This application claims priority from German Patent Application No. 10 2005 020 506.2, dated Apr. 29, 2005, the entire disclosure of which is incorporated herein by reference.
The invention relates to an apparatus on a drafting system of a spinning machine, especially a draw frame, carding machine, combing machine or the like, for weighting the drafting system rollers, having at least one pressure fluid cylinder with a piston which is acted upon by pressure fluid and is arranged so as to be axially movable inside a cylinder housing and from which a piston rod extends.
In a known apparatus (EP 1 428 914 A), a switching disc is frictionally mounted coaxially with the piston so as to be displaceable on the piston rod, which switching disc cooperates with a switch to determine the position of the piston. The switching disc is at least partly permanently magnetic in order to cooperate with an inductive sensor as a switch for determining the position of the piston. If a winding (lap) of fibre material then forms around the upper roller, the floating upper roller is pressed in the direction of the pressure fluid cylinder.
The presser rod of the pressure fluid cylinder making contact with the upper roller consequently moves in the direction of its retracted end position. When the presser rod is retracted, the switching disc, which is frictionally mounted thereon, closes the switch and the drafting system is switched off. The drafting system can then be opened manually and the lap removed. The drafting system can then be brought into the operating position again by closing the weighting arm.
It is an aim of the invention to provide an improved apparatus on a drafting system for determining the position of the piston with the piston rod.
The invention provides an apparatus on a drafting system of a spinning machine for weighting a drafting system roller, comprising:
a cylinder;
a piston axially movable within the cylinder;
a piston rod extending from the piston for applying weighting to the roller;
a sensor; and
an evaluation device;
wherein the sensor is an optical sensor arranged to determine a distance between the sensor and a counter-element and the sensor is connected to the evaluation device for determining the position of the piston and piston rod.
The apparatus according to the invention makes it possible to use control technology to monitor the movement of the piston, including the platform, in both directions, up and down, for example by means of optical sensor heads of a distance sensor. As a result of the travel of the pistons in both directions, the distance between the platform and the optical sensor changes, which consequently in turn transmits a changed output signal to the control means. By virtue of the changed output signal, the control means is able to identify the movement of the piston in both directions. Furthermore, the control means is able to ascertain by means of the signals the path travelled by the piston. By means of that exact measurement and by means of the maximum value for the upward excursion of the upper roller caused by lap formation, which value is stored in the control means, the fault “lap formation” can be precisely identified. The value of the upward excursion up until a fault message is given can accordingly be made freely programmable and can be changed as required. A further advantage of such distance measurement is that precise identification of both lap formation and wear to the upper rollers can be effected automatically by the control means using an optical sensor. The upper rollers of the drafting system are routinely provided with a resilient covering, for example of rubber or the like. In one preferred arrangement, when the machine is first started up with new upper rollers, the drafting system is closed and acted upon by compressed air. The optical sensor ascertains the distance between the sensor and the platform of the piston and stores that value in the control means. The value ascertained is used to calculate the roller diameter of a new upper roller, from which there is obtained, after subtraction of the maximum wear value (stored in the control means as a fixed or variable parameter), a minimum roller diameter. The minimum roller diameter is likewise stored. As a result of the wear and abrasion to the upper rollers, that distance becomes increasing larger. By always calibrating the sensor each time the drafting system is closed, the distance with respect to the platform is ascertained afresh each time. The newly ascertained value forms the current diameter of the upper roller. The control means compares the currently ascertained diameter with the fixed programmed parameter for the wear i.e. the stored value for the minimum upper roller diameter. When the minimum roller diameter of the upper roller is reached, the machine switches to fault mode and switches off. The upper rollers must be replaced by new rollers. The machine can be started up again only when distance measurement indicates a roller diameter greater than the pre-set minimum roller diameter has been reached. Optical distance measurement inside the presser arms in accordance with the invention can achieve a wear-free and tolerance-independent measurement in both directions of the pistons that is absolutely precise; also automatic monitoring of lap formation and of wear to the upper rollers. If necessary, all stored values relating to lap formation and the wear behaviour of the upper rollers can be retrieved from the control means for statistical purposes. The machine cannot be started up with worn upper rollers. As a result, material wastage caused by worn upper rollers is not possible.
In one embodiment, the distance sensor is in fixed position and the counter-element is movable relative to the distance sensor, for example, the counter-element is, or is a part of, the piston. In another embodiment, the distance sensor is movable and the counter-element is in fixed position relative to the distance sensor. If desired, the apparatus can be used for lap display. As well or instead the apparatus can be used for displaying wear to the rollers.
In one advantageous embodiment, the counter-element has a flat scanning surface. Preferably, the scanning surface is able to reflect light beams. Advantageously, the distance sensor is a light sensor. Advantageously, the distance sensor has a transmitter and a receiver. The distance sensor may be a laser sensor. The distance sensor may use visible light. The distance sensor may use infra-red light. Advantageously, the distance sensor for location determination is mounted at an angle of 90° to the horizontal base surface of the counter-element. Advantageously, the distance sensor and the counter-element are arranged in a closed housing. Advantageously, the distance sensor is connected to an electrical evaluation device. Advantageously, the evaluation device is connected to an electronic control and regulation device. The distance sensor may be an analog sensor. In one embodiment, an optical distance sensor may scan the distances with respect to a sloping surface of the counter element.
Advantageously, the drafting system comprises three upper rollers with three presser arms. Advantageously, the drafting system comprises four upper rollers with four presser arms. Advantageously, the sensor is able to detect the movements of the piston in two directions. Advantageously, the electronic control and regulation device is able to ascertain the path changes of the piston. Advantageously, the maximum value for the excursion of the upper roller caused by lap formation is storable in the control and regulation device. Advantageously, the value of the excursion up until a fault message is given is freely programmable. Advantageously, the sensor is calibratable on each operation of closing the drafting system. Advantageously, the electronic control and regulation device comprises a 4-channel evaluation device. Advantageously, measured values relating to lap formation and/or to the wear behaviour of the upper rollers are storable.
The invention also provides an apparatus on a drafting system of a spinning machine, especially a draw frame, carding machine, combing machine or the like, for weighting the drafting system rollers, having at least one pressure fluid cylinder with a piston which is acted upon by pressure fluid and is arranged so as to be axially movable inside a cylinder housing and from which a piston rod extends, the piston rod passing through at least one cylinder cover that forms the end boundary of the cylinder housing, there being a sensor arrangement for determining the position of the piston with the piston rod, wherein for determining the position of the piston with the piston rod an optical distance sensor scans the distances with respect to a surface of a counter-element and the distance sensor is connected to an electrical evaluation device.
a is a perspective view of the presser arm according to
With reference to
According to
According to
In the embodiment of
The cylinder base 8 is provided for accommodating a distance sensor 40. The distance sensor 40 is arranged in a recess 43 (see
According to
In the embodiment of
In the embodiment of
In the arrangement of
In accordance with
Using the apparatus according to the invention, by means of the contact pressure of the piston rod 19 on the roller covering 42 of the upper roller 4 and accordingly the determination of the position of the piston 18, it is possible for both lap and wear to be indicated.
Whilst the invention is described in detail above with reference to a drafting system of a draw frame, it may be applied instead, with appropriate modification, to the drafting systems of other spinning machines, in particular, of carding machines or of combing machines.
Although the foregoing invention has been described in detail by way of illustration and example for purposes of understanding, it will be obvious that changes and modifications may be practised within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 020 506 | Apr 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4510648 | Mori et al. | Apr 1985 | A |
5761772 | Clapp et al. | Jun 1998 | A |
5799374 | Strobel et al. | Sep 1998 | A |
6134752 | Göhler et al. | Oct 2000 | A |
6154931 | Corrales | Dec 2000 | A |
6427720 | Hayashi et al. | Aug 2002 | B1 |
6469500 | Schmitz et al. | Oct 2002 | B1 |
20030009133 | Ramey | Jan 2003 | A1 |
20030177848 | Biester et al. | Sep 2003 | A1 |
20040139851 | Moller et al. | Jul 2004 | A1 |
20040187269 | Moller et al. | Sep 2004 | A1 |
20060242798 | Minter | Nov 2006 | A1 |
20080087000 | Minter | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
19545923 | Aug 1996 | DE |
103 14 428 | Oct 2004 | DE |
10 2004 046 107 | Apr 2006 | DE |
10 2005 004 908 | Aug 2006 | DE |
10 2005 020 506 | Nov 2006 | DE |
0 166 521 | Jan 1986 | EP |
0 338 966 | Oct 1989 | EP |
0 415 156 | Mar 1991 | EP |
0422458 | Apr 1991 | EP |
0939151 | Sep 1999 | EP |
1 081 390 | Aug 2000 | EP |
1 428 914 | Jun 2004 | EP |
1464741 | Oct 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20060242798 A1 | Nov 2006 | US |