Drunk driving continues to be an issue for modern society. One approach to combating drunk driving has been the installation of breathalyzer devices in vehicles of repeat drunk driver offenders. These devices require that a driver blow into a blow tube prior to operation of the vehicle. When blood alcohol content (BAC) over a predetermined legal limit is detected, the violation is logged and, in some cases, vehicle operation is prevented.
These devices currently have several drawbacks however. Because the devices utilize a blow tube, intoxicated drivers can simply have a sober friend blow into the blow tube, and thus circumvent the detection system. Additionally, these systems are typically only installed in vehicles after a driver has been convicted of drunk driving, and therefore do not prevent first-time offenders from operating a vehicle while intoxicated. Finally, because a blow tube is used, it is possible for a person to circumvent the system, such as using pressurized air or charcoal filters placed in the mouth.
It would be highly desirable to detect the presence of alcohol or an intoxicated driver, and disable a vehicle, without the need for a blow tube or obvious testing. It would also be desirable to have a system that can be installed in all new vehicles. In addition, it would be desirable to extend these systems to other vehicles such as planes and boats.
An apparatus, system, and method for preventing operation of a vehicle by an intoxicated driver are disclosed.
In one embodiment, an apparatus for preventing vehicle operation based on a driver's BAC comprises a detector module. The detector module includes a sensor which is configured to measure alcohol content of the air within a predetermined vehicle zone. The detector module is calibrated to produce an electrical signal representative of the blood alcohol content of a driver based on the measurement of alcohol content in the air of the predetermine vehicle zone. A control module is electrically coupled to the detector module and is configured to control at least one vehicle operation based on the electrical signal from the sensor.
In various embodiments, the sensor may comprise a fuel cell alcohol sensor, an oxide semiconductor alcohol sensor, or an infrared alcohol sensor, among other sensors.
In one embodiment, the apparatus further comprises a vehicle status detector module which generates a signal representative of the current vehicle operation. The signal can correspond to whether the vehicle is stationary or moving. Based on the status of the vehicle as indicated by the vehicle status detector module, the control module can selectively activate or disable certain vehicle operations. In one embodiment, the control module can activate a vehicle horn, a vehicle light system, and an audible warning, for example. In another embodiment, the control module can disable the ignition system, the fuel system, or the transmission system, for example.
In one embodiment, a detection module may be located within a mobile device. The mobile device is configured to generate a wireless signal representative of the blood alcohol content of a user by measuring the alcohol content of the air in a predetermined vehicle zone. A control module is located within a vehicle, and is configured to receive a wireless signal from the mobile device. The control module is configured to control at least one vehicle operation based on the wireless signal from the mobile device.
A method is disclosed for controlling vehicle operation based on BAC of a driver. In one embodiment, the method includes measuring the BAC of a driver by measuring the alcohol content in the air of a predetermined vehicle zone. A signal is generated indicating a BAC over a predetermined limit. In response to the signal, at least one vehicle operation is controlled.
The present disclosure describes embodiments of an apparatus, system, and method for detecting the presence of an intoxicated driver and controlling or disabling the operation of a vehicle when an intoxicated driver is detected. In particular, the present disclosure is directed to embodiments of an apparatus, system, and method for detecting the presence of an intoxicated driver in a predetermined location within a vehicle and disabling or activating some or all of the functions of the vehicle when an intoxicated driver is detected in the predetermined vehicle location. More particularly, the present disclosure is directed to automatically preventing an intoxicated person in the driver's seat of a vehicle from beginning or continuing operation of the vehicle.
It is to be understood that this disclosure is not limited to particular aspects or embodiments described, and as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects or embodiments only, and is not intended to be limiting, since the scope of the apparatus, system, and method for detecting the presence of an intoxicated driver within a vehicle and controlling the operation of the vehicle when an intoxicated driver is detected is defined only by the appended claims.
In one embodiment, the present disclosure provides an apparatus, system and method for detecting and restricting the use of a vehicle by an intoxicated driver, whether the vehicle is moving or stationary. An intoxicated driver is identified by a detector module comprising a sensor. The sensor samples the alcohol content of the air in a predetermined vehicle zone. When an air alcohol content corresponding to a predetermined blood alcohol content is detected, the sensor signals a control module which can control, disable, or modify operation of the vehicle based on the presence of an intoxicated driver.
In another embodiment, the present disclosure provides a system for detecting and restricting the use of a vehicle by an intoxicated driver by receiving a signal from a mobile device within a predetermined vehicle zone. Mobile devices, such as wireless devices, may include without limitation, for example, cellular telephones, smart phones, laptop computers, notebook computers, tablet devices (e.g., iPad by Apple®), Netbook®, among other wireless mobile devices that a user can interact with while located in a vehicle. In one embodiment, the presence of an intoxicated driver is detected by a mobile device in the driver's side area of the vehicle. The mobile device has a sensor that detects the BAC of the user. The location of the mobile device within the driver's zone is detected by at least one sensor located within the vehicle. When the presence of an intoxicated driver is detected through a sensor in a mobile device located within the driver zone, the operation of the vehicle is controlled, disabled, or modified with respect to the person located in the driver side area of the vehicle but not when an intoxicate person is located in other areas of the vehicle.
Disposed on or within the dashboard 108 of the vehicle 100 is an alcohol detection and vehicle control system 102. In one embodiment, the alcohol detection and vehicle control system 102 is configured to detect the presence of an intoxicated person located in the driver seat 106 side of the vehicle 100 and control the operation of the vehicle by either disabling critical systems of the vehicle or by activating warning systems in the vehicle. In other embodiments, at least some elements or components of the alcohol detection and vehicle control system 102 may be located in other areas of the vehicle 100.
It may be desirable to place detection elements of the alcohol detection and vehicle control system 102 as close to the driver as possible. For example, sensors of the alcohol detection and vehicle control system 102 may be located in proximity of the driver seat 106. This configuration provides more precise detection of the presence of an intoxicated person in the driver seat 106 side of the vehicle 100 and prevents false detection of other intoxicated persons located within the vehicle 100 to allow sober persons to transport intoxicated persons within the vehicle. Other elements or components such as control logic may be located in other locations of the vehicle 100 away from the driver seat 106.
In one embodiment, the alcohol detection and vehicle control system 102 is configured to detect an intoxicated person located in or in proximity of a detection zone 104. In accordance with the described embodiments, the detection zone 104 is defined as a zone substantially in or in proximity of the driver seat 106 side of the vehicle 100. In other embodiments, however, the detection zone may be any predefined zone within the vehicle 100, without limitation. In one aspect, the detection portion of the alcohol detection and vehicle control system 102 may be calibrated to detect a predetermined amount of alcohol present in the air of the detection zone. Once the predetermined value is detected, the alcohol detection and vehicle control system 102 controls the operation of the vehicle in one or more ways. For example, in one embodiment, the alcohol detection and vehicle control system 102 transmits a control signal to disable a critical system of the vehicle such as a fuel system, transmission system, or ignition system so as to prevent initial operation of the vehicle. By disabling a critical system of the vehicle, operation of the vehicle by an intoxicated driver is prevented. In another embodiment, the alcohol detection and vehicle control system 102 can activate certain vehicle systems to signal to law enforcement officers and other drivers that the operator of the vehicle is intoxicated. For example, the alcohol detection and vehicle control system 102 may activate the vehicle's horn, flash the vehicle lights, or activate an audible warning that the driver of the vehicle is intoxicated.
Accordingly, the alcohol detection and vehicle control system 102 can either completely or substantially prevent operation of the vehicle or sufficiently interfere with operation of the vehicle so as to alert law enforcement and other drivers of the intoxicated driver. For example, when the alcohol detection and vehicle control system 102 activates the horn or flashes the vehicle lights, law enforcement will be able to identify vehicles with intoxicated drivers and address any issues related thereto. By way of another example, when the alcohol detection and vehicle control system 102 prevents the vehicle fuel system from being activated, the intoxicated person would be unable to start the vehicle 100, thereby preventing the intoxicated person from operating the vehicle. These and other embodiments are discussed in more detail hereinbelow.
In one embodiment, the detector module 204 is configured to detect the presence of an intoxicated driver located within the detection zone 104 which is defined as a three-dimensional zone within or in proximity of the driver seat 106. In one aspect, the detector module 204 intakes an air sample from the detection zone 104 and determines the alcohol content of that air sample. In various embodiments, the detector module 204 may be configured to signal the control module 208 at varying levels of alcohol content that can be chosen based on the type of vehicle being operated.
In one embodiment, the detector module 204 may comprise a sensor module 206 and an air intake 216. The sensor module 206 may be configured to react to various levels of alcohol content in the air. In various embodiments, the sensor module 206 may comprise a fuel cell sensor, a semiconductor oxide sensor, or an infrared sensor, among others. It will be appreciated that the sensor module 206 can be calibrated for differing volumes of air located within the detection zone 104. For example, a sensor located within a standard sedan can be calibrated to react to a higher alcohol content in an air sample and a sensor located within a semi-tractor trailer cab can be calibrated to react to a lower alcohol content in an air sample. This difference in calibration can be varied to account for the differing volumes of air present in different vehicle detection zones 104.
The detector module 204 is electrically coupled to the control module 208. In one embodiment, the detector module 204 can be electrically coupled to the control module 208 by way of a direct wire connection. In another embodiment, the detector module 204 and the control module 208 may be electrically coupled by a wireless connection. In one embodiment, the detector module 204 and the control module 208 may be coupled to the electrical system of the vehicle 100 and powered by the vehicle battery, or may be powered by a separate battery.
In one embodiment, the control module 208 may be configured to control various vehicle operations and/or vehicle systems. The control module 208 may be configured to disable various critical vehicle systems. These critical vehicle systems may include the ignition system, the transmission system (or gear box), or the fuel system. By disabling various critical vehicle systems, the control module 208 may prevent activation and operation of the vehicle when the detector module 204 detects an intoxicated driver. In another embodiment, the control module 208 may be configured to activate various vehicle systems. These systems may include the vehicle horn, the vehicle lights, or an audible warning system installed in the vehicle 100.
In one embodiment, the alcohol detection and vehicle control system 102 comprises a vehicle status detection module 210. The vehicle status detection module 210 can be configured to detect the current status of the vehicle including whether the vehicle is currently moving or stationary. In addition, the vehicle status detection module 210 may be configured to determine whether or not the vehicle is currently running. In one embodiment, the vehicle status detection module 210 may provide a status signal to the control module 208. The control module 208 can then use the status signal to determine what vehicle operations should be activated or disabled. For example, when the status signal is representative of a stationary vehicle, the control module 208 can disable the vehicle fuel system, transmission system, or ignition system. As another example, when the status signal is representative of a moving vehicle, the control module 208 can activate the vehicle horn, flash the vehicle lights, or activate an audible warning to the driver and those around the driver that the driver is intoxicated. In one embodiment, the vehicle status detection module 210 may be formed integrally with the control module 208. In another embodiment, the vehicle status detection module 210 may be separate from the control module 208.
In operation, the fuel cell sensor 306 intakes an air sample from the detection zone 104 through the opening 318. The air sample flows past the first electrode 310a, which causes the first electrode 310a to oxidize alcohol in the air sample and produce acetic acid, protons, and electrons. The electrons produced flow through the wire 316 from the first electrode 310a to the second electrode 310b producing a current along the wire 316 which can be measured by the current meter 314. The protons produced in the reaction move through the lower portion of the fuel cell sensor 306 and combine with oxygen and the electrons to produce water. The more alcohol that is oxidized by the first electrode 310a, the greater the electrical current generated in the wire 316. The current in the wire 316, as measured by current meter 314, corresponds to the alcohol content of the air sample, which can be calibrated to represent the blood alcohol content of a driver operating the vehicle 100.
In operation, the IR sensor 406 operates by measuring the absorption of IR light at a certain wavelength. The absorption wavelength corresponds to the chemical bonds found in ethanol (the type of alcohol found in alcoholic beverages and expelled by intoxicated persons). An air sample from the detection zone 104 enters the housing 404 through the intake opening 408. The lamp 412 generates an infrared beam 414 which travels through the first lens 416a and into the housing 404. The infrared beam 414 interacts with the air sample located in housing 404 allowing the alcohol in the air sample to absorb specific wavelengths of IR light. The infrared beam 414 then travels through the second lens 416b and into the filter wheel 418. The filter wheel 418 contains narrow band filters 420 which are configured to filter for the wavelengths absorbed by the bonds in ethanol. The infrared beam 414, after being filtered, then interacts with the photocell 422 which generates an electric pulse based on the amount of light interacting with the photocell 422. The amount of light that interacts with photocell 422 is related to the amount of alcohol present in the air sample. The electric pulse generated by the photocell 422 is then transmitted to a processor 424 which interprets the electric pulses and calculates the alcohol content of the air sample based on the absorption of infrared light. The processor 424 may be formed integrally with the sensor module 206 (
With reference now to
In one embodiment, the alcohol detection and vehicle control system 102 may be triggered when the driver enters the vehicle 100. Upon being triggered, the alcohol detection and vehicle control system 102 is initialized and goes into detection mode to detect the presence of an intoxicated driver prior to operation of the vehicle. The detection mode is a process wherein the alcohol detection and vehicle control system 102, through at least one sensor and logic detects the presence of alcohol in the detection zone 104. In one embodiment, the detection process is initiated by the alcohol detection and vehicle control system 102, which is not dependent upon the driver's interaction to initiate the detection process. Decoupling the process from the driver is advantageous because it avoids reliance on self policing, which currently has failed as a preventative mechanism for drunk driving. Thus, the triggering condition may be the activation of a switch such as a pressure switch (not shown) located in the driver seat 106 to detect an occupant in the detection zone 104 or insertion of a key into the ignition of the vehicle 100, among other sensors.
Accordingly, upon activation of the pressure switch located in the driver seat 106, the alcohol detection and vehicle control system 102 would initiate a detection process via logic that controls the operation of the detection module 204 and the control module 208. In accordance with the detection process, logic would instruct the detector module 204 to begin acquiring air samples through the intake 216 from the detection zone 104 located within the driver side area 104 of the vehicle 102. The detection module would then activate the sensor module 206 to begin sensing the alcohol content of the air sample. In one embodiment, the control module 208 may delay operation of the vehicle for a predetermined amount of time to allow the air within the detection zone to become properly saturated by the driver to ensure a proper blood alcohol reading based on sampling the air within the detection zone 104. In one embodiment, the detection module 204 may be located within the dashboard 108 console. This configuration would hide the detection module 204 to prevent drivers from tampering with the alcohol detection and vehicle control system 102 by blocking the detection module or preventing activation of the detection process. In one embodiment, the detection module 204 may be coupled to the ignition to render the vehicle 100 inoperable when the intake 216 of the detection module 204 is blocked.
The logic provides a detection process for detecting the presence of an intoxicated driver within the detection zone 104 to prevent operation of the vehicle 100 by an intoxicated person. The detection process will not, however, detect the presence of intoxicated passengers, and therefore will not interfere with the operation of the vehicle 100 by a sober driver transporting intoxicated passengers.
In one embodiment, the alcohol detection and vehicle control system 102 includes a vehicle status detection module 210 configured to determine a current condition state of the vehicle. In various embodiments, the condition state may include whether the vehicle is moving or stationary. The condition state may also include, for example, information regarding whether the vehicle is currently running or whether the vehicle is currently in gear, among other condition states. In one embodiment, the vehicle status detection module 210 may be coupled to the control module 208. The control module 208 may use input from the vehicle status detection module 210 to determine which vehicle systems to activate or disable. In one embodiment, the control module 208 can disable critical vehicle systems when the vehicle status detection module 210 indicates that it is safe to do so, such as when the vehicle status detection module 210 indicates that the vehicle 100 is currently stopped.
When the vehicle status detection module 210 indicates that the vehicle 100 is not moving, the control module 208 may disable critical vehicle systems to prevent current or subsequent operation of the vehicle by an intoxicated driver. In one embodiment, the critical vehicle systems may include the fuel system, the transmission system, or the ignition system. By preventing activation of the ignition system, the control module 208 can prevent an intoxicated person from starting and therefore operating the vehicle 100. Disabling the transmission system or fuel system will also prevent an intoxicated person from operating the vehicle 100.
When a vehicle is already in motion when an intoxicated driver is detected, it may be more dangerous to disable operation of critical vehicle systems. Therefore, when the vehicle status detection module 210 indicates that the vehicle 100 is moving, the control module 208 may cause the activation of certain vehicle systems to alert law enforcement and other drivers of the presence of an intoxicated driver within the vehicle 100. In one embodiment, the vehicle systems that can be activated by the control module 208 include the vehicle horn, the vehicle lights, or an audible warning. In one embodiment, the vehicle lights may be operated by the control module so as to flash on and off to give a visual indication of an intoxicated driver. In another embodiment, an audible warning system may be installed in a vehicle with the alcohol detection and vehicle control system 102 that gives an audible warning in the form of a tone or prerecorded message that the driver of the vehicle 102 is intoxicated.
In one embodiment, the alcohol detection and vehicle control system 102 (
In addition to the mobile alcohol detection module 704, the control module 708 receives input from the mobile device detection module 710. The mobile device detection module 704 is configured to detect the presence of a mobile device 712 within the detection zone 104. When a mobile device 712 is detected within the detection zone 104, the mobile device detection module 704 signals the control module 708. When the control module 708 receives a signal from the mobile device detection module 710 indicating a mobile device 712 located within the detection zone 104 and receives a signal from the mobile alcohol detection module 704 located within the mobile device 712, the control module 708 will control the operation of various vehicle systems to prevent or limit the operation of a vehicle by an intoxicated driver.
The mobile device detection module 710 comprises a multi-band antenna 714 to receive signal transmissions from the mobile device 712 and the control module 708 comprises an antenna 716 to receive signal transmissions from the mobile alcohol detection module 704. In various embodiments, the mobile device detector module 710 and the control module 708 may share an antenna when these components are located in proximity of each other.
In various embodiments, the mobile device 712 may be implemented as a handheld portable device, computer, mobile telephone, sometimes referred to as a smartphone, tablet personal computer (tablet PC), laptop computer, or any combination thereof. Examples of smartphones include, for example, Palm® products such as Palm® Treo® smartphones (now Hewlett Packard or HP), Blackberry® (RIM) smart phones, Apple® iPhone®, Motorola Droid®, HTC, Samsung, LG, and the like. Tablet devices include the iPad® tablet computer by Apple® and more generally a class of lightweight portable computers known as Netbook® computers. In some embodiments, the mobile device 200 may be comprise, or be implemented as, any type of wireless device, mobile station, or portable computing device with a self-contained power source (e.g., battery) such as a laptop computer, ultra-laptop computer, personal digital assistant (PDA) with communications capabilities, cellular telephone, combination cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, pager, messaging device, data communication device, and so forth.
In one embodiment, the mobile device detector module 710 is configured to detect presence of the mobile device 712 located within a detection zone 104 defined as a three-dimensional zone within or in proximity of the driver seat 106. Methods of detecting the presence of the mobile device 712 may vary based on the wireless technology communication standards used by the mobile device 712. Examples of wireless technology communication standards that may be used In the United States, for example, may include Code Division Multiple Access (CDMA) systems, Global System for Mobile Communications (GSM) systems, North American Digital Cellular (NADC) systems, Time Division Multiple Access (TDMA) systems, Extended-TDMA (E-TDMA) systems, Narrowband Advanced Mobile Phone Service (NAMPS) systems, 3G systems such as Wide-band CDMA (WCDMA), 4G systems, CDMA-2000, Universal Mobile Telephone System (UMTS) systems, Integrated Digital Enhanced Network (iDEN) (a TDMA/GSM variant) and so forth. These wireless communications standards are fully familiar to those of ordinary skill in the art. The frequency and signal strength of the radio frequency (RF) signals transmitted by the mobile device 712 depend on the network type and communication standard. The mobile device detector module 710 detects the RF signal, or simply electromagnetic energy radiation, transmitted by the mobile device 712, generally speaking. Accordingly, in one embodiment, the mobile device detector module 710 may be configured to lock onto specific cellular frequencies or cellular frequency bands or may be configured to scan all the available cellular frequencies or cellular frequency bands and lock onto the RF signal emitted by the mobile device 712.
In one embodiment, the mobile device detector module 710 may comprise a wireless sensor 718 coupled to the multi-band antenna 714. The wireless sensor 718 may be tuned to detect energy at a predetermined signal strength in the electromagnetic signal 720, e.g., RF signal, emitted by the mobile device 712 and received by the antenna 714. It will be appreciated that the signal strength or power of the energy radiated by the electromagnetic signal 720 emitted by the mobile device 712 will be greatest when the mobile device 712 is making an outbound call or otherwise communicating with a cellular base station (e.g., searching for base station signals or in contact with a base station or cell). Very little energy in the electromagnetic signal 720 is radiated when the mobile device 712 is turned off or when it is not communicating with the cellular base station. In the latter case, when the mobile device 712 is turned on but is not communicating with the cellular base station, the mobile device 712 possibly may be detected only when the mobile device detector module 710 comprises extremely sensitive components. Most conventional mobile devices 712 radiate energy at a power level ranging from about 0.5 milliwatts (mW) to about several hundred mW. A mobile device detector module 710 of suitable sensitivity can be configured to detect electromagnetic signals 720 in this range of power level. Many radio electronic equipment are capable of detecting low-level power in the electromagnetic signal 720 and is one reason why airlines are very sensitive about electronic equipment that operates at key points of the flight, why some electronic equipment should be turned off near blast sites, and why cellular phones should be turned off around some types of hospital equipment.
It is well known that a mobile device 720, such as, for example, a cellular telephone using the GSM standard, generates detectable radio interference. It is well known to users of GSM cellular telephones that when the cellular telephone is used in the vicinity of an electronic device (such as, for example, a radio receiver, stereo system, TV set, a wired/fixed telephone or even another GSM cell phone), the radio transmissions from the GSM cell phone may be inadvertently “picked up” by the electronic device and a signal proportional to the envelope of the radio transmission may be produced inside the electronic device. In fact, this typically unwanted signal may even disrupt the operation of the electronic device. For example, it is particularly well known that GSM cellular telephones present a potential hazard for wearers of heart pacemakers, as the GSM signal may disrupt proper pacemaker operation when the phone is very near to the wearer's chest.
In one embodiment, the wireless sensor 718 is configured to exploit the detectable radio interference of the electromagnetic signal 720 generated by the mobile device 712 when it is communicating with the cellular base station. When the wireless sensor 718 of the mobile device detector module 710 detects the electromagnetic signal 720, it assumes the presence of a mobile device 712 located within the detection zone 104, i.e., in or in proximity of the driver seat 106, and communicates a signal 722 to the control module 708.
In one embodiment, the wireless sensor 718 may comprise an energy harvester to harvest the energy in the electromagnetic signal 720 transmitted by the mobile device 712. The energy harvester receives the radiated energy at the antenna 714 and converts the energy into a voltage potential to energize the detector module 704 and communicate the signal 722 to the control module 708. In other embodiments, the energy harvester may be separate from the wireless sensor 718 and the voltage potential produced by the energy harvester may be used to energize the wireless sensor 718. In any embodiment, the voltage potential produced by the energy harvester is employed to determine the presence of a mobile device 712 in the detection zone 104. Accordingly, the sensitivity of the wireless sensor 718 is adjusted such that the energy harvester is sensitive only to the radiated energy levels that typically occur when the mobile device 712 is located within the detection zone 104 and not sensitive to electromagnetic energy transmitted by mobile devices located outside the detection zone 104. In this manner, intoxicated passengers can freely use their mobile devices outside the detection zone 104 without triggering the mobile device detector module 710.
In other embodiments, the mobile device detector module 710 may be coupled to the electrical system of the vehicle 100 and powered by the vehicle battery, or may be powered by a separate battery. In such embodiments, the mobile device detector module 710 comprises a frequency scanning and power level measurement module that measures the power of the electromagnetic signal 720 transmitted by the mobile device 712. Accordingly, the sensitivity of the mobile device detector module 710 can be tuned to trigger the detection signal 722 when the mobile device detector module 710 detects transmit power levels that correspond to the mobile device 712 being located in the detection zone 104 without triggering the detection signal 722 for transmit power levels corresponding to the mobile devices located outside the detection zone 104. This may be accomplished by strategically locating a directional multi-band antenna 714 such that it is maximally sensitive to transmit power level radiated by the mobile device 712 located in the detection zone 104 and minimally sensitive to transmit power levels to the mobile devices located outside the detection zone 104.
The diode Drf is an RF diode and acts to partially rectify the electromagnetic signal 720 received by the antenna 714 and tuned by the L-C circuit. The output of the RF diode charges a capacitor Co to a predetermined potential Vd. Thus, the power sensor circuit 800 converts the radiated electromagnetic signal 720 to a voltage potential Vd that corresponds to the location of the mobile device 712 within the vehicle 100. With reference now to
In the embodiment illustrated in
The multi-band detector 1000 may be implemented using a variety of components to detect radiated energy in the signal 1006 received by the uni-directional multi-band antenna 1008 and make RF power measurements at low levels by the detector module 710 in order to detect the presence of a mobile device 712 in the detection zone 104. The RF power level may be measured directly or may be sampled. Recently, a number of integrated RF power detectors have become available, intended for wireless networking and mobile telephone applications. Since these integrated circuits are produced in high-volume using integrated-circuit technology, they are consistent and inexpensive—often cheaper than typical microwave diodes, such as RF diode Drf shown in
In one embodiment, the RF power detector module 1002 may be implemented with an LTC5508 integrated circuit from Linear Technologies rated up to 7 GHz, which is well within the bandwidth required for mobile devices frequency bands shown in TABLE 1. This integrated circuit requires operate a few milliamps at 3 to 5 volts and would be connected to the power supply of the vehicle or to a separate battery. An LT5534 logarithmic-amplifier type detector rated up to 3 GHz with 60 dB of dynamic range may be employed to amplify the RF power signal detected by the LTC5508 integrated circuit.
The multi-band detector 1000 may be employed to measure RF power transmitted by the mobile device 712 and also antenna radiation pattern measurement. The sensitivity of the multi-band detector 1000 may be useful for low-level power measurements as an “RF Sniffer” to detect RF leakage from the mobile device 712. The multi-band detector 1000 provides fast response so that it may be used to detect modulation and to detect noise levels from the multi-band antenna 1006.
The various illustrative functional elements, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor can be part of a computer system that also has a user interface port that communicates with a user interface, and which receives commands entered by a user, has at least one memory (e.g., hard drive or other comparable storage, and random access memory) that stores electronic information including a program that operates under control of the processor and with communication via the user interface port, and a video output that produces its output via any kind of video output format.
The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the embodiments disclosed herein may be performed through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, DSP hardware, read-only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage. Other hardware, conventional and/or custom, may also be included. Similarly, any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
The various functional elements, logical blocks, modules, and circuits elements described in connection with the embodiments disclosed herein may comprise a processing unit for executing software program instructions to provide computing and processing operations for the alcohol detection and vehicle control system 102. Although the processing unit may include a single processor architecture, it may be appreciated that any suitable processor architecture and/or any suitable number of processors in accordance with the described embodiments. In one embodiment, the processing unit may be implemented using a single integrated processor.
In one embodiment, the detection module 710 transmits a detection signal 722 to the control module 708 when a voltage potential Vd substantially equals a predetermined threshold value Vt, wherein the voltage potential of the predetermined threshold value Vt indicates the presence of the mobile device 712 within the predetermined detection zone 104.
In one embodiment, the detection module 710 scans for a plurality frequency bands associated with the mobile device 712. The radiated power level of the communication signal 720 in the plurality of frequency bands received by the detection module 710 are monitored by the detection module 710. The detection module 710 transmits a detection signal 722 to the control module 708 when the measured radiated power level substantially equals at least predetermined value Vt.
In one embodiment, the detection module 710 harvests the energy in the received communication signal 720 and generates a voltage potential corresponding to the location of the mobile device 104 within the detection zone 104.
In one embodiment, the control module 708 monitors a functional system of the vehicle 100. The transmission of the control signal is activated when the monitored functional system is activated and the detection module 710 determines that the communication signal was transmitted by the mobile device 712 located within the predetermined detection zone 104. In one embodiment, the functional system of the vehicle 100 is any one of an ignition system, a transmission system, and a sensor.
In one embodiment, when the control module 708 receives the detection signal 722, the control module 708 either jams the mobile device 104, jams at least one function of the mobile device 104, or redirects the Operation of the mobile device 104 to a hands-free alternate system.
In various embodiments, the mobile device 104 may be configured to provide voice and/or data communications functionality in accordance with different types of wireless network systems or protocols. Examples of suitable wireless network systems offering data communication services may include the Institute of Electrical and Electronics Engineers (IEEE) 802.xx series of protocols, such as the IEEE 802.1a/b/g/n series of standard protocols and variants (also referred to as “WiFi”), the IEEE 802.16 series of standard protocols and variants (also referred to as “WiMAX”), the IEEE 802.20 series of standard protocols and variants, and so forth. Additionally, the mobile device 200 may utilize different types of shorter range wireless systems, such as a Bluetooth system operating in accordance with the Bluetooth Special Interest Group (SIG) series of protocols, including Bluetooth Specification versions v1.0, v1.1, v1.2, v1.0, v2.0 with Enhanced Data Rate (EDR), as well as one or more Bluetooth Profiles, and so forth. Other examples may include systems using infrared techniques or near-field communication techniques and protocols, such as electromagnetic induction (EMI) techniques. An example of EMI techniques may include passive or active radio-frequency identification (RFID) protocols and devices.
With reference now to
In one embodiment, the alcohol detection and vehicle control system 102 may be triggered when the driver enters the vehicle 100. Upon being triggered, the alcohol detection and vehicle control system 102 is initialized and goes into detection mode to establish a no-communication system (“NoCom system”). The detection mode is a process wherein the alcohol detection and vehicle control system 102, through one or more sensor(s) and logic detects the presence of all electromagnetic signals 720 such as RF, Wi-Fi, Cellular, and Satellite communications signals from the mobile device 712. In one embodiment, the detection process is initiated by the alcohol detection and vehicle control system 102, which is not dependent upon a driver's interaction to initiate the detection process. Decoupling the process from the driver, young and old, is advantageous because it avoids reliance on self policing, which currently has failed to work even with laws presently enacted. Thus, the triggering condition may be the activation of a switch such as the ignition switch 1302 of the vehicle 100 or deactivation of a “park” sensor 1304 of an automatic transmission of the vehicle 100, among other sensors.
Accordingly, upon ignition of the vehicle 100, the alcohol detection and vehicle control system 102 would initiate the detection process via logic that controls the operation of the mobile device detection module 710 and the control module 708. In accordance with the detection process, logic would instruct the sensor module 718 to initiate sensing or scanning for any type of communication signals 722 emitted by the mobile device 712 within the detection 104 within the driver side 106 area of the vehicle 100. In one embodiment, the sensor module 718 may be located within the dashboard 108 console and or within a microphone of a hands-free set. This configuration would hide the sensor module 718 and prevent drivers from tampering with the alcohol detection and vehicle control system 102 by blocking the sensor module 718 or prevent activation of the detection process. In one embodiment, the sensor module 718 may be coupled to the ignition 1302 to render the vehicle 100 inoperable when the sensor module 718 is blocked.
The logic provides a detection process for detecting communication signals 720 emitted by the mobile device 712 located within the detection zone 104 to prevent the driver from adequately using the mobile device 712. The detection process will detect and take control of the driver side mobile device 712. The logic, however, will not prevent passengers from using their mobile devices outside the detection zone 104.
Once the detection process is initiated, when the mobile device 712 is a smart phone and is detected within the detection zone 104, in one embodiment, the alcohol detection and vehicle control system 102 can automatically connect to the vehicle 100 hands-free communication system. When no hands-free communication system is available, the mobile device 712 would be disabled by the control signals transmitted by the jamming module. Nevertheless, the alcohol detection and vehicle control system 102 would always allow emergency 911 calls.
Additionally, once the detection process is initiated, when the mobile device 712 is a smart phone and is detected within the detection zone 114, in one embodiment, the alcohol detection and vehicle control system 102 is configured to disable inbound/outbound text messaging features of the mobile device 712. In one embodiment, all inbound text messages would be saved as is the case currently. In one embodiment, the alcohol detection and vehicle control system 102 is configured through logic to read back the text via the Bluetooth/hands-free system as well as reply via voice activated text via the Bluetooth/hands-free communication system. In such an embodiment, the jamming module may communicate with the mobile device 712 through a secondary channel, such as a Bluetooth wireless connection or any other connection that is secondary to the primary cellular communication channel. In some embodiments, the jamming module may communicate only on the primary communication channel of the mobile device 712 or in addition to one or more secondary cellular communication channels.
Moreover, once the detection process is initiated, when the mobile device 712 is a smart phone and is detected within the detection zone 104, in one embodiment, the alcohol detection and vehicle control system 102 is configured to disable inbound/outbound emailing features. In one embodiment, all inbound emails would be saved as is the case currently. The alcohol detection and vehicle control system 102 is configured through the logic module to read back the email via the Bluetooth/hands-free system as well as reply via voice activated email via the Bluetooth/hands-free communication system.
Furthermore, once the detection process is initiated, when the mobile device 712 is an iPad® or a Netbook® device and is detected within the detection zone 104, in one embodiment, the alcohol detection and vehicle control system 102 is configured to disable inbound/outbound text messaging/emailing features. All inbound emails would be saved as is the case currently. The alcohol detection and vehicle control system 102 is configured through the logic module to read back the email/text via the Bluetooth/hands-free system as well as reply via voice activated email/text via the Bluetooth/hands-free communication system.
The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the embodiments disclosed herein may be implemented in the general context of computer executable instructions, such as software, control modules, logic, and/or logic modules executed by the processing unit. Generally, software, control modules, logic, and/or logic modules include any software element arranged to perform particular operations. Software, control modules, logic, and/or logic modules can include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, control modules, logic, and/or logic modules and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.
Additionally, it is to be appreciated that the embodiments described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described embodiments. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
It is worthy to note that any reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” or “in one aspect” in the specification are not necessarily all referring to the same embodiment.
Unless specifically stated otherwise, it may be appreciated that terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, such as a general purpose processor, a DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within registers and/or memories into other data similarly represented as physical quantities within the memories, registers or other such information storage, transmission or display devices.
It is worthy to note that some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. With respect to software elements, for example, the term “coupled” may refer to interfaces, message interfaces, application program interface (API), exchanging messages, and so forth.
It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the present disclosure and are included within the scope thereof. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles described in the present disclosure and the concepts contributed to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present disclosure, therefore, is not intended to be limited to the exemplary aspects and aspects shown and described herein. Rather, the scope of present disclosure is embodied by the appended claims.
The terms “a” and “an” and “the” and similar referents used in the context of the present disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”, “in the case”, “by way of example”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as solely, only and the like in connection with the recitation of claim elements, or use of a negative limitation.
Groupings of alternative elements or embodiments disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability.
While certain features of the embodiments have been illustrated as described above, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the disclosed embodiments.
This application is a continuation-in-part, under 37 C.F.R. §1.53, of U.S. patent application Ser. No. 13/041,209, filed on Mar. 4, 2011, entitled “APPARATUS, SYSTEM, AND METHOD FOR DETECTING THE PRESENCE AND CONTROLLING THE OPERATION OF MOBILE DEVICES WITHIN A VEHICLE,” and which claimed the benefit of U.S. provisional patent application Ser. No. 61/433,854, filed Jan. 18, 2011, entitled “APPARATUS, SYSTEM, AND METHOD FOR DETECTING THE PRESENCE AND CONTROLLING THE OPERATION OF MOBILE DEVICES WITHIN A VEHICLE,” both applications being incorporate herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5258968 | Matsuda et al. | Nov 1993 | A |
6188315 | Herbert et al. | Feb 2001 | B1 |
6556810 | Suzuki | Apr 2003 | B2 |
6726636 | Der Ghazarian et al. | Apr 2004 | B2 |
6901264 | Myr | May 2005 | B2 |
6904110 | Trans et al. | Jun 2005 | B2 |
7084894 | Van Brocklin et al. | Aug 2006 | B2 |
7086596 | Meier et al. | Aug 2006 | B2 |
7095402 | Kunii et al. | Aug 2006 | B2 |
7206696 | Furukawa | Apr 2007 | B2 |
7254417 | Slemmer et al. | Aug 2007 | B2 |
7260221 | Atsmon | Aug 2007 | B1 |
7287617 | Mobley et al. | Oct 2007 | B2 |
7292936 | Furukawa | Nov 2007 | B2 |
7299890 | Mobley et al. | Nov 2007 | B2 |
7319455 | Kunii et al. | Jan 2008 | B2 |
7377352 | Mobley et al. | May 2008 | B2 |
7379083 | Van Brocklin et al. | May 2008 | B2 |
7426689 | Simonds et al. | Sep 2008 | B2 |
7464005 | Beetner et al. | Dec 2008 | B1 |
7481292 | Mobley et al. | Jan 2009 | B2 |
7577872 | DiBartolomeo et al. | Aug 2009 | B2 |
7660667 | Furukawa | Feb 2010 | B2 |
7690572 | Meier et al. | Apr 2010 | B2 |
7698062 | McMullen et al. | Apr 2010 | B1 |
7714832 | Tong et al. | May 2010 | B2 |
7729709 | Loeb et al. | Jun 2010 | B1 |
7820108 | Lampotang et al. | Oct 2010 | B2 |
7841224 | Son | Nov 2010 | B2 |
7876205 | Catten et al. | Jan 2011 | B2 |
7925243 | McGary | Apr 2011 | B2 |
7934577 | Walter et al. | May 2011 | B2 |
7966215 | Myers et al. | Jun 2011 | B1 |
7991654 | Sacks et al. | Aug 2011 | B1 |
7991655 | Sacks et al. | Aug 2011 | B1 |
7991656 | Sacks et al. | Aug 2011 | B1 |
7996023 | McGary et al. | Aug 2011 | B2 |
8014945 | Cooper et al. | Sep 2011 | B2 |
8016196 | Meier et al. | Sep 2011 | B2 |
8032764 | Shankar et al. | Oct 2011 | B2 |
8051449 | Kunii et al. | Nov 2011 | B2 |
8065051 | Chopcinski et al. | Nov 2011 | B2 |
8090399 | Howarter et al. | Jan 2012 | B2 |
8095065 | Nagara et al. | Jan 2012 | B2 |
8099054 | Tabe | Jan 2012 | B2 |
8134481 | Ohki | Mar 2012 | B2 |
8136011 | Cho et al. | Mar 2012 | B2 |
8140358 | Ling et al. | Mar 2012 | B1 |
8166081 | Christensen et al. | Apr 2012 | B2 |
8196694 | Biondo et al. | Jun 2012 | B2 |
8213914 | Kim et al. | Jul 2012 | B2 |
8213962 | Carr | Jul 2012 | B2 |
8233775 | Kunii et al. | Jul 2012 | B2 |
8238951 | McGary | Aug 2012 | B2 |
8239831 | Brennan et al. | Aug 2012 | B2 |
8249627 | Olincy et al. | Aug 2012 | B2 |
8258919 | Corradino et al. | Sep 2012 | B2 |
8265590 | Sennett et al. | Sep 2012 | B2 |
8270933 | Riemer et al. | Sep 2012 | B2 |
8280417 | Venkatachalam et al. | Oct 2012 | B2 |
8290509 | Jung et al. | Oct 2012 | B2 |
8296728 | Webster | Oct 2012 | B1 |
8315597 | Olincy et al. | Nov 2012 | B2 |
8326635 | Usher et al. | Dec 2012 | B2 |
8340730 | Pallotta | Dec 2012 | B2 |
8346310 | Boll et al. | Jan 2013 | B2 |
8359014 | Olincy et al. | Jan 2013 | B2 |
8374636 | McDonough | Feb 2013 | B2 |
8401578 | Inselberg | Mar 2013 | B2 |
8401589 | Liu et al. | Mar 2013 | B2 |
8401848 | Dowlatkhah | Mar 2013 | B2 |
8412123 | Foster | Apr 2013 | B2 |
8413217 | Bhatia | Apr 2013 | B2 |
8417268 | Halferty et al. | Apr 2013 | B1 |
8442447 | Veluppillai et al. | May 2013 | B2 |
20020084130 | Der Ghazarian et al. | Jul 2002 | A1 |
20020132646 | Girod | Sep 2002 | A1 |
20020156602 | Kunii et al. | Oct 2002 | A1 |
20020168981 | Meda | Nov 2002 | A1 |
20030086515 | Trans et al. | May 2003 | A1 |
20030120139 | Duval et al. | Jun 2003 | A1 |
20030222144 | Meier et al. | Dec 2003 | A1 |
20040083031 | Okezie | Apr 2004 | A1 |
20040124697 | MacGregor et al. | Jul 2004 | A1 |
20040239510 | Karsten | Dec 2004 | A1 |
20040267607 | Maddux | Dec 2004 | A1 |
20050050209 | Main, II | Mar 2005 | A1 |
20050186933 | Trans | Aug 2005 | A1 |
20050230175 | Brown et al. | Oct 2005 | A1 |
20050261824 | Furukawa | Nov 2005 | A1 |
20050261829 | Furukawa | Nov 2005 | A1 |
20060032742 | Babes-Dornea et al. | Feb 2006 | A1 |
20060033628 | Duval | Feb 2006 | A1 |
20060044144 | Duval | Mar 2006 | A1 |
20060058951 | Cooper et al. | Mar 2006 | A1 |
20060058952 | Cooper et al. | Mar 2006 | A1 |
20060058953 | Cooper et al. | Mar 2006 | A1 |
20060080031 | Cooper et al. | Apr 2006 | A1 |
20060080032 | Cooper et al. | Apr 2006 | A1 |
20060099940 | Pfleging et al. | May 2006 | A1 |
20060205394 | Vesterinen | Sep 2006 | A1 |
20060224945 | Khan et al. | Oct 2006 | A1 |
20060237252 | Mobley et al. | Oct 2006 | A1 |
20060237253 | Mobley et al. | Oct 2006 | A1 |
20060238362 | Mobley et al. | Oct 2006 | A1 |
20060239856 | Mobley et al. | Oct 2006 | A1 |
20060240860 | Benco et al. | Oct 2006 | A1 |
20060265508 | Angel et al. | Nov 2006 | A1 |
20070032225 | Konicek et al. | Feb 2007 | A1 |
20070072553 | Barbera | Mar 2007 | A1 |
20070088495 | Ibrahim | Apr 2007 | A1 |
20070130153 | Nachman et al. | Jun 2007 | A1 |
20070136068 | Horvitz | Jun 2007 | A1 |
20070182595 | Ghasabian | Aug 2007 | A1 |
20070188472 | Ghassabian | Aug 2007 | A1 |
20070193811 | Breed et al. | Aug 2007 | A1 |
20070196078 | Kunii et al. | Aug 2007 | A1 |
20070288164 | Gordon et al. | Dec 2007 | A1 |
20080009296 | Han | Jan 2008 | A1 |
20080123580 | Vathulya | May 2008 | A1 |
20080147314 | Cubillo | Jun 2008 | A1 |
20080168398 | Geelen et al. | Jul 2008 | A1 |
20080182598 | Bowman | Jul 2008 | A1 |
20080208447 | Geelen et al. | Aug 2008 | A1 |
20090012704 | Franco et al. | Jan 2009 | A1 |
20090024707 | Aase et al. | Jan 2009 | A1 |
20090028179 | Albal | Jan 2009 | A1 |
20090075139 | Kucernak et al. | Mar 2009 | A1 |
20090083035 | Huang et al. | Mar 2009 | A1 |
20090085728 | Catten et al. | Apr 2009 | A1 |
20090089293 | Garritano et al. | Apr 2009 | A1 |
20090090577 | Takahashi et al. | Apr 2009 | A1 |
20090112572 | Thorn | Apr 2009 | A1 |
20090146848 | Ghassabian | Jun 2009 | A1 |
20090166197 | Grincourt et al. | Jul 2009 | A1 |
20090177736 | Christensen et al. | Jul 2009 | A1 |
20090201138 | Ghazarian et al. | Aug 2009 | A1 |
20090215466 | Ahl et al. | Aug 2009 | A1 |
20090238386 | Usher et al. | Sep 2009 | A1 |
20090253423 | Kullberg | Oct 2009 | A1 |
20090255917 | Feichko et al. | Oct 2009 | A1 |
20090264161 | Usher et al. | Oct 2009 | A1 |
20090278698 | Kamiki | Nov 2009 | A1 |
20100004004 | Browne-Swinburne et al. | Jan 2010 | A1 |
20100009626 | Farley | Jan 2010 | A1 |
20100010740 | Nachman et al. | Jan 2010 | A1 |
20100035596 | Nachman et al. | Feb 2010 | A1 |
20100035632 | Catten | Feb 2010 | A1 |
20100043524 | Takata | Feb 2010 | A1 |
20100062788 | Nagorniak | Mar 2010 | A1 |
20100082820 | Furukawa | Apr 2010 | A1 |
20100113073 | Schlesener et al. | May 2010 | A1 |
20100131304 | Collopy et al. | May 2010 | A1 |
20100164836 | Liberatore | Jul 2010 | A1 |
20100188232 | Lambert et al. | Jul 2010 | A1 |
20100199176 | Chronqvist | Aug 2010 | A1 |
20100236924 | Chapples et al. | Sep 2010 | A1 |
20100251804 | Morley et al. | Oct 2010 | A1 |
20100269566 | Carroll et al. | Oct 2010 | A1 |
20100294583 | Biondo et al. | Nov 2010 | A1 |
20100297929 | Harris | Nov 2010 | A1 |
20100306309 | Santori et al. | Dec 2010 | A1 |
20100311345 | Santori et al. | Dec 2010 | A1 |
20100314190 | Zimmermann et al. | Dec 2010 | A1 |
20100331051 | Kim et al. | Dec 2010 | A1 |
20100332226 | Lee et al. | Dec 2010 | A1 |
20110015934 | Rowe et al. | Jan 2011 | A1 |
20110018316 | Meredith et al. | Jan 2011 | A1 |
20110021234 | Tibbitts et al. | Jan 2011 | A1 |
20110029869 | McLennan | Feb 2011 | A1 |
20110032096 | Miller et al. | Feb 2011 | A1 |
20110045813 | Choi | Feb 2011 | A1 |
20110045839 | Chao | Feb 2011 | A1 |
20110063098 | Fischer et al. | Mar 2011 | A1 |
20110079073 | Keays | Apr 2011 | A1 |
20110084807 | Logan et al. | Apr 2011 | A1 |
20110086668 | Patel | Apr 2011 | A1 |
20110093474 | Etchegoyen | Apr 2011 | A1 |
20110102160 | Heubel et al. | May 2011 | A1 |
20110105084 | Chandrasekaran | May 2011 | A1 |
20110111724 | Baptiste | May 2011 | A1 |
20110133919 | Evarts et al. | Jun 2011 | A1 |
20110143786 | Fan et al. | Jun 2011 | A1 |
20110153742 | Sloop et al. | Jun 2011 | A1 |
20110175930 | Hwang et al. | Jul 2011 | A1 |
20110183601 | Hannon | Jul 2011 | A1 |
20110187646 | Mahmoud | Aug 2011 | A1 |
20110207441 | Wood | Aug 2011 | A1 |
20110212737 | Isidore | Sep 2011 | A1 |
20110219080 | McWithey et al. | Sep 2011 | A1 |
20110230165 | Kleve et al. | Sep 2011 | A1 |
20110263293 | Blake et al. | Oct 2011 | A1 |
20110288764 | Sathish et al. | Nov 2011 | A1 |
20110304446 | Basson et al. | Dec 2011 | A1 |
20110304465 | Boult et al. | Dec 2011 | A1 |
20110306304 | Forutanpour et al. | Dec 2011 | A1 |
20120032876 | Tabe | Feb 2012 | A1 |
20120034954 | Tabe | Feb 2012 | A1 |
20120035923 | Krause | Feb 2012 | A1 |
20120052854 | DiMeo et al. | Mar 2012 | A1 |
20120064924 | Schapsis et al. | Mar 2012 | A1 |
20120066638 | Ohri | Mar 2012 | A1 |
20120109451 | Tan | May 2012 | A1 |
20120110126 | Sparks | May 2012 | A1 |
20120119936 | Miller et al. | May 2012 | A1 |
20120122525 | Miller et al. | May 2012 | A1 |
20120136503 | Schunder | May 2012 | A1 |
20120136529 | Curtis et al. | May 2012 | A1 |
20120140147 | Satoh et al. | Jun 2012 | A1 |
20120157069 | Elliott et al. | Jun 2012 | A1 |
20120176237 | Tabe | Jul 2012 | A1 |
20120228047 | White et al. | Sep 2012 | A1 |
20120236136 | Boddy | Sep 2012 | A1 |
20120244883 | Tibbitts et al. | Sep 2012 | A1 |
20120265535 | Bryant-Rich et al. | Oct 2012 | A1 |
20120283894 | Naboulsi | Nov 2012 | A1 |
20120284659 | De Leon | Nov 2012 | A1 |
20130046562 | Taylor et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
WO 0212883 | Feb 2002 | WO |
WO 2004018249 | Mar 2004 | WO |
WO 2009014703 | Jan 2009 | WO |
Entry |
---|
International Search Report, PCT Appl. No. PCT/US2012/048785, Nov. 21, 2012, 3 pages. |
Written Opinion of the International Searching Authority, PCT/US2012/048785, Nov. 21, 2012, 6 pages. |
How Stuff Works: How Breathalyzers Work, Jun. 16, 2011. |
Breathalyzer—Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Breathalyzer, Jun. 16, 2011. |
AlcoMater Premium AL7000 Breathalyzer Product Specifications, http://alcomate.net/index.php/model-al7000.html, Jun. 16, 2011. |
Number | Date | Country | |
---|---|---|---|
20120055726 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61433854 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13041209 | Mar 2011 | US |
Child | 13195691 | US |