Sifters and vibratory separators are used in a variety of applications for separating materials by size. For example, sifters and vibratory separators may be used to separate sized particles or to separate solids from liquids. These devices may be used to screen materials in various industries for industrial sorting, manufacturing operations, oil and gas drilling and production operations, etc.
Gyratory sifters are used in a variety of applications for separating solids by size. These applications include separating particles of sugar, flour, sand and various chemical powders. Further, gyratory sifters may be used for both wet and dry screening and include aligned decks of screens or perforated plates, sloping from the head end and/or a feed end to the tail end and/or discharge end of the sifter. The screens may be disposed in a screen basket. The screen basket may be suspended by a set of hangers that allow the basket to move on a horizontal plane.
An eccentric drive mechanism, e.g., a belt driven eccentric weight, or other motive force may be coupled to the screen basket to provide a circular motion substantially across a horizontal plane of the gyratory sifter. Also, various dimensions and/or specifications of the gyratory sifter may be adjusted to accomplish specific separation and/or sifting goals. Devices described herein may be utilized to retain a screen within a gyratory sifter during operation as used in the oilfield and/or related industries.
Embodiments disclosed herein are applicable to separation devices that may be utilized in numerous industries. While specific embodiments may be described as utilized in the oilfield services and related industries, such as use with shale shakers, the device may be applicable in other industries where separation of liquid-solid, solid-solid and other mixtures may be separated. The embodiments may be utilized in the mining, pharmaceutical, food, medical or other industries to separate such mixtures.
In the following detailed description, reference is made to accompanying figures, which form a part hereof. In the figures, similar symbols or identifiers typically identify similar components, unless context dictates otherwise. The illustrative embodiments described herein are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, may be arranged, substituted, combined and designed in a wide variety of different configurations, which are explicitly contemplated and form part of this disclosure.
Referring to
A box 36 may be positioned generally beneath the filtration screen 34 and may assist in the vibration and/or gyration of the filtration screen 34 during use to separate solids from liquid flowing through the filtration screen 34. The box 36 may be referred to as a “ball box” in the separation industry and or vibratory separation industries. Although shown in a specific orientation in
Expansion and/or rising of the inflatable bladder 26 in the direction B may cause the inflatable bladder 26 to contact and/or compress against a holding plate 24 that may extend from and/or be integrally formed with the underside 38. While the inflatable bladder 26 may be deactivated, the holding plate 24 along the underside 38 and/or the box 36 may hold the inflatable bladder 26 within the screen fastening system 10. The inflatable bladder 26, upon activation, may receive air and/or other gas to expand and/or inflate to rise in a direction B to cause an intermediate junction 22 to likewise rise and/or move. Movement of the intermediate junction 22 toward an outer edge 12 of the screen fastening system may compress and seal a sealing gasket 48 embedded in the filtration screen 34 against a protrusion 28 extending from a cross-member 32 extending lengthwise from the outer edge 12 itself as shown in
The rod 20 may extend across an edge of the filtration screen 34 and may be substantially enclosed by the screen 34 that may wrap around the rod 20. In an embodiment, the rod 20 may be constructed from a flexible conduit and/or similar material. In an embodiment, the rod 20 may be removed from the filtration screen 34 to allow the filtration screen 34 to be rolled, folded and/or compressed as needed to facilitate transport and/or storage. A sealing region F may include the sealing gasket 48 with a top surface 30 that may be positioned adjacent to the outer edge 12 from the rod 20. The top surface 30 of the sealing gasket 48 may compress against the protrusion 28. The sealing gasket 48 may be surrounded by the filtration screen 34 and may rest upon the intermediate junction 22. Upward movement of the inflatable bladder 26 may shift the intermediate junction 22 which may, in turn, move the top surface 30 of the sealing gasket 48. The top surface 30 may compress against protrusion 28 to hold the filtration screen 34 against the protrusion 28 and/or the intermediate junction 22. In an embodiment, compression of the sealing gasket 48 against the protrusion 28 and/or the intermediate junction 22 may be referred to as forming an integrated screen seal.
At the outer edge 12 of the screen fastening system 10 may be an edge and/or rod region E that has the rod 20 abutted against and/or otherwise in contact with the protrusion 28 and/or the intermediate junction 22. In an embodiment, the rod 20 may have an adhesive resin layer 16 that may substantially surround the rod 20 to assist in attachment of the rod 20 with the protrusion 28 and/or the intermediate junction 22. Further, the adhesive resin layer 16 may be generally referred to as “bond tite” in the oilfield services industry.
The screen fastening system 10 may operate by activation of the inflatable bladder 26 that may expand to cause the intermediate junction 22 to rise toward the rod 20. Specifically, movement of the intermediate junction 22 may push the rod 20 and/or the sealing gasket 48 toward the outer edge 12 of the screen fastening system 10 in the direction A as shown in
Referring to
Although the preceding description has been described herein with reference to particular means, materials, and embodiments, it is not intended to be limited to the particulars disclosed herein; rather, it extends to all functionally equivalent structures, methods, and uses, such as are within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4529510 | Johnson et al. | Jul 1985 | A |
5485924 | Zaun | Jan 1996 | A |
6935511 | Seyffert et al. | Aug 2005 | B2 |
7175027 | Strong et al. | Feb 2007 | B2 |
7278540 | Stotne et al. | Oct 2007 | B2 |
7571817 | Scott et al. | Aug 2009 | B2 |
9079222 | Burnett et al. | Jul 2015 | B2 |
20040245153 | Seyffert | Dec 2004 | A1 |
20060102527 | Kato | May 2006 | A1 |
Entry |
---|
International Search Report and Written Opinion for the equivalent International patent application PCT/US2017/029516 dated Aug. 3, 2017. |
International Preliminary Report on Patentability for the equivalent International patent application PCT/US2017/029516 dated Nov. 15, 2018. |
Office Action for the equivalent German patent application 1120170023262 dated Mar. 22, 2019 including machine translation into English. |
Number | Date | Country | |
---|---|---|---|
20170320097 A1 | Nov 2017 | US |