed Jun. 4, 2015, for U.S. Appl. No. 13/671,144, 20 pages.
Wu et al., “Apparatus, Method and Article for Security of Vehicles,” Office Action mailed Oct. 2, 2014, for U.S. Appl. No. 13/671,144, 20 pages.
Chinese Office Action dated Jul. 17, 2015, for corresponding CN Application No. 201280047017.1, with English Translation, 15 pages.
Chinese Office Action with English Translation, mailed Jul. 30, 2015, for corresponding CN Application No. 201280046871.6, 25 pages.
Communication pursuant to Rules 70(2) and 70a(2) EPC, dated Aug. 21, 2015, for corresponding European Patent Application No. 12817696.3-1807, 1 page.
Communication Pursuant to Rules 70(2) and 70a(2) EPC, dated Aug. 20, 2015, for corresponding European Patent Application No. 12817141.0-1807, 1 page.
Communication pursuant to Rules 70(2) and 70a(2) EPC, dated Aug. 21, 2015, for corresponding European Patent Application No. 12818447.0-1807, 1 page.
Extended European Search Report dated Aug. 3, 2015, for corresponding EP Application No. 12817141.0-1807, 9 pages.
Extended European Search Report dated Aug. 5, 2015, for corresponding European Patent Application No. 12817392.9, 9 pages.
Extended European Search Report dated Aug. 5, 2015, for corresponding EP Application No. 12817696.3-1807, 13 pages.
Extended European Search Report, dated Aug. 5, 2015, for Corresponding European Application No. 12818447.0-1807, 17 pages.
International Preliminary Report on Patentability dated Sep. 8, 2015, for corresponding WO Application No. PCT/US2014/021369, 9 pages.
Japanese Office Action dated Jun. 30, 2015, for corresponding JP Application No. 2014-523020, with English Translation, 15 pages.
Japanese Office Action dated Sep. 1, 2015, for corresponding JP Application No. 2014-523005, with English Translation, 11 pages.
Japanese Office Action mailed Jul. 14, 2015, for corresponding Japanese Application No. 2014-523007, 3 pages.
Japanese Office Action dated Sep. 8, 2015, for corresponding JP Application No. 2014-523018, with English Translation, 12 pages.
Luke et al., “Apparatus, Method and Article for Authentication, Security and Control of Power Storage Devices, Such As Batteries,” Notice of Allowance mailed Aug. 3, 2015, for USAN 13/559,038, 13 pages.
Supplementary European Search Report dated Jul. 10, 2015, for corresponding EP Application No. 12847969.8-1503, 5 pages.
Related Publications (1)
Number Date Country
20140142786 A1 May 2014 US
Provisional Applications (1)
Number Date Country
61727403 Nov 2012 US