This application claims priority from German Patent Application No. 10 2005 023 992.7, dated May 20, 2005, the entire disclosure of which is included herein by reference.
The invention relates to an apparatus on a spinning preparation machine, for example a flat card, roller card, draw frame, combing machine or the like, for ascertaining the mass and/or fluctuations in the mass of fibre material, for example at least one fibre sliver, fibre web or the like, of cotton, synthetic fibres or the like.
The invention relates to the contact pressure of a feeler device on a fibre bundle in a sliver guide means, such as is used for measuring the thickness of fibre bundles on a textile machine. Such a textile machine can be a flat card, a draw frame, a flyer or a combing machine. The contact pressure of the feeler device is important for the formation of a correct measurement signal relating to the thickness of the fibre bundle. The measurement signal relating to thickness is important for controlling other processes on the textile machine. In order to ascertain the thickness of a fibre bundle, the fibre bundle is guided over a sliver guide means that is installed in fixed position. Such a sliver guide means can be a feeler roller which is fixed with its rotational axis, or a rod, a sliver guide channel or a sliver funnel. The fibre bundle is in contact with the sliver guide means and is guided thereby. A feeler device is pressed onto the fibre bundle guided in the sliver guide means. The contact pressure is provided by a spring which is under tension and is connected to the feeler device. The feeler device is movably mounted, that is to say in dependence upon the thickness of the fibre bundle being conveyed the feeler device moves at a distance from the sliver guide means. In so doing the feeler device can perform a pivoting movement or a back and forth movement. The feeler device is arranged with a signal converter which detects the movement of the feeler device and converts it into an electrical measurement signal. The feeler device can be, for example, a movable feeler roller. The movable feeler roller is pressed onto the fixed feeler roller. The movable feeler roller can be arranged in a pivot arm or reciprocating carriage. A spring engages the pivot arm or the reciprocating carriage and provides the contact pressure. A feeler device is also to be understood as being a feeler element which, diagrammatically, may take the form of a finger. Such a feeler element projects towards the sliver guide means in the conveying direction. The portion of the feeler element that is in contact with the fibre bundle is in the form of a slide surface. The feeler element is movable vertically and at a right angle to the running direction of the fibre bundle. Because the feeler element is in the form of a lever arm, it is pressed by springs in the direction of a fixed slide surface of a sliver guide channel or of a sliver funnel. The sliver guide channel or sliver funnel corresponds to a sliver guide means. The thickness of the fibre bundle is ascertained by means of the movement of the feeler element. A connected signal converter converts the amount of movement into an equivalent electrical signal. The term “fibre material” is to be understood as meaning a fibre bundle such as a fibre web, a fibre sliver twisted from a plurality of slivers, a drafted fibre sliver or a fibre tuft web, a fibre tuft feed.
A known apparatus (DE 195 38 496 A) has a pair of feeler rollers, the spacing of one of the feeler rollers being variable relative to the other and its excursion relative to an inductively operating contactless displacement sensor being determined by means of a lever arm having a pivot joint. The output signal of the displacement sensor is transmitted by means of a signal converter, which may be a proportional element, to a measured value memory which is able to change the drive speed of the middle and inlet rollers of the drafting system by way of a desired value step. A disadvantage is that such displacement sensors are electrically connected to a shielded control line by way of a special inbuilt connector. On account of the anti-inductive protection, that is to say the protection against induction voltage or induction currents, the control line consists of a special-purpose line. In order to prevent any interference effects on the measurement signal, that line must be connected in accordance with EMC (electromagnetic compatibility) guidelines. It should also be borne in mind that the counter-element must consist of a metallic material and the sensor has a certain stray field. A further problem is that the sensor is temperature-dependent. In addition, the amount of space required for certain applications, in which small dimensions are a factor, is too large.
It is an aim of the invention to provide an apparatus of the kind described at the beginning which avoids or mitigates the said disadvantages, which is, especially, simple in terms of structure and installation and which allows improved and more accurate measurement of the fibre bundle.
The invention provides an apparatus on a spinning preparation machine for ascertaining a parameter related to mass of a fibre material structure, comprising:
a feeler element for mechanically scanning the mass of the fibre material; and
a sensor device for detecting the position of the feeler element;
wherein the sensor device comprises a distance sensor that, for determining the position of the feeler element, is arranged to detect a transmitted wave, the sensor device being connected to an electrical evaluating device.
The contactless distance sensor according to the invention allows improved and accurate measurement in a structurally simple way. Instead of an inductive field there are used electromagnetic waves, especially light waves, for example lasers, or acoustic waves, for example ultrasound. The use of light, especially laser light, allows focussed scanning of the measuring tongue or of a counter-element associated with the measuring tongue, so that the measuring tongue can have small dimensions and allows high frequencies/CV values to be detected. That advantage is also obtained when lightweight non-metallic materials are used for the feeler element, for example ceramics, fibre-reinforced materials or the like. The evaluation can take place either in the vicinity of the measuring point or in a control box if the optical signals are conducted from the measuring point to the evaluating unit by means of optical waveguides. Further advantages are obtained as a result. Because the optical waveguide is not subject to any inductive interference effects, a connection in accordance with EMC guidelines becomes unnecessary. Such contactless distance measurement also ensures that measurement can be absolutely precise. The measurement is wear-free, temperature-independent, free of electrical interference effects (measurement data are transported by light guides) and contaminants are avoided by virtue of the continuous cleaning of the measuring funnel. In addition to the advantage of the very simple installation of the optical distance sensor and/or the optical waveguides, it is additionally possible, depending upon the measuring process, to carry out fresh calibration of the measuring funnel at any time using an existing control means that evaluates the measurement signal. The calibration of the measuring funnel is effected on initial start-up. A further advantage is that the measurement path of the feeler tongue excursion is programmable to be fixed or variable. A further advantage is the considerable reduction in the weight of the feeler tongue. Because it is possible to use an optical distance sensor/optical waveguide to view any point of the feeler tongue inside the measuring funnel, the weight of the feeler tongue can be reduced to an absolute minimum (allowing for a new measuring method for high frequencies). The resulting reduction in weight allows a substantially higher sensing frequency of the feeler tongue, because its natural resonance is shifted towards a higher frequency. Accordingly, the control means is also able to ascertain and display very high realistic CV values.
On the basis of such a contactless measuring process it is also possible to implement the measurement of the fibre material using a driven tongue-and-groove roller. In addition to improved sliver quality resulting from the transport of the fibres, a further advantage is that the driven tongue-and-groove roller can replace a separate delivery roller and can therefore fulfil two functions at the same time (measurement of the fibre density and transport of the fibre material). By virtue of this measure, an output measuring funnel and condenser become entirely unnecessary. As a result of the contactless distance measurement, the measurement point for ascertaining the fibre density at the delivery rollers (tongue/groove) can be directly at the rollers or alternatively on the roller journals.
The distance sensor may ascertain the distances relative to the feeler element. Instead, the distance sensor may ascertain the distances relative to a counter-element associated with the feeler element. In one embodiment, the distance sensor is fixed and the counter-element is movable relative to the distance sensor. In another embodiment, the distance sensor is movable and the counter-element is fixed relative to the distance sensor. Advantageously, the counter-element has a flat scanning surface. Advantageously, the counter-element has a smooth scanning surface. Advantageously, the counter-element has a curved scanning surface. Advantageously, the scanning surface is reflective. In certain preferred arrangements, an optical distance sensor (sensor that measures distance) is used. In certain other preferred arrangements, an acoustic distance sensor (sensor that measures distance) is used. The sensor may be an ultrasound distance sensor (sensor that measures distance). Advantageously, the light beam or sound beam is focussed. The distance sensor may be a light scanner. Advantageously, the distance sensor has a transmitter and a receiver. The distance sensor may be a laser scanner. The distance sensor may use visible light. The distance sensor may use infrared light. Advantageously, the distance sensor for position determination is mounted at an angle of 90° relative to the distance surface of the counter-element. Advantageously, the distance sensor and the counter-element are arranged in a closed housing. Advantageously, the evaluating device is connected to an electronic control and regulation device. Advantageously, the distance sensor is an analog sensor. In certain arrangements, the apparatus can be used for ascertaining and displaying undesired winding about a roller. In certain further arrangements, the apparatus can be used for ascertaining and displaying sliver breakage. In one advantageous embodiment, the signals are conducted from the measuring point to the evaluating unit using an optical waveguide.
In certain preferred embodiments, the distance sensor scans the excursions of a movable feeler tongue. In certain other preferred embodiments, the distance sensor scans the excursions of a movable feeler roller. The distance sensor may scan the excursions of the feeler tongue or of the feeler roller directly or indirectly. In one advantageous arrangement, the distance sensor is used for ascertaining the sliver mass of an elongate substantially untwisted fibre bundle. Advantageously, the fibre bundle consists substantially of natural fibres, especially of cotton, and/or synthetic fibre materials. Advantageously, the distance sensor is used to measure the sliver mass in a continuously moving fibre bundle. Advantageously, the ascertained values for the sliver mass are used for levelling fluctuations in the sliver mass of the fibre bundle by controlling at least one drafting device of a spinning preparation machine in which the fibre bundle is being drafted. Advantageously, the spinning preparation machine is a regulated flat card, a flat card having an autoleveller drafting system, a combing machine having a drafting system with or without an autoleveller, or is a draw frame.
In an advantageous embodiment, the means for ascertaining the sliver mass of a moving fibre bundle is provided on a spinning preparation machine having a plurality of successive drafting devices for drafting the fibre sliver. The distance sensor(s) may be arranged at the inlet and/or outlet of a drafting system of the spinning preparation machine. Advantageously, the fluctuations in sliver mass are monitored at the inlet and/or at the outlet and, if necessary, the spinning preparation machine is switched off and/or a warning signal is given in the event of the sliver mass or fluctuations in sliver mass falling below or exceeding threshold values. Advantageously, the distance sensor is configured for detecting sliver breakages in the fibre bundle or a fibre sliver of the fibre bundle. In one advantageous arrangement, on the basis of calculated values for the sliver mass, a regulating unit of the spinning preparation machine effects open-loop control of at least one of the drafting devices for evening out sliver mass fluctuations (inlet autolevelling). In another advantageous arrangement, on the basis of calculated values for the sliver mass, a regulating unit of the spinning preparation machine effects closed-loop control at least one of the drafting devices for evening out sliver mass fluctuations (outlet autolevelling). Advantageously, inlet and outlet autolevelling means form an intermeshed control system (simultaneous open-loop and closed-loop control).
Advantageously, the measuring frequency with which the resonance frequency adaptations are carried out is matched to the inlet speed of the fibre bundle entering the spinning preparation machine or to the delivery speed of the fibre bundle leaving the spinning preparation machine. Advantageously, the measuring frequency is adapted to a fixed, preferably constant, scanning length (length-oriented scanning). Advantageously, the measuring frequency is adapted to a fixed time period (time-oriented scanning) which depends upon the speed of the fibre bundle. Advantageously, the scanning which detects a certain portion of the fibre bundle per measurement is carried out in a plurality of overlapping measurements displaced relative to one another along the fibre bundle. Advantageously, a spectrogram or a portion of a spectrogram of the fibre bundle is created or supplemented on the basis of measured values obtained by means of the at least one distance sensor. Advantageously, a spectrogram of the fibre bundle is recorded at the inlet and/or at the outlet of the spinning preparation machine. Advantageously, a plurality of fibre slivers is guided through the spinning preparation machine from the inlet to the outlet one next to the other and, in plan view, substantially parallel to one another. Advantageously, the fibre bundle or individual groups of fibre slivers forming the fibre bundle are passed through at least one funnel or through guide elements, for example guide plates or guide rods. The guide element may be a sliver guide means. The guide element may be a web guide means. Advantageously, the walls of the guide element are at least partly of conical construction and a pair of rollers is arranged downstream of the sliver or web guide means, wherein there is a loaded, movable feeler element which, together with a fixed counter-surface, forms a constriction for the fibre bundle, which consists of at least one fibre sliver, passing through and a change in the position of which feeler element in the event of a variation in the thickness of the fibre bundle acts on a converter device to generate a control pulse. Advantageously, the feeler element is associated with a sliver guide means, the plurality of fibre slivers is condensed and scanned in one plane in the sliver guide means and the pair of rollers withdraws the scanned fibre slivers. Advantageously, the feeler element is associated with a sliver funnel through which a fibre sliver passes. The feeler element may be mounted, for example, on a fixed pivot bearing. Advantageously, the feeler element is a pivotally mounted lever. Advantageously, the feeler element cooperates with a force element, for example a counter-weight, spring or the like. The feeler element may be mounted so as to be movable in the horizontal direction. Advantageously, the feeler element is resiliently mounted at one end. Advantageously, the feeler element is mounted on a holding member, for example a lever. Advantageously, the feeler element is mounted so as to be pivotable about a vertical axis. Advantageously, the bias of the movably mounted feeler element is effected by mechanical, electrical, hydraulic or pneumatic means, for example springs, weights, natural resilience, loading cylinders, magnets or the like, and can be adjustable. The axes of the delivery rollers at the outlet may be arranged horizontally. The axes of the delivery rollers at the outlet may be arranged vertically. Advantageously, control pulses are supplied to a regulator. Advantageously, the regulator adjusts the speed of at least one drive motor of the drafting system. Advantageously, there is a plurality of distance sensors, each of which scans the thickness of a fibre sliver with a feeler element (individual sliver scanning). Advantageously, the displacements of the individual feeler elements can be added together.
The invention also provides a spinning preparation machine, especially a flat card, draw frame or combing machine, for carrying out a process of detecting the position of a feeler element, having at least one distance sensor for measuring the sliver mass of a continuously moving fibre bundle. Advantageously, the at least one distance sensor is arranged at the inlet of the spinning preparation machine. Advantageously, the at least one distance sensor is arranged at the outlet of the spinning preparation machine. Advantageously, the at least one distance is associated with an autoleveller unit which effects open-loop and/or closed-loop control of at least one drafting device of the spinning preparation machine on the basis of the measured values of the sliver mass of the fibre bundle. In one form of machine of the invention, a plurality of fibre slivers, running one next to the other and parallel to one another, are detectable by the at least one distance sensor. In another form of machine of the invention, a plurality of fibre slivers, running one next to the other and, in plan view, substantially parallel to one another, are guidable through the spinning preparation machine from the inlet to the outlet. Advantageously, guide means are provided upstream and downstream of the sensor for guiding the fibre bundle under tension. Advantageously, the guide means comprise rotating roller pairs between which the fibre bundle is clampable. Advantageously, the distance between the roller pair arranged upstream and/or downstream of the distance sensor and the distance sensor is very small. Advantageously, the guide means comprise at least one condensing element, in the form of a funnel, guide plates or guide rods, upstream of the at least one distance sensor for effecting convergence of the fibre bundle or individual groups of fibre slivers of the fibre bundle. Advantageously, the guide means comprise at least one condensing element having guide surfaces that rise transversely with respect to the longitudinal direction of the fibre bundle for bringing together the fibre bundle or individual groups of fibre slivers of the fibre bundle. Advantageously, at least one of the guide means is pivotable. Advantageously, between the sensor and a drafting system of the spinning preparation machine there are arranged guide elements for guiding the fibre slivers of the fibre bundle so that the fibre slivers cover substantially the same path between the distance sensor and the drafting system. Advantageously, the machine is in the form of a flat card having an autoleveller drafting system or in the form of a combing machine having an autoleveller drafting system, it being possible in each case for a drafting system without autolevelling to be arranged upstream of the autoleveller drafting system. Advantageously, it is in the form of a flat card or combing machine, the outlet of which can be associated with an autoleveller drafting system in the form of a module. Advantageously, the machine is in the form of a flat card at the outlet of which there is arranged at least one distance sensor instead of a mechanical displacement measuring sensor. Preferably, the distance sensor is a sensor that measures optical or acoustic distance.
The invention also provides an apparatus on a spinning preparation machine, for example a flat card, roller card, draw frame, combing machine or the like, for ascertaining the mass and/or fluctuations in the mass of a fibre material, for example at least one fibre sliver, fibre web or the like, of cotton, synthetic fibres or the like, in which the fibre material is scanned mechanically by a feeler element the excursions of which are converted into electrical signals, there being a contactless distance sensor for detecting the position of the feeler element (proximity sensor), characterised in that the distance sensor, using waves or rays, is a sensor that measures distance, which sensor is connected to an electrical evaluating device.
Certain illustrative embodiments of the invention will be described in greater detail below with reference to the accompanying drawings, in which:
a is a side view of a configuration having a plurality of tongue-and-groove rollers and individual scanning with a plurality of distance sensors according to the invention;
b is a front view in section I-I according to
In the embodiment of
Referring to
In the embodiment of
In the embodiment shown in
An individual fibre sliver (for example, see fibre sliver 34 in
One form of sensor suitable for use in an apparatus of the invention is shown in
In the embodiment of
In the embodiment of
In accordance with
The invention is not limited to the embodiments shown and described. For example, the embodiments equipped with a tongue-and-groove roller pair 65, 66 (see
Also encompassed is that the distance sensors 22, 221, 222, 223, 224 shown in FIGS. 1 to 12, 14 and 15 can be connected to an optical waveguide 90 in accordance with
In the embodiments shown and described, the distance sensors 22, 221, 222, 223, 224—apart from
The distance sensors used in the embodiments described are non-contact sensors and, furthermore, rely upon transmitted waves. “Transmitted waves” as used herein includes any waves which are transmitted in the sense of being sent through a medium and, in particular, includes waves which have been reflected one or more times. Thus, “transmitted wave” includes an optical wave or an acoustic wave and the distance sensors used in accordance with the invention thus include distance sensors arranged to use optical waves or acoustic waves, but do not include induction sensors.
The invention is of particular application to continuously travelling fibre structures, especially individual fibre slivers, bundles of two or more, especially multiple, fibre slivers, and fibre webs.
The device of the invention may measure the mass of the fibre material directly or indirectly. In practice, it is expedient to measure a parameter other than mass, provided that the parameter other than mass is related to the mass. For the avoidance of doubt the expression “parameter related to mass” includes mass.
Although the foregoing invention has been described in detail by way of illustration and example for purposes of understanding, it will be obvious that changes and modifications may be practised within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 023 992.7 | May 2005 | DE | national |