A. Field of the Invention
The present invention relates to application of a biologically active or chemical substance to relatively large volumes of target product, one example being pre-harvested or harvested crop, and in particular, to an apparatus, method, and system of applying biologically active or chemical substance in a minute ratio to the target product, whether it is moving relative to the substance, the substance is moving relative to it, or both.
B. Problems in the Art
It is many times desirable to treat harvested agricultural crop by applying substance having, at least in part, some biologically active organisms. One primary example is a forage inoculant which contains bacteria that, when applied in appropriate concentration to harvested agricultural crop, can reduce rate of degradation of the harvested agricultural crop.
In the example of forage inoculant, a relatively small concentration of inoculant can effectively treat a relatively large volume of harvested crop. For example, ratios on the order of 40 grams of inoculant to 50 tons of harvested crop are typical. However, relatively effective even application of such small quantities to such large quantities of agricultural crop is not a trivial matter, particularly if the crop or the applicator, or both, are moving relative to one another.
Additives are in common use for purposes of aiding in the preservation of the crop during storage. Two types of additives are the most common: (1) acid to reduce bacterial activity and, (2) inoculants to add favorable activity. These additives must be applied at time of harvest to provide the maximum benefit in the aid to preservation of the crop. Harvesting of the crop takes place over a large area through the use of mobile harvesting equipment such as forage harvesting and baling implements. These implements have been designed for maximum speed in harvesting with very little consideration of being compatible with the requirements of applying the additives used to aid in the preservation of the crop. The carrying capacity of harvesting equipment for additives being used is sometimes limited to small amounts of material. In such cases, it is beneficial to use additives that require the lowest ratio of additive to crop so, with limited carrying capacity, the harvesting implement is not stopping to refill small reservoirs for the additives on a frequent basis.
Additives to aid in the preservation of crops have been developed with increasing lower ratios of application in recent years. High-strength acid formulas have been introduced that are effective in controlling bacterial growth when applied at ratios a low as 0.005% of the crop being treated. Highly concentrated inoculants have been developed that are effective at rates as low as 0.001% of the crop being treated. These low inclusion rate products have reduced the need to stop and fill the reservoirs on the harvesting implements.
The problem that arises with the products that have low rates of application is attaining even coverage over the complete crop being treated. To be effective on the entire crop, coverage of these additives must be even on the entire crop. For liquids, conventional spray techniques are less than effective at these low rates.
One current method of inoculant application premixes concentrated inoculant with water in a large tank (e.g. 1:200 to 1:3000 ratio inoculant to water). Such tanks can hold, sometimes, on the order of 100 or more gallons of water. A conventional spraying system is then used to spray the mixture on the harvested crop. It is cumbersome and time consuming to mix, carry, and replenish such a large volume. It can also be wasteful of inoculant, which is biologically active and not inexpensive. Careful pre-mixing must take place. Sufficient power and fuel must be used to manipulate a tank of such size and weight. If the full tank of mixture is not used, the remainder most times must be thrown away. There is no practical way to store the mixture. Additionally, a relatively accurate spraying system must be used. The whole system usually must be taken back to a base location to refill and remix the tank. Such a spraying system uses a substantial amount of water per unit forage.
An alternative method was developed to address some of the aforementioned problems and deficiencies. The APPLI-PRO™ system available from Pioneer Hi-Bred International, Des Moines, Iowa, and disclosed at U.S. Ser. No. 10/140,596 and WO 99/58253, instead uses a palm or hand-sized APPLI-PRO™ container or bottle (see U.S. Pat. No. D409,303) of concentrated inoculant pre-mix that could be removably installed to its spraying system. A larger water tank is in fluid communication with a first pump, which pumps water from the tank at a desired rate to spray nozzles. A second pump, preferably an injection pump, is in fluid communication with the small inoculant concentration bottle and the fluid conduit. Precise, adjustable operation of the injection pump served as a precise metering of concentrated inoculant into the main water stream to the sprayers. This eliminated the requirement of pre-mixing in the large water tank. It allowed for dispensing of only the needed amount of inoculant. At the end of a spraying session, the inoculant bottle could either be exchanged or any remainder sealed and stored in that container, and then available for subsequent use. The system provides accurate, efficient utilization of inoculant with reduced margin of error. It is also highly adjustable for different needs. However, it requires two separate pumping mechanisms. Additionally, it still uses a substantially large holding tank for the water supply if large quantities of agricultural crop were to be sprayed in one session.
Other attempts have been made at improved forage inoculant-type application systems. In the ULV™ model, available from Pioneer Hi-Bred International, instead of a large water tank, either as a pre-mix tank or water supply tank, again a much smaller single container (e.g. 2.5 liters) contains the pre-mix of inoculant and water. Also, instead of spraying a ratio of a very small amount of inoculant to large amounts of water an atomizer is used to atomize the mixture in a very accurate, consistent manner to apply the right amount on the harvested forage. However, it has been found that an effective atomizer is relatively expensive, and that the overall apparatus can cost several thousands of dollars.
Therefore, additional room for improvement in the art still exists. A more economical, less cumbersome, efficient and effective application system is needed. Other factors must be considered in designing systems to apply such types of substances.
First, many biologically active substances have some threshold of tolerance for trauma. For example, some pumps and nozzles that try to atomize fluid many times subject the living cells to shearing forces that can damage their cells. Of course, damaged inoculant cells can inhibit or destroy their efficacy.
Secondly, care must be taken to avoid over-drying the biologically active substance, either while stored, awaiting application, or during application. Excessive drying or exposure to air can also reduce the efficacy of the biological ingredient.
Third, even with the specific example of forage inoculants, there are a wide variety of environments in which the inoculant could be applied and environmental factors could affect application. For example, it could be applied on a harvested crop moving past a spray device on some sort of an exposed conveyor. Care must be taken to direct the inoculant in an even manner on the moving crop. Conveyance equipment is becoming more and more sophisticated. The crop can be moving at substantial speeds and volumes. An inoculant application system must be able to be adjusted and adapted accordingly. For example, the application system might be carried on-board a harvesting device. Inoculant application may be made at or near the internal conveying systems, e.g. mechanical or pneumatic, of the machine. The speed the crop moves can be high; for example, over a hundred miles an hour. With exposed conveyors or internal conveyors, the effect of wind or vacuum on an airborne mixture created by high-speed venturi effect must be handled.
On the other hand, as detailed in Ser. No. 10/140,596 and WO 99/58253, there are other instances where the application system may be moving relative to the harvested crop, or both the sprayer and the crop moving. An effective application system must be able to handle those environments.
For purposes of this description, the term “target product” will be used to refer to any material, living or not, or any surface to which the apparatus, system or method of the present invention could be used to apply a biologically active or chemical substance in a liquid pre-mix form. For purposes of this description, the term “crop” will be used to refer to an example of a target product, and includes any plant material, whether pre-harvested (e.g. growing in a field or cut but without the desired part being yet harvested), or during and after harvesting.
It is therefore a principal object, feature, advantage, and/or aspect of the present invention to provide an apparatus, method, or system of applying a biologically active or chemical substance in relatively small quantities to relatively large volumes of a target product that improves over or solves problems and deficiencies in the art.
Additional objects, features, aspects, and/or advantages of the present invention include an apparatus, method, or system for applying a biologically active or chemical substance in relatively small amounts to relatively large volumes of a target product which:
These and other objects, features, aspects, and/or advantages of the present invention will become more apparent with reference to the accompanying specification and claims.
One particular aspect of the present invention includes an apparatus, method, and system for applying a biologically active or chemical substance to a relatively large volume of target product, including crop. The biologically active or chemical substance is mixed with water. The mixture is contained in a relatively small, hand carryable container or bottle which can be placed in fluid communication with a conduit to a nozzle with spraying end. A pump is adapted to move the mixture from the bottle through the conduit towards the nozzle. Pressurized air is mixed with the mixture in the conduit to aerate the mixture. The pump is controllable and adjustable to vary the rate of application of the mixture from the nozzle. The nozzle, pump, and pressurized air are selected to essentially mist the mixture in a controlled, even, consistent manner, minimizing trauma on any biologically active or chemical ingredients. What might be called the “air assist” promotes an even discharge and application. A relatively low volume of liquid mixture is precisely metered onto the target product with a relatively large volume of pressurized air. The primary components of the system can be integrated into a relatively small-sized unit.
In another aspect of the invention, a process employs a stream of air under pressure to deliver low rates of additives to crops, so that the air distributes the additive to the crop evenly. The additive being applied, e.g. at ratios under 2% of the crop being treated, is thus evenly distributed, leading to more effective response to the additive.
In another aspect of the invention, voltage of the pump motor is monitored. Adjustment of the voltage to the pump can then adjust the output of the system.
In another aspect of the invention, the nozzle and aeration of the mixture cooperate with the pumping of the mixture to create a consistent, controlled spray or distribution without shearing action which can be harmful to the biologically active or chemical substance.
Another aspect of the invention includes the system's own ability of using air pressure to clean the conduits of material post-application. This process can be conducted automatically.
The system can be used in combination with a variety of conveyance methods for the system or the target product to which the substance is to applied, or both.
FIGS. 6A-C are perspective views of one example of how certain components of the system of
For a better understanding of the invention, examples or forms the invention can take will now be described in detail. Frequent reference will be taken to the accompanying drawings. Reference numbers will be used to indicate certain parts and locations in the drawings. The same reference numbers and letters will be used to indicate the same parts and locations throughout the drawings, unless otherwise indicated.
With reference to
In the typical embodiment, a reservoir 5 to hold the additive is also located on the harvesting equipment. A metering device 6 is used to dispense the additive into the line 2. The metering device 6 regulates the proper application of the additive based on flow of the product. The metering device 6 may also have a means of preventing air from flowing into the reservoir 5 and also must have the capability to deliver product into the line 2, overcoming the line pressure developed by the air supply 1. In a typical embodiment, the metering device 6 used is a positive displacement pump, which will prevent air from entering the reservoir 5 and will deliver product at a pressure high enough to overcome the air pressure in the line 2. This pump can be equipped with a means to regulate flow, so that the amount of additive discharged to the crop is matched to the rate of harvest, and the desired ratio of application can be maintained. Distance from the point of introduction at the metering device 6 and the spray tip 3 must be of sufficient length to allow for mixing of the product in the air before it is delivered to the crop.
An encoder could be used to monitor application rate, a voltage adjustable motor to control metering of the concentrate, or other devices to monitor and manage application.
With reference to
The apparatus for carrying and applying the mixture on harvested forage is a self-propelled or pull-behind (including loader wagons) forage crop chopper vehicle or implement (such as are well-known in the art), with the spray nozzle positioned along an internal conveyor or pneumatic movement of the harvested forage. A control device is positioned at or near the operator of the vehicle or implement.
Of course, the apparatus, system, and method can be used for other analogous applications and in other environments, as indicated herein. This is one example only.
The basic primary components of system 10 will now be described.
A 2,500-milliliter bottle 20 (basically cylindrical) with a first end 22 and a second end 24, is adapted to hold a mixture of carrier fluid (e.g. water) and biologically active or chemical substance (e.g. forage inoculant). As can be seen in
The inoculant is available from a variety of commercial sources in highly concentrated form. Through empirical testing or knowledge, the application amount from system 10 can be determined. The ratio of inoculant to water in bottle 20 can be calculated so that the required ratio of inoculant to volume of forage is met when system 10 is operated.
One example would be to treat about 250 tons of harvested forage per hour. A ratio of approximately 1 part inoculant to 6 parts water for a 2,500-milliliter bottle (e.g. reference number 20 of
Bottle 20 can be made of any of a number of materials. One example would be high impact, transparent UV resistant plastic that can be sterilized with traditional procedures.
As can be appreciated, a 2,500-milliliter bottle is easily carryable, even when full, by one or two hands of a person. Several bottles 20 could be carried by a single person at least in a box or carrier. Bottle 20 could include indicia with instructions or identification.
Furthermore, as can be appreciated, a friction fit, sealable cap 25 would allow mixture in bottle 20 to be stored for some reasonable time, as opposed to having to throw it away if not used up in a given application session.
As shown in
Application Ser. No. 10/140,596 and WO 99/58253 illustrate in more detail several embodiments of a receiver/bottle arrangement 20 such that could be used with system 10. In particular note that receiver 30 could be rotatable such that bottle 20 could be threadably inserted with end 26 up so that no spillage occurs, and then the entire receiver/bottle 30/20 combination rotated such that bottle 20 ends up open-end-down to feed its contents by gravity. Or the entire receiver/bottle 30/20 could remain in the fixed upright position. Furthermore, application Ser. No. 10/140,596 illustrates certain ways that flow could be controlled from bottle 20.
Receiver 30 can be made of relatively economical materials such as molded or extruded plastics that are highly durable and resistant to the environment they would experience.
As illustrated in
Nozzle 12 can be different styles or configurations. Preferably, it produces a gentle, consistent mist under the pressure and input conditions of system 10. It does not create atomization through micro screens or sharp corners and constrictions in a manner that could provide damaging trauma on a substantial scale to the cells of the inoculant, or provide shearing action to the cells that would tend to damage them. It promotes even distribution into the space through which forage 8 is moving (see reference no. 28 in
An example of nozzle 12 would be a spray nozzle sold under the trademark ConeJet available commercially from Tee-Jet Co. and Spraying Systems Co. of Wheaton, Ill. One such nozzle that has been used is marked “ConeJet 10X”. Other types are, of course, possible. Preferably, they do not present substantial trauma to the cells of biologically active substances.
Pump 40 is a peristaltic pump having a motor 42 and a peristaltic roller mechanism 44, such as are well known and available commercially. An example would be part no. 2P305 peristaltic pump from Grainger Co. of Davenport, Iowa (12 VDC). It is electrically powered and motor 42 could have a variable speed motor control to the motor speed of motor 42, and thus the pumping rate of pump 50.
Conduit 14 would be in fluid communication with bottle 20 and nozzle 12. It could be a single plastic tube passing through peristaltic pump 40, or could have one piece operatively connected between bottle 20 and an input 46 to a piece inside pump 40, and another piece between output 48 of pump 40 to nozzle 12. Obviously, conduit 14 and any connectors, whether conduit 14 is a unitary member or in segments or pieces, are fluid tight from bottle 20 through nozzle 12.
Operation of peristaltic pump 40 in a normal pumping mode would successively constrict a portion of flexible conduit 14 at area 45 (generally between pump rollers 44) to create a pumping action in conduit 14. Motor 42 would be adjustable to vary the speed of the peristaltic rollers 44, which would be in proportion to the amount of fluid that would be pumped through conduit 14.
Adjustment of pumping rate can be calibrated for the substance and target product. Many harvesting implements have sensors which can estimate the amount of tons of crop being harvested per hour. The amount of mixture to be applied per ton harvested crop per hour can be predetermined. The pumping rate of pump 40 can be calibrated for a range of application rates per ton harvested crop per hour. An operator of the harvesting equipment can check the estimated tons/hour the harvester will be processing and then simply punch in or dial in a correlated setting for system 10. If the rate needs to be changed because of a change in tons/hour being harvested, or for a difference crop or target product, a variable speed pump allows the same.
Pressurized air is introduced into conduit 14 between pump 40 and nozzle 12 through conduit 52 from compressor 50 to junction 54 with conduit 14. Conduit 52 can be of the same or similar material as conduit 14. A fluid-tight “T” joint or other connection can be made at junction 54. Alternatively, conduit 14 could be originally manufactured to have branches 16 and 52.
Compressor 50 can be part number 5Z349 available from Grainger Co. of Davenport, Iowa. Preferably, it produces 5-30 psi at 12 VDC. A range of 5-50 psi has been found acceptable, but a range of 5-100 psi can be used. Preferably, branch 52 is protected by a one-way valve or otherwise has an apparatus that prevents the mixture from traveling into branch 52 or into compressor 50.
The psi from compressor 50 can be adjustable and compressor 50 can be operated on 12 VDC. Alternatively, or in addition, another component could be added to the system that would allow adjustment of air pressure from compressor 50 (e.g. some type of pressure control device at or after the outlet from compressor 50).
A conventional voltmeter 60 (one such is part no. IT-855 from Grainger Co.) can be in electrical communication by cable 62 with motor 42 of pump 40. By empirical testing and calibration, the amount of throughput of mixture from bottle 20 to nozzle 12 can be correlated with the voltage reading of motor 42. Alternative voltage sensors, e.g. a digital volt-meter, may be used as well.
Cable 64 can communicate the voltage reading of voltmeter 62 to a controller 80 (see
As mentioned previously, motor 42 would present voltage readings that can be correlated with a varying amount of throughput of fluid through conduit 14. Therefore, by the simple method of monitoring voltage of motor 42, intelligence can be gathered about the rate of mist from nozzle 12.
There can be alternative ways to calibrate the system and operation of motor 42 without voltmeter 60 and its function.
Because mist output has a known relationship to operating voltage of pump 42, manual control 70 can be operatively connected to motor 42. A manually adjustable control knob 72 can be adjusted to different settings 74 for control 70 to provide a range of pump speeds (i.e. motor speeds), to in turn adjust rate of pumping action from pump 40.
One alternative would have control 70 (e.g. a rheostat) directly adjust speed of motor 42. The operator would have to set control 70 based on empirical tests or calibration.
Another alternative, as shown in
Another option would be to have a control interface associated with controller 80 (see, e.g., control interface 110 of
System 10 can be coordinated through a controller 80. Controller 80 can be a microprocessor, such as are well-known and commercially available. Other types of electric, electronic, or digital controllers are possible. It could include a digital display 84 integrated with controller 80 or connected through a cable 86. Controller 80 can operate on 12 VDC. As mentioned, adjustable inputs directly on digital controller 80 may be used in place of a rheostat 70.
Controller 80, along with manual control 70 if used, can be integrated into a housing that can be positioned in the operator cab of the agricultural equipment (e.g. chopper). Voltmeter 60, if used, can be integrated into the housing or positioned near pump 40, or anywhere in between.
Controller 80 could be programmed by well-known means and methods to interpret and instruct pump motor 42 to operate at a selected setting of control 70 and monitor voltage of motor 42 to maintain a consistent pump motor 42 speed. An example of operation is provided later.
Alternatively, controller 80 could be programmed for more sophisticated functions. For example, it could have either a volatile or non-volatile memory with look-up tables correlated to various application rates. Instead of a manual control 70, the operator would simply enter an input instruction that controller 80 would interpret to be a given application rate. Controller 80 would then, in turn, instruct operation of pump 42 accordingly. Voltmeter 60 could effectively be a feedback loop to controller 80 to monitor the pump operation and thus allow controller 80 to fine tune the mist output.
Memory could also contain application rates and ranges for a variety of different biologically active or chemical substances.
Optionally, controller 80 and other electrical or electronic circuitry or components could be manufactured, in whole or in part, into a circuit board that could be installed in a housing for operable use with apparatus 10. This could further reduce cost of the system.
For example,
A switch 114 can provide electrical power to the circuit. A switch 115 can turn the spraying mode on. An input 117 can automatically pause the spraying mode by disconnecting power to pump 40 and compressor 50 when a signal is received at input 117. Input 117 here is an “end of row input”, which can be a signal from a micro-switch or other component on the harvesting implement indicating the harvesting head of the implement has been raised. This, in turn, indicates that harvesting has stopped. Conversely, the circuit can automatically resume spraying mode when the harvesting head drops, which can be sensed and signaled to circuit 100.
A variable speed control 43 for pump motor 42 of pump 40 can be set to control rate of pumping action of pump 40.
FIGS. 6A-C illustrate one way some of the components of device 10 can be integrated into a relatively small housing 200 (e.g., sheet metal) that can be installed on a vehicle or wherever else could be useful. A mounting plate 202 provides a surface that can be bolted or otherwise mounted on vehicle or wall or other surface. A header 90 could include a receiver 30 for one or more bottles 20. In FIGS. 6A-C, two APPLI-PRO™ bottles 20A and B can be screwed into operative position to receivers 30A and B respectively. This provides easy access for the operator to connect or remove either bottle 20A or B to device 10. As indicated at
As indicated in
As can be seen in FIGS. 6A-C, most of system 10 can be integrated into a relatively compact single housing 200 that would be relatively easy to mount, even in sometimes cramped interior spaces of a vehicle or implement. With relatively few connections, housing 200 can be in communication with controller 80 and nozzle 12. This provides easy and non-cumbersome installation, set-up, and maintenance. It also allows removal of system 10 and installation into another vehicle or place with substantial ease.
As can be appreciated, the components of system 10 could be predominantly modular in nature, and thus present efficiencies in manufacturing, maintenance, repair, and replacement.
In operation, system 10 can function as follows. There would be preliminary steps such as below.
Bottle 20 would be filled with a mixture of water and inoculant according to a priori knowledge or recommended instructions for a given application rate, crop and/or inoculant. The operator could, by hand, uncap bottle 20, and connect it to receiver 30.
Prior testing is used to program controller 80 such that manual selector 70, or in this example, user control interface 110, would provide the operator with the ability to enter any of a range of application rates programmed into controller 80.
Nozzle 12 would be pre-positioned adjacent the flow path of forage 8. Of course, the spray pattern of nozzle 12 can be tested, its spray pattern established, and the position of nozzle 12 adjusted to get desired coverage relative moving forage 8 (
Some design is needed as far as placement of the components internally of the vehicle. In one embodiment, bottle 20, receiver 30, pump 40, compressor 50, and the majority of conduit 14 could be enclosed within a housing or framework like housing 200 of FIGS. 6A-C and inserted near the desired position of nozzle 12 in a location that will not come into conflict with other operating components of the vehicle. Alternatively, any or all of the components can be mounted in desirable positions and operably interconnected.
By referring to the electrical schematic of
The advantages of system 10 would therefore include a relatively small-sized, interchangeable, removable bottle 20 that could be handled by hand, in combination with a fluid pump and air compressor to provide an aerated fluid flow to produce a mist of even consistency and application; all without having to use an atomization or atomizer structure or method, which can be expensive and could be detrimental to biological cells or life forms.
Controller 80, or some other intelligent device, can be used to not only instruct operation of components like pump 40, but also coordinate operation of the system and provide intelligence regarding settings or operation for the various components for a given mixture, crop, and throughput of crop. For example, sensors like a voltmeter, pressure gauge, or others could send information to controller 80 which could be used by its programming to control system 10.
The general rules for operation are as follows:
One specific description of components and operation according to one exemplary embodiment is as follows. The controller 80 can output motor functions to a peristaltic pump 40, air compressor 50, and solenoid valves in an application system for crop inoculant, such as has been previously described.
A. Physical Specifications:
1. Peristaltic pump 40: 12 volt DC gear motor 42 runs between 300 and 1800 rpm and draws a maximum of 3 amps. The pump will be located 8 feet away from the controller 80. The distance of the pump from the controller 80 may vary in distance. The controller80 will regulate motor speed to control output.
2. Compressor 50: The controller80 will turn the compressor on and off only. 12-volt power at 15 amps will be supplied to the compressor externally.
Optionally, a pressure control device or PCD (available commercially—see component 56 in dashed lines in
3. Solenoid valves: There will be two solenoid valves to control the direction of airflow. Control to these valves will be to energize a 12-volt coil of valve control solenoids 104 or 106, opening up a normally closed valve that will require 0.2 amps to maintain the open position for an interval (e.g. 30 sec.). Power to the solenoids 104 and 106 will be activated by the controller 80 for an interval of 30 seconds.
4. Display of control user interface (see
5. Enclosure 200: The unit will be installed in tractor cabs requiring dust and moisture resistance similar to a Harvest Tec 477 acre meter (available from Harvest Tec, Hudson, Wis.). The vibration requirement for the controller 80 should be good enough to provide years of dependable service without vibration induced breakdowns. Consideration should be made for conditions under which the unit will be operated.
6. Power supply: The controller 80 will be powered off the tractor's 12-volt power system that will deliver between 11 and 15 volts of DC power.
7. Cabling: Power input will be plugged into the bottom of the box. Motor output and compressor output will be plugged into the bottom of the box.
Amp connectors will be used on both connections. Connections between the pump housing and the control box should be some type of couplers, screw on, or quick disconnect which will enable the operator to interchange units easily and fairly quickly.
8. Switches: A membrane face overlay with four membrane switches 113, 114, 115, and 116 (see
9. Start/stop: Operation will be controlled by either a box-mounted switch 115 or from a remote signal that activates with 12-volt positive input.
B. Control Operation (refer to
1. Power up and start non-operating part of “on” cycle. A push of “on/off” button 114 is essentially the “power” button for system 10 and enables the supply of electrical power to controller 80. This initiates a what will be called the non-operating part of an “on” mode or cycle, where the display becomes lighted and the “set rate” and “read/reset tons” functions (correlated with buttons 113 and 116 on control interface 110) are enabled.
2. Clean functions. There are times when it is desirable to clean up conduit 14 and nozzle 12. In this embodiment, when power button 114 is pushed off, controller 80 will automatically initiate an automatic clean mode or cycle. It does this by activating the two solenoids 104/106 and the compressor 50 for a pre-determined, pre-set interval (e.g. 30 seconds). The solenoids set valves in the fluid paths between compressor 50, nozzle 12, and bottle 20 so that the following can occur. Pressurized air from compressor 50 is allowed to travel to nozzle 12. This will remove any fluid from that part of the fluid pathway and clean out nozzle 12. Controller 80 would also instruct pump 40 to operate, but in a reverse flow mode. This would move any fluid in line 14 back towards or into bottle 20. If the power is re-activated during the 30-second automatic clean period, the 30-second interval will be completed before normal operation is resumed. During the 30-second interval, display 112 will flash “clean”. Also, anytime during the “on” cycle, if on/off button 114 is pushed and held for 3 seconds, controller 80 will activate a manual clean mode or cycle. Controller 80 will supply power to solenoids 104/106 as described immediately above and run the compressor 50 until on/off button 114 is pushed again. Display 112 will flash, “clean” during this mode. This allows the operator to run a clean out by manual selection. As can be appreciated, controller 80 could be programmed to automatically run a clean mode at any time.
3. Set rate function. After power up and enablement of it, the “Set Rate” function will be activated in what will be called the non-operating “on” mode, meaning the spraying function of system 10 is not allowed. The operator can then set a desired application rate for the mixture. Pushing “set rate” button 113 will show the rate set on display 112. Holding “set rate” button 113 in will scroll display 112 between the range of values 10 and 400; in 2 unit increments between the sub-range 10 and 100, and in 10 unit increments between the sub-range 100 and 400. When the unit gets to value 400, it will roll over to 10. Scrolling will be at an accelerated rate of 4 to 10 characters per second during the hold down interval. When button 113 is released, the motor speed for pump motor 42 will be set. This speed setting will be accomplished by modulating the ground on the power to the gear motor 42. There can be a look-up table with values of voltage versus pump output. The operator thus selects an application setting via control interface 110 appropriate with a desired rate of application for the given inoculant/water mixture in bottle 20 and the forage speed and volume.
4. Tons treated function. After power up and enablement of the “Tons treated” function, pushing “tons treated” button 116 will cause controller 80 to read the theoretical revolutions of the gear motor for the set “rate value” off of the look-up table. This value will be multiplied by the minutes run and converted to a tons value for display 112. This “tons treated” function can assist the operator, if needed. Resetting the value is accomplished by pushing and holding button 116.
5. Start operating part of “on” cycle. When the vehicle begins harvesting the forage, the operator would turn on the spraying function of system 10 via switch 115. After the non-operating part of the “on” cycle is completed, with the operator having set the application rate, a push of “start/stop” button 115 will begin the operating part of the “on” cycle, where the mixture is sprayed. Controller 80 energizes both pump 40 and compressor 50, and sets solenoids 104 and 106 so their respective valves allow fluid from bottle 20 and pressurized air from compressor 50 to mix and move to and out of nozzle 12. Pump 40 would pull mixture from bottle 20 at the desired rate. Compressor 50 would aerate the mixture at a preset amount. Controller 80 would send a signal via cable 82 to pump motor 42 of pump 40 to operate at a speed proportional to that selected. At the same time, compressor 50 could be instructed by controller 80 to begin operation. The aerated mixture would then be misted out of nozzle 12 as forage 8 passes by the location of nozzle 12 to distribute the selected amount of mixture on forage. In one example, 10 milliliters/ton of forage additive would be applied. In one embodiment, capacity of system 10 is 400 to 600 tons per hour (tph) top end. Typically, 150-300 tph would be treated. During the “run” mode of this operating part of the “on” cycle, display 112 will show the accumulated tons treated. The operator can stop spraying by pushing button 115. During this “stop” state or mode, display 112 will read “stop”. The operator will thus have a visual indication of state of spray. A remote signal to 12 volt positive will perform the same function as the “start/stop” key 115. As previously mentioned, the system could be programmed to start or stop automatically if so desired (e.g. by response to dropping of harvesting head).
This air assisted arrangement allows for precise, efficient, economical control of rate and distribution of the mixture with control over temperature, shearing, and drying.
The foregoing detailed description is of but one form the invention can take. Variations obvious to one skilled in the art are included in the invention, which is solely described by the claims herein.
For example, variations in each of the components are possible. Dimensions, specifications, and characteristics can vary according to desire and need.
As previously stated, the invention can be used for spraying forage inoculant on harvested forage, but could also be used to apply other types of mixtures that include biologically active or chemical substances on other harvested agricultural crops, or other products or things. Or the invention can be used to apply mixtures before a crop is harvested. For example, it could be applied to a swath of mowed forage before it is picked up and chopped. It could also be used to apply a mixture to a swath or row(s) of growing plants.
Some examples of other substances for application to target product include, but are not limited to, insecticide, herbicide, fertilizer, paint, cleaning fluids, coatings, freeze-drying. Other are possible.
An example of a different use of system 10 from that installed on a harvesting implement is shown in simplified form at
Analogous structure could be used to apply mixtures to cut or growing crops, but not yet harvested (“pre-harvested”). For example, the system 10 could be mounted to the front of a vehicle (e.g. by a frame or connection to the front of a tractor or other implement). It could be operated to apply a substance on crop, whether growing in the field or cut and laying in the field, as the vehicle drives by or over it.
As previously stated, harvesting equipment exist that are self-propelled and direct harvested crop into an on-board bin, a wagon pulled by the harvester, or a wagon pulled along-side the harvester by separate tractor. There are also harvester implements that are pulled behind a tractor and direct harvested crop into a following wagon (either hooked to the implement or moving with the implement). There is also a type of harvester equipment sometimes called a loader wagon, which is pulled behind a tractor but combines a harvester with a wagon. System 10 could be placed in the entrance to the loader wagon or its outlet, and be used to apply substances to silage as it enters the wagon or as it leaves the wagon for placement in a silo or other storage location. The invention can be applied to any of these versions of harvesting equipment.
A system 10 could also be operably positioned and used on other types of vehicles, equipment, or implements.
With this embodiment of
A still further option could be that bottle 20B contain just water. During spraying of a mixture containing a biologically active or chemical substance from bottle 20A, valve 94 would be in a position to block channel 92B to container 20B. At some point, selected by the user, valve 94 could be selected to block channel 92A and pump 42 operated to pull clean water from container 20B to clean out conduit 14 and nozzle 12. Once the system is clean, valve 94 could be turned back to open channel 92A and block channel 92B.
As can be appreciated, the system could have one, or more, nozzles 12 depending on design and need. Still further alternatively, a system 10 could have multiple bottles 20, each with its own pump 40 and compressor 50 and nozzle 12, to concurrently have a plurality of systems 10 operating. They could be under the operation of one controller 80.
An additional option could be a sensor indicating when bottle 20 is near or at empty. It could be some sort of optical detector, pressure detector, or some sort of float in bottle 20. Such alarms are available commercially.
Manual control 70 could have a plurality of settings 74 correlated to different “tons per hour” application rates. Control 70 could be a click dial with indicia placed at settings 74 so that the operator could read the “tons per hour” settings and turn the dial by click stop to a desired setting. There could be a digital voltage readout.
Other additional features are possible.
As previously indicated, instead of system 10 being stationary relative to moving agricultural crop, system 10 could be moved past stationary agricultural crop. Alternatively, spraying system 10 could be in movement as the agricultural crop is also moving.
Examples of different environments, applications, and configurations are set forth in Ser. No. 10/140,596. Other examples are possible.
A different container or bottle from bottle 20 could be used.
It can be seen that the invention meets at least all its stated objectives. It provides for controlled rate and distribution with control of temperature, shearing, and drying. Typically a ±5% application rate variance or tolerance is acceptable. Utilizing components of the type described above, system 10 could be made to cost under $1000, and likely well-under that amount. This is significantly less than the atomizing systems discussed earlier. It allows high capacity (e.g. hundreds of tons per hour), precise control of small amounts of bioactive or chemical substances, but with even, controlled rate and distribution.
This application, under 35 U.S.C. §§ 119 and/or 120, claims priority to and the benefit of co-pending U.S. patent application Ser. No. ______ (not yet assigned by the USPTO), filed Jul. 28, 2003, entitled “A PROCESS FOR APPLYING ADDITIVES TO CROPS DURING HARVEST USING COMPRESSED AIR TO DISTRIBUTE THE ADDITIVE EVENLY ON THE CROP”. The contents of co-owned, co-pending U.S. patent applications Ser. No. 10/140,596 filed May 7, 2002, and Ser. No. ______ (not yet assigned by USPTO), filed Jul. 28, 2003, entitled “A PROCESS FOR APPLYING ADDITIVES TO CROPS DURING HARVEST USING COMPRESSED AIR TO DISTRIBUTE THE ADDITIVE EVENLY ON THE CROP”,are incorporated by reference herein in their entirety. The contents of U.S. Pat. No. D409,303, issued May 4, 1999 and PCT publication WO 99/58253, published Nov. 18, 1999, are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10627227 | Jul 2003 | US |
Child | 10899785 | Jul 2004 | US |