The invention relates generally to electromagnetic signal processing, and more particularly to the reduction of noise in electromagnetic signal processing, and more particularly to the reduction of noise in segmented amplifiers used in RF transmitters.
Electromagnetic waves have, until fairly recently, been modified using analog techniques. That is, there had been no attempt to isolate discrete wave characteristics such as current, voltage and the like and modify those characteristics in order to modify the wave itself. Recently, wave modification techniques have become digitized, so that characteristics of the wave can be isolated and modified directly in order to achieve a desired result. Digitization has become desirable because it usually provides more speed and precision in wave modification while drawing less power than previous methods.
For example, digitization of wave characteristics has led to improvements in filtering techniques. Through digitizing wave characteristics, it is possible to quickly and accurately create and/or modify, (e.g. implement, emphasize, isolate and filter) frequencies and other wave characteristics.
Accordingly, it would be helpful to the art of electromagnetic wave modification if apparatus, methods, and articles of manufacture were provided that utilize digitized electromagnetic wave characteristics in order to create and/or modify electromagnetic waves.
Embodiments of the present invention include apparatus, methods and articles of manufacture for modifying electromagnetic waves by reducing noise in those waves. The preferred method embodiments comprise a method of applying a transfer function wherein a desired output wave parameter is determined, an amplitude characteristic and a phase characteristic of an input wave are isolated, the transfer function is derived from the desired output wave parameter and the transfer function is applied to the amplitude characteristic of the wave. Following application of the transfer function, the amplitude characteristic and said phase characteristic may be combined so as to generate an output wave.
Returning now to the embodiment of
Turning briefly to
Returning now to
Converter 13 then splits the bits, each of which are a time-domain square waveform onto separate paths 0 to N−1. Each bit enters low-pass filter bank 30 which is comprised of filters F0 to Fn−1. The impulse response of filters F0 to Fn−1 is at h(t)0 to h(t)N−1 respectively, which is further described below.
In the embodiment of
The phase characteristic travels along path ap. Here the phase characteristic is first modulated onto a wave by way of Digital to Analog Converter 18 and Synthesizer 20 (which is a Voltage Controlled Oscillator in an especially preferred embodiment.) Synthesizer 20 provides an output wave, which is comprised of the phase information. This output wave has a constant envelope, i.e., it has no amplitude variations, yet it has phase characteristics of the original input wave, and passes to driver 24, and in turn driver lines ap 1-ap 7. The wave, which has been split among the driver lines, is then fed into current sources 25a-25g, and will serve to potentially drive the current sources 25a-25g as is further described below. In other embodiments, other sources of other wave characteristics, i.e., besides the phase characteristic, may be used.
It should be noted that, in the present embodiment, transistors may be used as current sources 25a-25g. Additionally, in other embodiments, one or more transistors segmented appropriately may be used as current sources 25a-25g. The current sources 25a-25g must not be driven into saturation. Otherwise, the current sources will cease to act as current sources and instead act as voltage sources, which will interfere with the desired current combining of the sources.
Path am (comprised of control component lines 21a-g as described above) terminates in control components 22a-g. In the especially preferred embodiment, these are switching transistors, and are preferably current sources, although, as further described below, in other embodiments, other sources of other wave characteristics may be used, as well as other regulation schemes. Control components 22a-g are switched by bits of the digital word output from the amplitude component and so regulated by the digital word output from the amplitude component. If a bit is “1” or “high,” the corresponding control component is switched on, and so current flows from that control component to appropriate current source 25a-g along bias control lines 23a-g. As had been noted above, the length of the digital word may vary, and so the number of bits, control components, control component lines, driver lines, bias control lines, current sources, etc. may vary accordingly in various embodiments. Moreover, there does not have to be a one to one correspondence among digital word resolution, components, lines and current sources in various embodiments.
Current sources 25a-g receive current from a control component if the control component is on, and thus each current source is regulated according to that component. In the especially preferred embodiments an appropriate control component provides bias current to the current sources, as is described further below, and so the control component may be referred to as a bias control circuit, and a number of them as a bias network. In some embodiments, it may be desired to statically or dynamically allocate one or more bias control circuits to one or more current sources using a switching network if desired.
Returning now to the embodiment of
It should be noted that the current sources are not an amplifier or amplifiers in the preferred embodiments, rather the plurality of current sources function as an amplifier, as is described herein. Indeed, amplification and/or attenuation may be considered in the preferred embodiments as functions of those embodiments, and so may an amplifier and/or attenuator be considered to be an electrical component or system that amplifies and/or attenuates.
The combined current, i.e. the sum of any current output from current sources 25a-g, is the current sources output. Thus the embodiment may act as an attenuator and/or amplifier. No further circuitry or components are necessary between the current sources to combine current from each current source and so provide a useful output current. Therefore, the combined current, which is output on line 27, and shown as b, may be used as desired, e.g., as an amplifier, as an attenuator, to drive a load, etc.
In the preferred embodiments, the current sources vary in current output and size. This provides various weighting to the currents that are potentially supplied by those current sources. For example, in one preferred embodiment, a first current source is twice the size of a next current source, which in turn is twice the size of a next current source, and so on until a final current source. The number of current sources may be matched to the number of bits of the digital control word, so that the largest current source is controlled by the MSB of the amplitude word, the next bit of the word controls the next largest current source, etc., until the LSB, which is sent to the smallest current source. Of course, as had been noted above, other embodiments may have a different pattern of matching bit to current source, including use of a switching network. Moreover, in an especially preferred embodiment, duplicate current sources—of the same size—are provided, as well as current sources that vary in size. In yet other embodiments, other wave characteristics may be provided to other current sources and so regulate those sources.
In order to obtain a transfer function h(t) for the preferred embodiments, the following analysis is used. It should be noted that this analysis, and similar analysis, may be used to derive other transfer functions as desired in various embodiments of the present invention.
The output signal sout from transistor 25 can be expressed as:
(a)
Sout(t)=As(t)
with s(t) representing the input signal and A the gain of the amplifier. Since sout is comprised of a combination of input signals si(t), where i=1 . . . N, and since each input signal
provides a different value or weight to the output signal as had been described above, the output signal may also be represented by
(b)
where Wi represents the weight given to each signal si(t) so that the weighted sum of all signals equals s(t).
If gain is taken out of the equation (b), s(t) can be represented by:
(c)
Note that, as had been described above, if each segment is double the size of its neighbor in the preferred embodiments described above, then the weighting can be defined as:
(d)
Wi=2i−1
Of course, in other embodiments, if the segments are weighted differently, the value of Wi will change accordingly. Since, the signals si(t) are, as noted above, time domain square waveforms corresponding to the N-bit quantized representation of the signal s(t), if the value of Wi in (d) is substituted into (c), the input signal can be represented by:
(e)
The output signal may also be expressed in polar coordinates as:
(f)
(g)
As noise in the output signal may be understood to be a function of noise in the amplitude characteristic and the phase characteristic, the noise floor in the output signal may be obtained by convolving the noise floor in the amplitude characteristic s(t) with that of the phase characteristic θ(t). Hence, in order to reduce the noise floor in the composite RF signal, the noise floors in both s(t) and θ(t) could be reduced. In the preferred embodiment here, only signal s(t) is filtered, as had been described above, however in other embodiments either or both the amplitude characteristic s(t) and the phase characteristic θ(t) may be filtered or otherwise modified.
Appropriate values for filtering s(t) are obtained by first obtaining the desired noise floor in sout Insofar as the composite filtered signal sout maybe represented by:
(h)
(i)
Thus, it can be seen that each segment can be filtered in order to achieve filtering of the output signal.
Other embodiments may implement h(t) values, once obtained, in other ways besides filtering. For example, in other embodiments, h(t) may be implemented through a sum of partial values of h(t). In a preferred embodiment, with a number of transistor segments such as transistor 25 shown in
As other embodiments, a digitized wave that is desired to be filtered using an h(t) value may be filtered at multiple locations along the wave, using appropriate partial values of the desired h(t) value. That is, there may be sequential filters on a wave line, or the wave may be split into a number of lines each of which is filtered.
Application of h(t) through partial values of h(t) is through a plurality of signals that are summed to an output signal. Thus, along any of the plurality of the weighted signals before they are summed to an output signal, partial values of h(t) are applied as desired. So for example, if the wave is divided into one or more characteristics, and/or divided in other manners, h(t) may also be applied to those characteristics and/or divisions, again using appropriate partial values of the desired h(t) value to obtain a sum equal to the desired h(t).
Any partial values of h(t) may be derived and applied as desired. Thus, unequal partial values of h(t) may be obtained and applied as desired, across various weighted signals, as well as equal values.
The use of the preferred embodiments may provide a capability for wide band amplitude modification in an associated transmitter because it makes possible linear amplification and/or attenuation across a relatively large frequency spectrum. Thus, embodiments may be used for cellular and other transmitters, as is described further herein. Moreover, the relatively low input capacitance along a phase path of the preferred embodiments minimizes matching requirements.
Advantageously, embodiments of the present invention may improve efficiency over conventional power amplification, because linearity of the transmission is not dependent on the linearity of the amplifier, but instead depends only on how linearly the currents add to the load. Accordingly, each current source can be biased as a non-linear current source, such as Class B or C, to maximize the efficiency. Efficiency may further be improved because there is little or no quiescent current draw for disabled current sources.
In the illustrated embodiments, power control may readily be achieved because the output current is dependent primarily on the signal drive level. Increasing or decreasing the signal drive level, for example, with a variable gain amplifier or attenuator, causes a corresponding increase or decrease in the output current. In addition, an increase or decrease of the bias to the drive controller, also causes a respective increase or decrease in the output current. It should be noted that any increase will not be indefinite of course, but will reach limits imposed by the segmentation of the transistor.
As should be understood, any suitable types of current sources, for example, other transistor segments and/or formats as well as other devices or methods, may be used with any of the embodiments of the present invention where desired.
Various types of system architectures may be utilized for constructing the embodiments of the present invention. One of ordinary skill in the art will accordingly appreciate that embodiments of the invention or various components and/or feature thereof may be entirely comprised of hardware, software or may be a combination of software and hardware. The embodiments or various components may also be provided on a semiconductor device where desired, such as an integrated circuit or an application-specific integrated circuit composition; some examples include silicon (Si), silicon germanium (SiGe) or gallium arsenide (GaAs) substrates.
Various embodiments may provide desired levels of precision. For example, the length of the digital word may be longer or shorter in various embodiments, thus providing a more or less precise digitization of the wave. As other examples, the number of control components, transistor segments, etc. may all be varied as desired. Additionally, in various embodiments, non-linear components may be utilized if desired, although in these embodiments, it is preferred to utilize non-linear components in an amplitude path after a signal has been digitized.
Various embodiments may take the form of an entirely hardware embodiment or an embodiment combining software and hardware aspects. Accordingly, individual blocks and combinations of blocks in the drawings support combinations of means for performing the specified functions and combinations of steps for performing the specified functions. Each of the blocks of the drawings, and combinations of blocks of the drawings, may be embodied in many different ways, as is well known to those of skill in the art.
While the invention has been described by illustrative embodiments, additional advantages and modifications will occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to specific details shown and described herein. Modifications, for example, may be made without departing from the spirit and scope of the invention. In addition, preferred embodiments may include apparatus and/or methods and/or articles of manufacture that are specialized for particular input signals, carrier waves and output signals e.g. embodiments may be used in various RF, microprocessor, microcontroller and/or computer devices, e.g. cell phones, such as CDMA, CDMA2000, W-CDMA, GSM, TDMA, as well as other wired and wireless devices, e.g. Bluetooth, 802.11a, -b, -g, radar, 1xRTT, two-way radios, GPRS, computers and computer communication devices, PDA's and other handheld devices, etc. Accordingly, it is intended that the invention not be limited to the specific illustrative embodiments, but be interpreted within the full spirit and scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3900823 | Sokal et al. | Aug 1975 | A |
3978422 | Rheinfelder | Aug 1976 | A |
4276620 | Kahn et al. | Jun 1981 | A |
4580111 | Swanson | Apr 1986 | A |
4586000 | Wagner | Apr 1986 | A |
4646359 | Furrer | Feb 1987 | A |
4888808 | Ishikawa et al. | Dec 1989 | A |
5051942 | Matsumoto et al. | Sep 1991 | A |
5095507 | Lowe | Mar 1992 | A |
5142240 | Isota et al. | Aug 1992 | A |
5278997 | Martin | Jan 1994 | A |
5311143 | Soliday | May 1994 | A |
5377274 | Meyer et al. | Dec 1994 | A |
5410280 | Linguet et al. | Apr 1995 | A |
5524286 | Chiesa et al. | Jun 1996 | A |
5598436 | Brajal et al. | Jan 1997 | A |
5642002 | Mekanik et al. | Jun 1997 | A |
5774017 | Adar | Jun 1998 | A |
5818298 | Dent et al. | Oct 1998 | A |
5880633 | Leizerovich et al. | Mar 1999 | A |
5886913 | Marguinaud et al. | Mar 1999 | A |
5892431 | Osterman | Apr 1999 | A |
5905760 | Schnabl et al. | May 1999 | A |
5930128 | Dent | Jul 1999 | A |
5939951 | Bateman et al. | Aug 1999 | A |
5942946 | Su et al. | Aug 1999 | A |
5952895 | McCune, Jr. et al. | Sep 1999 | A |
6043707 | Budnik | Mar 2000 | A |
6043712 | Leizerovich et al. | Mar 2000 | A |
6075413 | Katakura | Jun 2000 | A |
6078628 | Griffith et al. | Jun 2000 | A |
6094101 | Sander et al. | Jul 2000 | A |
6097252 | Sigmon et al. | Aug 2000 | A |
6101224 | Lindoff et al. | Aug 2000 | A |
6112071 | McCune, Jr. | Aug 2000 | A |
6125266 | Matero et al. | Sep 2000 | A |
6133788 | Dent | Oct 2000 | A |
6140875 | Van Den Homberg et al. | Oct 2000 | A |
6140882 | Sander | Oct 2000 | A |
6147553 | Kolanek | Nov 2000 | A |
6157681 | Daniel et al. | Dec 2000 | A |
6191653 | Camp, Jr. et al. | Feb 2001 | B1 |
6198347 | Sander et al. | Mar 2001 | B1 |
6201452 | Dent et al. | Mar 2001 | B1 |
6215355 | Meck et al. | Apr 2001 | B1 |
6219394 | Sander | Apr 2001 | B1 |
6236284 | Duello et al. | May 2001 | B1 |
6242975 | Eidson et al. | Jun 2001 | B1 |
6246286 | Persson | Jun 2001 | B1 |
6255906 | Eidson et al. | Jul 2001 | B1 |
6259901 | Shinomiya et al. | Jul 2001 | B1 |
6269135 | Sander | Jul 2001 | B1 |
6285251 | Dent et al. | Sep 2001 | B1 |
6288916 | Liu et al. | Sep 2001 | B1 |
6294957 | Luu | Sep 2001 | B1 |
6311046 | Dent | Oct 2001 | B1 |
6317608 | Glöcker | Nov 2001 | B1 |
6321072 | Cipriani et al. | Nov 2001 | B1 |
6323731 | McCune, Jr. | Nov 2001 | B1 |
6356155 | Judkins | Mar 2002 | B1 |
6366177 | McCune et al. | Apr 2002 | B1 |
6369657 | Dening et al. | Apr 2002 | B2 |
6377784 | McCune | Apr 2002 | B2 |
6380802 | Pehike et al. | Apr 2002 | B1 |
6404823 | Grange et al. | Jun 2002 | B1 |
6411655 | Holden et al. | Jun 2002 | B1 |
6426677 | Prentice | Jul 2002 | B1 |
6426678 | Ko | Jul 2002 | B1 |
6430402 | Agahi-Kesheh | Aug 2002 | B1 |
6445247 | Walker | Sep 2002 | B1 |
6449465 | Gailus et al. | Sep 2002 | B1 |
6512417 | Booth et al. | Jan 2003 | B2 |
6621340 | Perthold et al. | Sep 2003 | B1 |
6834084 | Hietala | Dec 2004 | B2 |
20020098812 | Sourour et al. | Jul 2002 | A1 |
20020186783 | Opas et al. | Dec 2002 | A1 |
20020193085 | Mathe et al. | Dec 2002 | A1 |
20030095608 | Duperray | May 2003 | A1 |
20030215025 | Hietala | Nov 2003 | A1 |
20030215026 | Hietala | Nov 2003 | A1 |
20040021517 | Irvine et al. | Feb 2004 | A1 |
20040047432 | Iwasaki | Mar 2004 | A1 |
20050017801 | Bachman, II et al. | Jan 2005 | A1 |
20050122164 | Brandt et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
1 170 915 | Jan 2002 | EP |
1383 286 | Feb 1974 | GB |
WO 0110013 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040109572 A1 | Jun 2004 | US |