The present inventions relate to dry pipe sprinkler systems or pre-action systems and, more particularly, to auxiliary drains, also known as condensate collectors or drum drips.
A dry pipe sprinkler system or pre-action system comprises a fire suppression system that is typically used in structures and areas that are oftentimes unheated and subject to freezing temperatures. The dry pipe sprinkler system includes a network of pipes including branch lines servicing sprinkler heads, risers, and feed mains for delivering water from a water supply to the branch lines. Under normal conditions, this network of pipes contains a pressurized gas, such as air or nitrogen, which holds closed a dry pipe valve that connects the main supply pipes of main feeds of the sprinkler system to the water supply. When heat from a fire opens a sprinkler, the compressed gas is released from the system. The resulting drop in pressure causes the dry pipe valve to open, or trip, thereby releasing water into the main supply lines or main feeds.
When the network of pipes is filled with the pressurized gas and the ambient temperature lowers, condensate can collect in the network of pipes. If the condensate builds up in the system, then there is a risk that the condensate will freeze in the pipes. Freezing condensate can cause pipes to leak or burst, or inhibit the flow of water through the branch lines in the event of fire. For this reason, dry pipe systems often include one or more auxiliary drains, also known as condensate collector arrangements or drum drips which collect condensate from the network of pipes. These auxiliary drains are typically located at low points of the dry pipe system and made of a section of larger diameter pipe serving as a condensate collection area, with a smaller diameter pipe at the top and bottom, serving as supply and drain respectively. An upper valve functions as a shut-off valve and a lower valve as a drainage valve. An auxiliary drain is drained of condensate by first closing the upper valve. This prevents pressurized gas from exiting the system when the auxiliary drain is being drained. The drain valve is then opened and condensate is drained from the condensate collection area. Then the drain valve is closed again and the upper valve may be reopened to again allow condensate to be collected.
Whether an auxiliary drain uses a two valve or other arrangement, it may itself be subject to freezing temperatures, and so be in danger of damage from the condensate it collects freezing and/or alternately freezing and thawing. Such damage could lead to failure of the drain and/or the entire system to which the drain is connected. The damage may be limited through a rigorous drainage schedule and/or insulation on the drain, but such measures may be less than ideal and/or poorly implemented.
The preferred embodiments provide apparatus, methods, and articles of manufacture for maintaining the integrity or pressurization of a dry pipe sprinkler system by preventing damage to auxiliary drains from freezing temperatures. A housing is used for providing a controlled environment about an auxiliary drain, insulated and with a heater. The housing is weather resistant and a locking door is provided for access to the auxiliary drain.
The heater is thermostatically controlled so that it operates when the ambient temperature is below 40 degrees Fahrenheit. There are various entry ways or penetrations into the housing, for the dry pipe, power for the heater and the like, and these are sealed, minimizing penetration into the interior by nuisances such as bees or other unwanted intruders.
An alarm, which may or may not include a trigger component as used herein, may be provided as well in order to provide warning if said auxiliary drain retains a predetermined amount of condensate. (for example, a float switch alone, a float switch connected to an alarm, etc.) Embodiments may, as well, provide a housing that is retrofit about an existing auxiliary drain or be provided with an auxiliary drain for installation upon a dry pipe sprinkler system.
Tabs 21-24 are for mounting upon a concrete pillar, wall or other surface as may be desired, and turning briefly to
Depending from condensate collection area 33 is lower drainage valve 34 which, when opened, provides for drainage from condensate collector 33 through drain 36.
Input pipe 31 travels into housing 20 via pass-through 41, which, as had been described above, is sealed to prevent nuisances such as bees or other unwanted intruders from entering. There may or may not be a seal, a seal may be water resistant or proofed, other protections as known in the art, etc. may be used as desired in various embodiments. Drain pipe 36 travels through pass-through 46, which is also sealed in a similar manner to pass-through 41. Cap 39 can be removed to drain the auxiliary drain 30, desirably in an appropriate procedure that maintains pressurization, as is described for example in NFPA 25 guidelines. Although the preferred embodiments are within a locking cabinet, and it may not be desired to have an Anti-Trip device, e.g., a wire or plate, other embodiments may use an Anti-Trip device e.g., a wire or plate as desired.
Thermometer 40 displays the temperature inside the housing 20 though its external dial (not shown.) In various embodiments that temperature may be monitored and an alarm be set to provide warning if the inside temperature fell below a predetermined level. That alarm may be local and/or be sent to a central location as desired. It should be noted that, although the preferred embodiments contain an auxiliary drain, it might be desired in other embodiments to provide a retrofit embodiment to install around an existing auxiliary drain.
Electrical enclosure 50 contains components for an alarm as well as other components such as circuit protection, a relay and terminal blocks. The alarm 52 extends through recess 53 and provides an audible sound (e.g., buzzer) and light when the auxiliary drain is full of condensate. In other embodiments, it should be noted and as was described above, the alarm may trigger when varying amounts, or any at all, of condensate accumulates. The alarm enclosure 50 is at least a NEMA 4X enclosure in the preferred embodiments as set forth in the National Electrical Manufacturers Association Standards Publication 250-2003.
Conduit 66 provides power to a heater (or heating element, the words are used interchangeably herein) (not shown here, see
Turning to
It should be noted that embodiments may provide for centralized control as well, with the alarm settings, drainage, heater and other components being monitored and/or manipulated from a central location. Embodiments may include as well a test device to confirm the alarm and other components are working correctly, which may as well be local and/or activated and/or monitored from a central location. The embodiment of
Turning briefly to
The foregoing description is provided as an enabling teaching of the inventions in its currently known embodiments. Those skilled in the relevant art will recognize that many changes can be made to the embodiments described while still obtaining the beneficial results of the present inventions. It will also be apparent that some of the desired benefits of the present inventions can be obtained by selecting some of the features of the present inventions without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present inventions are possible and may even be desirable in certain circumstances and are a part of the present inventions. Thus, the following description is provided as illustrative of the principles of the present inventions and not in limitation thereof, since the scope of the present inventions is defined by the claims.
Number | Date | Country | |
---|---|---|---|
Parent | 13604592 | Sep 2012 | US |
Child | 15352154 | US |