A portion of the disclosure of this patent document contains material to which a claim for copyright and trademark is made. The copyright and trademark owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but reserves all other copyright and trademark rights whatsoever.
The present disclosure is related generally to a healthcare subscription information system, apparatus, and method therefor. The subscription information system transforms existing medication adherence packaging into a digital tool for tracking activity, medication, and, trending metrics associated with the patient. The system assists patients in taking medications on schedule and managing activities of daily life by facilitating communication between patients and third parties such as caregivers, loved ones, spouses, family members, friends, physicians, pharmacists, among others, for example. A mobile device apparatus, system, and method may be employed for detecting a communication from a device such as an ingestible device, e.g., an ingestible event marker (IEM) device associated with a medication. In the case of an IEM device associated with a medication event, for example, a receiver, e.g., a wearable patch device worn by the person taking the medication, detects the ingestion of an IEM device embedded in a medicinal dose. The present disclosure is related to a mobile device such as a handheld portable device, computer, mobile telephone, sometimes referred to as a smartphone, tablet personal computer (PC), kiosk, desktop computer, or laptop computer, or any combination thereof, configured to, among other things, detect the ingestion of an ingestible device by a patient; receive communications related to the ingestible device, e.g., from a receiver; communicate the information to a back end processing system’ and/or assist the patient in managing ingestion of medication, physical activity, and communications with third parties.
Generally, detecting the ingestion of an IEM device is done by detection electronics provided in the form factor of a receiver, e.g., a wearable receiver (e.g., a patch). The wearable receiver may be worn on an outer surface of the skin; an implantable receiver; a partially implantable receiver; a receiver configured in or to be worn as apparel, (e.g., a wristband receiver). In alternative aspects, the receiver may be embodied as a mobile device, e.g., a mobile phone.
The patch, for example, may include wet or dry electrodes which are made to contact the skin. An adhesive layer may be provided on the patch to affix the entire patch arrangement to the patient. When an IEM device is ingested by the patient and comes into contact with stomach fluids, the IEM device initiates a communication which is detected by the detection circuitry of the patch to indicate that the particular IEM device was ingested by the patient.
To address various issues associated with medication adherence, a subscription information system described herein, layered above conventional adherence packaging products is needed. Currently, pharmacies provide medication adherence packages that are pre-filled by a pharmacist in a set of blister packs containing enough medication for predetermined period such as, for example, several days, a week, or a month supply of medication at different dosage times. What is needed is the addition of an ingestible device, e.g., an IEM device, associated with prescribed medication dose into each of the blister packs to identify ingestion and medication-related events and a processing system to track and manage the identified data and the medication process to document adherence and provide feedback, e.g., to the patient, to the caregiver, etc. A subscription information system layered on top of conventional adherence packaging is needed to assist a patient in taking the medication on schedule, managing activities of normal daily life, such as, getting up and moving around, taking medication, ensuring the patient is getting adequate rest. Assistance with these activities is provided by the system by facilitating communication between the patient, third parties, and a back end processing system that records and tracks the patient's medication and physical patterns and stores them in a database. In one aspect, a receiver (e.g., patch with electronic functionality) is worn by the patient to detect the ingestion of an IEM device. The wearable receiver then communicates the event to a mobile device. In another aspect, the IEM device may communicate directly with the mobile device without the need of a wearable receiver. In either aspect, the mobile device communicates the information received from the IEM device in a discreet private manner to a back end processing system. The backend processing system stores the information, analyzes the information, and provides feedback to the patient via the mobile device.
In one aspect, a method of managing adherence to a regimen in a subscription based computer implemented healthcare information environment is provides. At a mobile device information is received from a receiver that a dose was ingested by a living subject. The mobile device comprises a processor, a memory coupled to the processor, and a display coupled to the processor. The information is wirelessly communicated over a wireless network to a backend computer processing system. A personal information stream is received from the computer at the backend processing system. The personal information stream characterizes behavior of the living subject based on the received information over a predetermined period.
In one aspect, an adherence package is provided. The adherence package comprises a sheet with a plurality of tear-away strips associated with a personalized dose.
In one aspect, a system for managing adherence to a regimen in a subscription based computer implemented healthcare information environment is provided. The system comprises a mobile device configured to receive information from a receiver that a dose was ingested by a living subject. The mobile device comprises a processor, a memory coupled to the processor, and a display coupled to the processor. The information is wirelessly communicated over a wireless network to a backend computer processing system. A personal information stream is received from the computer at the backend processing system. The personal information stream characterizes behavior of the living subject based on the received information over a period.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
In various aspects, the present disclosure is directed generally to an apparatus, system, and method for managing adherence to a regimen in a subscription based computer implemented healthcare information environment. For example, the regimen may be a medication regimen, an exercise regimen, a combination of medication and exercise regimen, etc. In accordance with the present disclosure, medication adherence packaging is transformed into a digital tool that assists in taking medications on schedule and managing activities of daily life by facilitating communication between users (e.g., patients) and third parties, such as, for example, personal caregivers (e.g., carers), loved ones, spouses, family members, friends, physicians, pharmacists, among others. In one aspect, a wearable receiver (e.g., electronic patch) is worn by a person taking medications. As used herein, the term “medication” includes ingestible preparations such as pharmaceuticals, such as prescribed or over-the-counter preparations; vitamins; placebos, etc. Medications may be provided in one or more form factors, e.g., pills, tablets, capsules, gel capsules, soft gel capsules, etc. The wearable receiver detects a communication from an ingestible device such as an implantable device, an implantable pulse generator such as a pacemaker, for example, a stent; an implantable transceiver; an ingestible device, such as an ingestible event marker (IEM) device, an ingestible RFID device, an ingestible coil or antenna device; among other devices. In the case of an IEM device, a microelectronic circuit is associated with a medication, e.g., a medicinal dose, to indicate the occurrence of a medication event, for example. The wearable patch device is worn by the person taking the medication to detect the ingestion of the medicinal dose comprising an IEM device embedded therein. The wearable receiver communicates the information to a mobile device. In one aspect, the present disclosure provides a system where the mobile device communicates over one or more than one wireless network to communicate information associated with medication dosing events to a back-end processing system that manages the administration of medication and facilitates communication between the person taking the medication and third parties such as their caregivers, physicians, and/or pharmacists, for example. In one aspect, an adherence package according to the present disclosure comprises, in addition to the medication, a wearable receiver and an IEM device.
The subscription information system according to the present disclosure enables focus on care management of and communication with the patient. Various aspects of the system may be configured to convey trends in activities of daily life, including activity, rest, and medication taking. Also, in other aspects, the system may be configured to assist managing activities of daily life, including taking the appropriate medications on schedule and managing amount and timing of activity and rest. In various aspects, the system also may be configured to facilitate communication between patients and designated third parties. In various aspects, the system may be configured for patients who are primarily responsible for their own care, taking multiple medications, and who are candidates for adherence support. In other aspects, the system may be configured for patients with personal caregivers who assist with or oversee their care. In other aspects, the system may be configured for patients who are capable of using, or have a caregiver capable of using smartphone technology.
In one aspect, the subscription information system according to the present disclosure may be based on adherence packaging products already available on the market. Pharmacies may provide these adherence packages where the pharmacist pre-fills a set of blister packs with a person's medications at different dosage times for a predetermined period such as a day, a week, a month, and so forth. The present disclosure adds one more component, an ingestible device, into at least one blister. For example, a medicinal dose (e.g., a tablet) is added into each of the existing blisters, where the medicinal dose includes an event marker or other ingestible device such as an IEM device, RFID device, etc. In another example, a placebo is added to at least one of the blisters, where the placebo includes an ingestible device such as an IEM device, RFID device, etc.
In one aspect, the subscription information system according to the present disclosure is based on a predetermined adherence packaging form factor and assists a person in taking medication on schedule and managing their activities of daily life. Activities of daily life, among other things, include getting up and moving around, taking medications, ensuring they get adequate rest. One way of assisting with these activities is by facilitating communication between the patient and their caregivers. It will be appreciated, that the subscription information system according to the present disclosure is not intended to replace other forms of communication between the patient and third parties. It is meant, however, to facilitate communication and to provide a layer of information that a patient, carer, etc., would not otherwise have and to focus on interpersonal communication with people on things that are not tactical, generally speaking. Thus, for example, when a relative calls an ill person, the conversation can focus on some normal daily activity such as the book she is reading rather than focusing on whether the person took their medications or whether they exercised for ten minutes on that day.
Once the information is communicated to a mobile device, the subscription information system according to the present disclosure provides a graphical user interface (GUI). In one aspect, the GUI is associated with the mobile device and provides a personal information stream which is effectively a timeline for any given day in the form of an activity indicator, e.g., displayed as an “activity ribbon,” that shows in a simple and concise manner how the person is spending each moment of the day. For example, generally, people will spend a lot of time sleeping, then get up to run some errands, and maybe rest in their chair and watch television when they are done. Later they may get up and go for a walk that elevates their heart rate, get a little exercise, and then return home to sit, rest, and eventually go to sleep. In one aspect, an activity ribbon is provided to show how a person transitions between different states throughout a predetermined period such as day or night. Accordingly, at a glance, the person can readily tell if, in a given night, they have been really disruptive and getting up to go to the bathroom multiple times, or if they tossed and turned all night with really sleeping restfully. This information can be obtained just by looking at the state of an activity ribbon as displayed on a mobile device display GUIs. In addition, in one aspect, the medication events timeline associated with the person can be shown below the activity ribbon along a running time line. Accordingly, the subscription information system according to the present disclosure presents the scheduled medication times as one set of icons and the actual detected medication ingestion times by another set of icons. A person can visually correlate the scheduled versus actual medication times without judgment as presented by the GUI. In this manner, the absence of judgment may enhance usability of the system which, in turn, optimizes adherence to various regimens.
The subscription information system according to the present disclosure provides certain value propositions across the stakeholders, e.g., for the patient, the caregiver, the physician, and the pharmacy. For the patient, the subscription information system according to the present disclosure provides personalized data-driven feedback notifications to help the patient manage his or her daily life. The system further provides earlier detection of negative trends, easier communication with personal physicians, and decreased isolation via an enhanced sense of connectedness. Overall, the system may provide the patient with better quality relationships with caregivers and with less focus on tactical care needs. In addition, use of the system may result in significant cost savings as a result of adherence to medication regimens, e.g., costs otherwise incurred due to non-adherence such as the cost of treating escalated illnesses, etc.
For the caregiver, the subscription information system according to the present disclosure provides reassurance that a loved one is doing okay. Personalized data-driven notifications are set as per personal thresholds. This also leads to better quality relationships with patients with less focus on tactical care needs.
For the pharmacist, the subscription information system according to the present disclosure provides improved adherence to medication by the patient and to increased prescriptions. The system also provides consumer pay, subscription-based mobile phone applications, premium priced adherence packaging services, and increased share of care-at-home services. In addition, the system provides increased consumer loyalty, store traffic and retail cross-selling and new ways to partner with local trusts and health authorities, among other things.
For clarity of disclosure, these and other aspects of the present disclosure will now be described in conjunction with the associated figures. Also, prior to describing the subscription information system, the disclosure first turns to a description of an overall system in which the subscription information system may be practiced. Accordingly, turning now to
Various aspects of an IEM device are disclosed in commonly assigned U.S. Patent Application Publication No. 2008-0284599 A1 entitled, “Pharma-Informatics System” filed on Apr. 28, 2006, which is herein entirely incorporated by reference.
The architecture and operation of a typical wearable receiver 108 and various related aspects are disclosed in commonly assigned U.S. Patent Application Publication No 2010-0312188 A1 entitled “Body-Associated Receiver and Method” filed on Dec. 15, 2009, and is further explained in more detail below in connection with
In one aspect, shortly after the patient 106 ingests an IEM device 104, the digestive fluids 114 in the stomach 116 activate the IEM device 104 to begin conducting a unique electrical current signature, which corresponds to various data. The data, for example, may include data identifying the IEM device 104, data identifying the medication, etc. In various aspects, for example, an IEM device 104 or components thereof may pass through the patient's system. In various aspects, the IEM device 104 may be partially or fully digestible. In various aspects, IEM devices 104 may be configured to communicate continuously or intermittently with the wearable receiver 108 after ingestion. In other aspects, an IEM device 104 may be configured to be selectively activated, deactivated, and/or reactivated.
The electrical current signature generated by the IEM device 104 while disintegrating in the digestive fluids 114 is detectable by a detection arrangement portion of the wearable receiver 108 coupled to the patient 106.
In use, after the patient 106 ingests the IEM device 104, the electrodes portion of the wearable receiver 108 contacting the skin of the patient 106 pick up the current signal generated by the activated IEM device 104. Once the detection arrangement is in place, an application is launched on the mobile device 102 and the patient 106 takes their medication from the blister pack, which includes the IEM device 104. The application may be launched automatically upon detection of a transmission from the wearable receiver 108 or may be launched by user selection using conventional techniques such as a mouse over and click, pushbutton switch activation, virtual pushbutton switch activation, voice recognition, vibration, tapping a GUI element, orientation of the device, for example.
With reference still to
Generally, however, the mobile device 102 transmits the detected information associated with the IEM device 104 either to a wireless node 110 (e.g., a third node or local node) or to a cellular tower 124 in order to transmit the information to a remote processing system 122, also known as a backend processing system. The wireless node 110 may comprise, for example, a mobile station or fixed station having wireless capabilities. Examples for the wireless node 110 may include any of the examples given for the mobile device 102, and further may include a wireless access point, base station or node, base station radio/transceiver, router, switch, hub, gateway, and so forth. In one aspect, for example, the wireless node 110 may comprise a base station for a cellular radiotelephone communications system. Although some aspects may be described with the wireless node 110 implemented as a base station by way of example, it may be appreciated that other aspects may be implemented using other wireless devices as well. The wireless node 110 may be a communication hub, access point, another mobile device, and so on. Accordingly, the wireless node 110 may act as a local access point to wide area networks such as the Internet to communicate the information received from the IEM device 104 to a node 122, which is remotely located from the first and second nodes, e.g., the mobile device 102 and the wireless node 110, respectively. The remote node 122 may be a healthcare facility (physician's office, hospital, pharmacy), drug manufacturer, nutrition center, back end patient healthcare data processing facility, backend processing system, and the like.
In one aspect, the mobile device 102 communicates with the wireless node 110 over a wireless medium 134. In various aspects, the mobile device 102 and the wireless node 110 may comprise or be implemented by a wireless device. The wireless device generally may comprise various physical or logical elements implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints. In various aspects, the physical or logical elements may be connected by one or more communications media. For example, communication media may comprise wired communication media, wireless communication media, or a combination of both, as desired for a given implementation. In various implementations, the described aspects of the mobile device 102 and/or the wireless node 110 may comprise part of a cellular communication system to communicate with a cellular network 128 via cellular tower 124 over wireless medium 136.
As shown in
Vehicles of communication between the wireless node 110 and the remote node 122 include a network. In various aspects, the network may comprise a LAN as well as a WAN including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data. For example, the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same.
The processing system 138 at the remote node 122 may comprise servers configured as desired, e.g., to provide for subject directed permissions. For example, the servers may be configured to allow a family caregiver to participate in the subject's therapeutic regimen, e.g., via an interface (such as a web interface) that allows the family caregiver to monitor alerts and trends generated by the server, and provide support back to the patient. The servers also may be configured to provide responses directly to the subject, e.g., in the form of subject alerts, subject incentives, which are relayed to the subject via the communication device. The servers also may interact with a health care professional, e.g., RN, physician, which can use data processing algorithms to obtain measures of health and compliance of the subject, e.g., wellness index summaries, alerts, cross-patient benchmarks, and provide informed clinical communication and support back to the patient. The servers also may interact with pharmacies, nutrition centers, and drug manufactures.
In one aspect, the remote node 122 may store information received from the mobile device 102 in the database 140. Such information may comprise the approximate time and date stamp when the IEM device 104 was ingested by the patient 106. In addition, an identification number such as a serial number, for example, associated with the IEM device 104, the individual patient identification, the source of the medication, and the expiration date or shelf life of the medication combined with the IEM device 104 may be stored in the database 140.
Still with reference to
In another aspect, the mobile device 102 communicates with a local wireless access point 110 (e.g., Wi-Fi), which is coupled to a LAN 112. The LAN 112 is coupled to a WAN such as the Internet 130, which is coupled to the remotely located remote node 122. Upon detecting the unique electrical current signature generated by the IEM device 104, (e.g., by way of receiving data/information associated with the electrical current signature from the wearable receiver 108), the mobile device 102 can communicate the information to the processing system 138 at the remote node 122 via the access point 110, LAN 112, and Internet 130. The processing system 138 stores the information in the database 140. The remote node 122 can access other networks 132 for additional processing of the information associated with the IEM device 104 stored in the database 140.
In another aspect, the mobile device 102 may transmit information associated with the IEM device 104 to another mobile device. The other mobile device then communicates with the cellular tower 124, base station 126, cellular network 128, and the Internet 130 to the remote node 122. In another aspect, the other mobile device communicates with the access point 110, LAN 112, and the Internet 130 to the remote node 122. Once communication is established with the remote node 112, the information associated with the IEM device 104 can be processed by the processing system and/or stored in the database 140. Additional details associated with the system 100 are described hereinbelow.
In connection with the description of
In a general sense, the adherence package 200 comprises a sheet 202 with a plurality of tear-away strips associated with a personalized dose. At least one blister pack 208 may be coupled to the sheet for containing the personalized dose and a perforation 212 provided on the sheet 202 to enable removal of the at the least one blister pack 208 from the sheet 202 by tearing along the perforation 212. In one aspect of the adherence package 200, at least one of the plurality of tear-away strips comprises an indicia thereon to correlate a time period with the at least one tear-away strip. As illustrated such indicia corresponds to days of the week, although the indicia also may correspond to times of the day, and so on. In another aspect of the adherence package 200, at least one of the plurality of tear-away strips comprises an indicia 206 thereon to correlate a personalized dose with the at least one tear-away strip. In one aspect, the adherence package 200 further comprises at least one receiver 108 configured to be associated with a living subject 106 and to receive a communication from an ingestible device 104. The receiver 108 comprises communication circuits to wirelessly communicate with a mobile device 102. In one aspect, the adherence package 200 further comprises a mobile device 102 configured to communicate with the at least one receiver. In one aspect, the adherence package 200 further comprises at least one ingestible device 104.
In various aspects, in order to receive the weekly medication adherence package 200, the patient 106 must enroll, subscribe, register, etc., to the subscription information system according to the present disclosure. Although initially, the patient 106 will receive a start-up kit, the patient 106 will eventually receive weekly medication adherence packages 200 on a weekly or monthly basis, for example. It will be appreciated, however, that a medication adherence package may be implemented in various forms based on whether it is part of an initial purchase, an ongoing weekly, monthly, or other subscription, or an alternative do-it-yourself configuration, which may simply include refill blister packs and wearable receivers, as described hereinbelow. For example, in one aspect, as part of the initial purchase, the patient 106 receives a start-up kit which includes a personal code, a wearable receiver 108 (e.g., electronic patch), several demonstration tablets, and instructions on how to get started using the kit. If the patient 106 does not own a mobile device 102, one may be provided with the initial purchase. Thus, in one aspect, the start-up kit also may comprise a pre-installed smartphone (e.g., Android) along with use instructions. As part of ongoing monthly subscription, for example, the patient 106 would receive a package similar to the weekly medication adherence package 200 shown in
Within minutes of receiving the initial start-up adherence package and opening it up, the patient 106 is able to install the appropriate applications on the mobile device 102 in order to start collecting data from the wearable receiver 108. The wearable receiver 108 starts collecting activity data after the patient ingests demonstration tablets. Eventually, the patient 106 will receive the actual weekly medication adherence package 200 which contains actual medications and a corresponding IEM device 104 for each medication blister 208 to track the medication events. Once the system is operational, a GUI application launched on the mobile device 102 can be configured to display a variety of personal information such activity and medication streams, personal notifications, insights into activity and medication trends, among others, which are described in detail hereinbelow in connection with
To activate the GUI 300 the user selects the first GUI element 316 and the display screen of the mobile device 102 shows the activity timeline 302 and a medication timeline 304. In
Accordingly, generally, patients will spend a lot of time sleeping and then they will get up and run some errands and then maybe rest in their chair and watch television at mid-day. Later they may get up and go for a walk that elevates their heart rate, get a little exercise and then come back and sit and rest until they go to sleep. The activity ribbon 306 shows the patient how the patient 106 flows between all those different states throughout a day. Therefore, at a glance, the user can tell if the patient 106, in a given night, for example, has been really disruptive and has been getting up multiple times to go to the bathroom or if they were tossing and turning and not really sleeping restfully. This can be seen by looking at the state of the activity ribbon 306. For example a sub-activity portion 330 of the activity ribbon 306 shows that the patient was restless during a period of time when they should have been sleeping.
Having described the subscription information system according to the present disclosure in general terms, one use aspect of the subscription information system is now described with reference to the foregoing
In particular, as shown in
In respect to sharing the patient's data with a caregiver or other party, in one aspect, applications associated with the subscription information system according to the present disclosure whether they are executed on the mobile device 102 or the remote processing system 122, provide a mechanism to ensure that the person with whom the patient intends to share the data is really the intended person. It is the industry standard, for example with web sites like Google Health or Microsoft Health Vault, that such applications requests that the user enter their email address in twice and then press send. It is very common, however, that a person incorrectly enters their email address both times. Therefore, in conventional applications there is no real guarantee that entering an email address twice assures that the intended party receives the information being shared by the patient. In accordance with one aspect, for security and privacy reasons, the present application requests that the user enter their email address once and then select the “send” button. The patient receives a personal code and an email from the remote system 122 saying that the patient has invited a caregiver, or other third party, to share the patient's medical data. The patient then must communicate separately with the invitee either over the phone or separate email to disclose to the invitee the patient's personal code. The caregiver must enter the personal code to accept the patient's invitation to share data. The subscription information system according to the present disclosure does not replace any sort of interpersonal communication with the caregiver, but rather strengthens those relationships and opens up a different line of communication between patient and caregiver.
Once the appropriate information is entered into the “username” text box 1202 and the “password” text box 1204 and the “Create Account” button 1206 is selected, the display screen of the mobile device 102 shows the “Welcome” GUI 1300 as shown in
Upon entering the personal code from the start-up kit into the “personal code” text box 1302 and selecting the “Next” button 1302, the display screen of the mobile device 102 shows a “Create Account” GUI 1400 as shown in
Once the patient 106 has completed the tasks associated with the wear and demonstrate phase as shown and described in connection with
Upon selecting the lower portion of the screen 2006, the display screen of the mobile device 102 shows a “Make a Note” GUI 2100 to select whether the note will appear on the activity timeline 2004 or the medication timeline 2008, as shown in
When the “Meds” element 2004 is selected in the “Make a Note” GUI 2100 of
When the “Activity” element 2006 is selected in the “Make a Note” GUI 2100 of
In
When the “My Notifications” element 3204 is selected, the display screen of the mobile device 102 shows the “My Notifications” GUI 3300 as shown in the
When the Rest notification element 3304 is selected the display screen of the mobile device 102 shows the “Rest” GUI 3500. A “Rest” notification can be sent to the mobile device 102 if the daily rest is less than a selected amount of time (e.g., 4 hours) as shown in text box 3502. Also, a “Rest” notification may be sent to the mobile device 102 if daily rest is more than a selected amount of time (e.g., 10 hours) as shown in text box 3504. In the aspect illustrated in
When the Meds element 3602 is selected the display screen of the mobile device 102 shows the “Meds” notification screen 3700 as shown in
Selecting the “My Doses” element 3702 in
Selecting the “Remind Me” element 3704 in
With reference now back to
In addition to voice communication services, the mobile device 102 and the wireless node 110 may be arranged to communicate using a number of different wireless wide area network (WWAN) data communication services. Examples of cellular data communication systems offering WWAN data communication services may include GSM with General Packet Radio Service (GPRS) systems (GSM/GPRS), CDMA/1xRTT systems, Enhanced Data Rates for Global Evolution (EDGE) systems, Evolution Data Only or Evolution Data Optimized (EV-DO) systems, Evolution For Data and Voice (EV-DV) systems, High Speed Downlink Packet Access (HSDPA) systems, and so forth.
In one aspect, the wireless node 110 may be connected by wired communications medium to additional nodes and connections to other networks, including a voice/data network such as the Public Switched Telephone Network (PSTN), a packet network such as the Internet, a local area network (LAN), a metropolitan area network (MAN), a wide area network (WAN), an enterprise network, a private network, and so forth. In one aspect, for example, network 130 may be arranged to communicate information in accordance with one or more Internet protocols as defined by the Internet Engineering Task Force (IETF), such as the Transmission Control Protocol/Internet Protocol (TCP/IP), for example. The network also may include other cellular radio telephone system infrastructure and equipment, such as base stations, mobile subscriber centers, central offices, and so forth.
In various aspects, the mobile device 102 and the wireless node 110 also may be capable of voice and/or data communications. Communications between the mobile device 102 and the wireless node 110 may be performed over wireless shared media 134 in accordance with a number of wireless protocols. Examples of wireless protocols may include various wireless local area network (WLAN) protocols, including the Institute of Electrical and Electronics Engineers (IEEE) 802.xx series of protocols, such as IEEE 802.11a/b/g/n, IEEE 802.16, IEEE 802.20, and so forth. Other examples of wireless protocols may include various WWAN protocols, such as GSM cellular radiotelephone system protocols with GPRS, CDMA cellular radiotelephone communication systems with 1xRTT, EDGE systems, EV-DO systems, EV-DV systems, HSDPA systems, and so forth. Further examples of wireless protocols may include wireless personal area network (PAN) protocols, such as an Infrared protocol, a protocol from the Bluetooth Special Interest Group (SIG) series of protocols, including Bluetooth Specification versions v1.0, v1.1, v1.2, v2.0, v2.0 with Enhanced Data Rate (EDR), as well as one or more Bluetooth Profiles, and so forth. In one aspect, the Bluetooth wireless technology uses short wavelength radio transmissions in the industrial, scientific, and medical (ISM) radio band from 2400-2480 MHz) from fixed and mobile devices, creating personal area networks (PANs) with high levels of security. Yet another example of wireless protocols may include near-field communication techniques and protocols, such as electro-magnetic induction (EMI) techniques. An example of EMI techniques may include passive or active radio-frequency identification (RFID) protocols and devices. Other suitable protocols may include Ultra Wide Band (UWB), Digital Office (DO), Digital Home, Trusted Platform Module (TPM), Zig Bee, and other protocols.
In various aspects, the mobile device 102 may have one or more application client modules. In one aspect, an application client module receives information from the detection arrangement 108 and process the information to confirm that the patient 106 has ingested the IEM device 104. The application client module records a time and date that the IEM device 104 was detected, which corresponds approximately to the time and date when the IEM device 104 was ingested by the patient 106. In addition, client application module may store information encoded in the unique electrical current signature such as the identity of the IEM device 104, the type of medication associated with the IEM device 104, the manufacturer of the medication and/or IEM device 104, among other information. In some aspects, the client application module may implement a data logging function tracking the ingestible events associated with the patient 106. The client application module can initiate communication with other devices and/or networks.
Other client application modules may be arranged to retrieve and process information from a network (e.g., servers) and display the information on a display or audibly announce the information by way of speaker. The mobile device 102 may be implemented as an open platform adaptable to execute one or more application client programs and integrate with third party software application client programs. The application client modules may provide the necessary interface to existing data sources or backend services, such as web related and wireless services, support GPS navigation modules, process browser based content, and operate with one or more wireless mobile computing devices and web applications, for example. In one aspect, the application client modules may integrate with third party application client programs via APIs to retrieve location information, such as, for example, geographic coordinates, map interfaces, queries for search engines, interfaces to third party location based services (LBS), and any other services provided via servers, and the like. The application client modules may include a GUI layer to process search queries, search results, display maps (e.g., zoom/pan), provide turn-by-turn directions, provide voice activated turn-by-turn directions, and provide permission based interface for LBS type location information, among others. The application client modules also may include an interface layer to process local information, point of interface (POI) data, and a data abstraction layer to process map data, for example. The application client modules also may process data from various data sources or backend services distributed throughout a network (e.g., servers) such as, for example, GPS integrated circuits located either on or off the mobile device 500, carrier AGPS, various prolific search engines (e.g., GOOGLE, YAHOO, and the like), vector data, tile data, among others, for example. It will be appreciated by those skilled in the art that tile data may be defined as a spatial unit representing a sub-region of an image, usually of rectangular nature, by which geographic data is organized, subdivided, and stored in a map library.
In one aspect, for example, the mobile device 102 may employ a software architecture for retrieving and processing information from a communications network. The software architecture may enable the mobile device 102 to communicate and process information from the network and servers, for example. The software architecture includes component implementations and specifies standard programmatic interfaces such as APIs to assist in the common requirements of retrieving information wirelessly between an application client and multiple data source servers. As a result, the software architecture may provide a method to enable application clients to interact with disparate data providers.
In one aspect, for example, the software architecture may be implemented using object-oriented programming (OOP) techniques. OOP is a computer programming paradigm. OOP assumes that a computer program is composed of a collection of individual units, or objects, as opposed to a traditional assumption that a program is a list of instructions to the computer. Each object is capable of receiving messages, processing data, and sending messages to other objects. Almost any concept may be represented as an object. Examples of an object may include menu objects, image objects, frame objects, title objects, border objects, tab objects, list objects, color blue objects, button objects, scroll bar objects, input field objects, text and image objects, and so forth. Although the software architecture may be described in the context of OOP by way of example, it may be appreciated that other software paradigms may be used as desired for a given implementation. For example, the software architecture may be implemented using a model-view-controller (MVC) architecture as well. The aspects are not limited in this context.
In various aspects, a node may comprise an optional display. The display may be implemented using any type of visual interface such as a liquid crystal display (LCD), capacitive touch screen panel, and the like.
In various aspects, a node may comprise a memory. In various aspects, the memory may comprise any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory. For example, memory may include read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDR-RAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., NOR or NAND flash memory), content addressable memory (CAM), polymer memory (e.g., ferroelectric polymer memory), phase-change memory (e.g., ovonic memory), ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, disk memory (e.g., floppy disk, hard drive, optical disk, magnetic disk), or card (e.g., magnetic card, optical card), or any other type of media suitable for storing information.
The various aspects, a node may comprise a processor such as a central processing unit (CPU). In various aspects, the processor may be implemented as a general purpose processor, a chip multiprocessor (CMP), a dedicated processor, an embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a co-processor, a microprocessor such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, and/or a very long instruction word (VLIW) microprocessor, or other processing device. The processor also may be implemented by a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
In various aspects, the processor may be arranged to run an operating system (OS) and various mobile applications. Examples of an OS include, for example, operating systems generally known under the trade name of Microsoft Windows OS, and any other proprietary or open source OS. Examples of mobile applications include, for example, a telephone application, a camera (e.g., digital camera, video camera) application, a browser application, a multimedia player application, a gaming application, a messaging application (e.g., e-mail, short message, multimedia), a viewer application, and so forth.
In various aspects, the processor may be arranged to receive information through a communications interface. The communications interface may comprise any suitable hardware, software, or combination of hardware and software that is capable of coupling a node 110 to one or more networks and/or devices. In one aspect, the wireless node 110 is in wireless communication with the mobile device 102 via the wireless medium 134. The wireless node 110 also may communicate with the remote node 122 via a wired communication medium 134 or a wireless communication medium 120. The communications interface may be arranged to operate using any suitable technique for controlling information signals using a desired set of communications protocols, services or operating procedures. The communications interface may include the appropriate physical connectors to connect with a corresponding communications medium, whether wired or wireless.
Vehicles of communication include a network. In various aspects, the network may comprise LANs as well as WANs including without limitation Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data. For example, the communication environments include in-body communications, various devices, various modes of communications such as wireless communications, wired communications, and combinations of the same.
Wireless communication modes include any mode of communication between points that utilizes, at least in part, wireless technology including various protocols and combinations of protocols associated with wireless transmission, data, and devices. The points include, for example, wireless devices such as wireless headsets, audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as tablet computers, printers.
Wired communication modes include any mode of communication between points that utilizes wired technology including various protocols and combinations of protocols associated with wired transmission, data, and devices. The points include, for example, devices such as audio and multimedia devices and equipment, such as audio players and multimedia players, telephones, including mobile telephones and cordless telephones, and computers and computer-related devices and components, such as tablet computers, printers.
Accordingly, in various aspects, the communications interface may comprise one or more interfaces such as, for example, a wireless communications interface, a wired communications interface, a network interface, a transmit interface, a receive interface, a media interface, a system interface, a component interface, a switching interface, a chip interface, a controller, and so forth. When implemented by a wireless device or within wireless system, for example, the wireless node 110 may include a wireless communication interface comprising one or more antennas, transmitters, receivers, transceivers, amplifiers, filters, control logic, and so forth.
In various aspects, the wireless node 110 may comprise the functionality to wirelessly receive and/or wirelessly transmit data received from the mobile device 102 and transmit that data to other nodes, such as the external node 122 or other nearby nodes, for example. Further, in various aspects, the wireless node 110 may incorporate and/or be associated with, e.g., communicate with, various devices. Such devices may generate, receive, and/or communicate data, e.g., physiologic data. The devices include, for example, “intelligent” devices such as gaming devices, e.g., electronic slot machines, handheld electronic games, electronic components associated with games and recreational activities.
In addition to the standard voice function of a telephone, various aspects of mobile telephones may support many additional services and accessories such as short message service (SMS) for text messaging, email, packet switching for access to the Internet, java gaming, wireless, e.g., short range data/voice communications, infrared, camera with video recorder, and multimedia messaging system (MMS) for sending and receiving photos and video. Some aspects of mobile telephones connect to a cellular network of base stations (cell sites), which is, in turn, interconnected to the public switched telephone network (PSTN) or satellite communications in the case of satellite phones. Various aspects of mobile telephones can connect to the Internet, at least a portion of which can be navigated using the mobile telephones.
Some aspects may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the aspects. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like. The instructions may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language, such as C, C++, Java, BASIC, Perl, Matlab, Pascal, Visual BASIC, arrangement language, machine code, and so forth.
In one aspect, the wireless node 110 may be configured as a communication hub and may include any hardware device, software, and/or communications component(s), as well as systems, subsystems, and combinations of the same which generally function to communicate information received from the mobile device 102 to the remote node 122. Communication of the information includes receiving, storing, manipulating, displaying, processing, and/or transmitting the data to the remote node 122 via wired or wireless media 118, 120.
In various aspects, the wireless node 110 also functions to communicate, e.g., receive and transmit, non-physiologic data. Example of non-physiologic data include gaming rules and data generated by a separate cardiac-related device such as an implanted pacemaker and communicated to the hub (wireless node 110) directly or indirectly, e.g., via the mobile device 102.
Broad categories of each of the mobile device 102 and/or the wireless node 110 include, for example, base stations, personal communication devices, handheld devices, mobile telephones, and mobile computing devices having wireless capabilities generally known as smartphones capable of executing computer applications, as well as voice communications and/or data communications. Examples of mobile computing devices include any type of wireless device, mobile station, or portable computing device with a self-contained power source, e.g., battery. Examples of smartphones include, for example, products generally known under the trade designations Palm, Blackberry, iPhone, Android, Windows Phone, among others. In various aspects, the mobile device 102 and/or the wireless node 110 may comprise, or be implemented as, a PDA, laptop computer, ultra-laptop computer, combination cellular telephone/PDA, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, messaging device, data communication device, a laptop computer, ultra-laptop computer, portable computer, handheld computer, palmtop computer, tablet computer, e-book reader, cellular telephone, pager, one-way pager, two-way pager, messaging device, data communication device, and so forth. Examples of a mobile device 102 and/or wireless node 110 also may include computers that are arranged to be worn by a person, such as a wrist computer, finger computer, ring computer, eyeglass computer, belt-clip computer, arm-band computer, shoe computers, clothing computers, and other wearable computers. A fixed computing device, for example, may be implemented as a desk top computer, workstation, client/server computer, and so forth.
The mobile device 102 and/or wireless node 110 may comprise personal communication devices including, for example, devices having communication and computer functionality and typically intended for individual use, e.g., mobile computers, sometimes referred to as “handheld devices.” Base stations comprise any device or appliance capable of receiving data such as physiologic data. Examples include computers, such as desktop computers and laptop computers, and intelligent devices/appliances. Intelligent devices/appliances include consumer and home devices and appliances that are capable of receipt of data such as physiologic data. Intelligent devices/appliances may also perform other data-related functions, e.g., transmit, display, store, and/or process data. Examples of intelligent devices/appliances include refrigerators, weight scales, toilets, televisions, door frame activity monitors, bedside monitors, bed scales. Such devices and appliances may include additional functionality such as sensing or monitoring various physiologic data, e.g., weight, heart rate. Mobile telephones include telephonic communication devices associated with various mobile technologies, e.g., cellular networks.
The display 5208 may comprise any suitable display unit for displaying information appropriate for a mobile device 102. The I/O system 5210 may comprise any suitable I/O device for entering information into the mobile device 102. Examples for the I/O system 5210 may include an alphanumeric keyboard, a numeric keypad, a touch pad, a capacitive touch screen panel, input keys, buttons, switches, rocker switches, voice recognition device and software, and so forth. The I/O system 5210 may comprise a microphone and speaker, for example. Information also may be entered into the mobile device 102 by way of the microphone. Such information may be digitized by a voice recognition device. As used throughout the present disclosure the term “button” may be used to refer to a mechanical type switch, an electromechanical switch, or a “virtual button” that may be selected using a simple touch over a touch sensitive screen or a point/click with a mouse pointer.
In various aspects, the mobile device 102 comprises a housing 5206, an antenna 5214, a radio subsystem 5314, and a processing subsystem 5312 connected to the radio subsystem 5314 via a bus. The radio subsystem 5314 may perform voice and data communications operations using wireless shared media for the mobile device 102. The processing subsystem 5312 may execute software for the mobile device 102. A bus may comprise a universal serial bus (USB), micro-USB bus, dataport, and appropriate interfaces, as well as others. In one aspect the radio subsystem 5314 may be arranged to communicate voice information and control information over one or more assigned frequency bands of the wireless shared media.
In one aspect, the mobile device 102 may comprise an imaging subsystem 5308 for processing images captured through the aperture 5212. A camera may be coupled (e.g., wired or wirelessly) to the processing subsystem 5312 and is configured to output image data (photographic data of a person or thing, e.g., video data, digital still image data) to the processing subsystem 5312 and to the display 5208. In one aspect, the imaging subsystem 5208 may comprise a digital camera implemented as an electronic device used to capture and store images electronically in a digital format. Additionally, in some aspects the digital camera may be capable of recording sound and/or video in addition to still images.
In one aspect, the imaging subsystem 5208 may comprise a controller to provide control signals to components of a digital camera, including lens position component, microphone position component, and a flash control module, to provide functionality for the digital camera. In some aspects, the controller may be implemented as, for example, a host processor element of the processing subsystem 5312 of the mobile device 102. Alternatively, the imaging controller may be implemented as a separate processor from the host processor.
In various aspects, the imaging subsystem 5308 may comprise memory either as an element of the processing subsystem 5312 of the mobile device 102 or as a separate element. It is worthy to note that in various aspects some portion or the entire memory may be included on the same integrated circuit as the controller. Alternatively, some portion or the entire memory may be disposed on an integrated circuit or other medium (e.g., hard disk drive) external to the integrated circuit of the controller.
In various aspects, the imaging subsystem 5308 may comprise an aperture 5212 with a lens component and a lens position component. The lens component may consist of a photographic or optical lens or arrangement of lenses made of a transparent material such as glass, plastic, acrylic or Plexiglass, for example. In one aspect, the one or more lens elements of the lens component may reproduce an image of an object and allow for zooming in or out on the object by mechanically changing the focal length of the lens elements. In various aspects, a digital zoom may be employed in the imaging subsystem 5308 to zoom in or out on an image. In some aspects, the one or more lens elements may be used to focus on different portions of an image by varying the focal length of the lens elements. The desired focus can be obtained with an autofocus feature of the digital imaging subsystem 5308 or by manually focusing on the desired portion of the image, for example.
A navigation subsystem 5310 supports navigation using the mobile device 102. In various aspects the mobile device 102 may comprise location or position determination capabilities and may employ one or more location determination techniques including, for example, Global Positioning System (GPS) techniques, Cell Global Identity (CGI) techniques, CGI including timing advance (TA) techniques, Enhanced Forward Link Trilateration (EFLT) techniques, Time Difference of Arrival (TDOA) techniques, Angle of Arrival (AOA) techniques, Advanced Forward Link Trilateration (AFTL) techniques, Observed Time Difference of Arrival (OTDOA), Enhanced Observed Time Difference (EOTD) techniques, Assisted GPS (AGPS) techniques, hybrid techniques (e.g., GPS/CGI, AGPS/CGI, GPS/AFTL or AGPS/AFTL for CDMA networks, GPS/EOTD or AGPS/EOTD for GSM/GPRS networks, GPS/OTDOA or AGPS/OTDOA for UMTS networks), among others.
In one aspect, the mobile device 102 may be configured to operate in one or more location determination modes including, for example, a standalone mode, a mobile station (MS) assisted mode, and/or a MS-based mode. In a standalone mode, such as a standalone GPS mode, the mobile device 102 may be configured to determine its position without receiving wireless navigation data from the network, though it may receive certain types of position assist data, such as almanac, ephemeris, and coarse data. In a standalone mode, the mobile device 102 may comprise a local location determination circuit such as a GPS receiver which may be integrated within the housing 5206 configured to receive satellite data via the antenna 5214 and to calculate a position fix. Local location determination circuit may alternatively comprise a GPS receiver in a second housing separate from the housing 5206 but in the vicinity of the mobile device 102 and configured to communicate with the mobile device 102 wirelessly (e.g., via a PAN, such as Bluetooth). When operating in an MS-assisted mode or an MS-based mode, however, the mobile device 102 may be configured to communicate over a radio access network (e.g., UMTS radio access network) with a remote computer (e.g., a location determination entity (LDE), a location proxy server (LPS) and/or a mobile positioning center (MPC), among others).
In various aspects, the mobile device 102 also may comprise a power management subsystem (not shown) to manage power for the mobile device 102, including the radio subsystem 5314, the processing subsystem 5312, and other elements of the mobile device 102. For example, the power management subsystem may include one or more batteries to provide direct current (DC) power, and one or more alternating current (AC) interfaces to draw power from a standard AC main power supply.
In various aspects, the radio subsystem 5314 may include an antenna 5214. The antenna 5214 may broadcast and receive RF energy over the wireless shared media 120 (
In various aspects, the antenna 5214 may be connected to a multiplexer. The multiplexer multiplexes signals from a power amplifier for delivery to the antenna 5214. The multiplexer demultiplexes signals received from the antenna for delivery to an RF chipset.
In various aspects, the multiplexer may be connected to a power amplifier, where the power amplifier may be used to amplify any signals to be transmitted over the wireless shared media 120 (
In various aspects, the power amplifier may be connected to an RF chipset. The RF chipset also may be connected to the multiplexer. In one aspect, the RF chipset may comprise an RF driver and an RF transceiver. The RF chipset performs all of the modulation and direct conversion operations required for GMSK and 8-PSK signal types for quad-band E-GPRS radio. The RF chipset receives analog in-phase (I) and quadrature (Q) signals from a baseband processor, and converts the I/Q signals to an RF signal suitable for amplification by the power amplifier. Similarly, the RF chipset converts the signals received from the wireless shared media 120 (
In various aspects, the RF chipset may be connected to the baseband processor, where the baseband processor may perform baseband operations for the radio subsystem 5314. The baseband processor may comprise both analog and digital baseband sections. The analog baseband section includes I/Q filters, analog-to-digital converters, digital-to-analog converters, audio circuits, and other circuits. The digital baseband section may include one or more encoders, decoders, equalizers/demodulators, GMSK modulators, GPRS ciphers, transceiver controls, automatic frequency control (AFC), automatic gain control (AGC), power amplifier (PA) ramp control, and other circuits.
In various aspects, the baseband processor also may be connected to one or more memory units via a memory bus. In one aspect, for example, the baseband processor may be connected to a flash memory unit and a secure digital (SD) memory unit. The memory units may be removable or non-removable memory. In one aspect, for example, the baseband processor may use approximately 1.6 megabytes of static read-only memory (SRAM) for E-GPRS and other protocol stack needs.
In various aspects, the baseband processor also may be connected to a subscriber identity module (SIM). The baseband processor may have a SIM interface for the SIM, where the SIM may comprise a smart card that encrypts voice and data transmissions and stores data about the specific user so that the user can be identified and authenticated to the network supplying voice or data communications. The SIM also may store data such as personal phone settings specific to the user and phone numbers. The SIM can be removable or non-removable.
In various aspects, the baseband processor may further include various interfaces for communicating with a host processor of the processing subsystem 5312. For example, the baseband processor may have one or more universal asynchronous receiver-transmitter (UART) interfaces, one or more control/status lines to the host processor, one or more control/data lines to the host processor, and one or more audio lines to communicate audio signals to an audio subsystem of processing subsystem 5314. The aspects are not limited in this context.
In various aspects, the processing subsystem 5314 may provide computing or processing operations for the mobile device 102. For example, the processing subsystem 5314 may be arranged to execute various software programs for the mobile device 102. Although the processing subsystem 5314 may be used to implement operations for the various aspects as software executed by a processor, it may be appreciated that the operations performed by the processing subsystem 5314 also may be implemented using hardware circuits or structures, or a combination of hardware and software, as desired for a particular implementation.
In various aspects, the processing subsystem 5312 may include a processor implemented using any processor or logic device, such as a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing a combination of instruction sets, or other processor device. In one aspect, for example, a processor may be implemented as a general purpose processor, such as a processor made by Intel Corporation, Santa Clara, Calif. The processor also may be implemented as a dedicated processor, such as a controller, microcontroller, embedded processor, a digital signal processor (DSP), a network processor, a media processor, an input/output (I/O) processor, a media access control (MAC) processor, a radio baseband processor, a field programmable gate array (FPGA), a programmable logic device (PLD), and so forth.
In one aspect, the processing subsystem 5314 may include a memory to connect to the processor. The memory may be implemented using any machine-readable or computer-readable media capable of storing data, including both volatile and non-volatile memory. For example, the memory may include ROM, RAM, DRAM, DDRAM, SDRAM, SRAM, PROM, EPROM, EEPROM, flash memory, polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, or any other type of media suitable for storing information. It is worthy to note that some portion or all of the memory may be included on the same integrated circuit as the processor thereby obviating the need for a memory bus. Alternatively some portion or all of the memory may be disposed on an integrated circuit or other medium, for example a hard disk drive, that is external to the integrated circuit of the processor, and the processor may access the memory via a memory bus, for example.
In various aspects, the memory may store one or more software components (e.g., application client modules). A software component may refer to one or more programs, or a portion of a program, used to implement a discrete set of operations. A collection of software components for a given device may be collectively referred to as a software architecture or application framework. A software architecture for the mobile device 500 is described in more detail below.
A software architecture suitable for use with the mobile device 500 may include a GUI module, an interface module, a data source or backend services module (data source), and a third party API module. An optional LBS module may comprise a user based permission module, a parser module (e.g., National Maritime Electronic Association or NMEA), a location information source module, and a position information source module. In some aspects, some software components may be omitted and others added. Further, operations for some programs may be separated into additional software components, or consolidated into fewer software components, as desired for a given implementation. The mobile device 500 software architecture may comprise several elements, components or modules, collectively referred to herein as a “module.” A module may be implemented as a circuit, an integrated circuit, an application specific integrated circuit (ASIC), an integrated circuit array, a chipset comprising an integrated circuit or an integrated circuit array, a logic circuit, a memory, an element of an integrated circuit array or a chipset, a stacked integrated circuit array, a processor, a digital signal processor, a programmable logic device, code, firmware, software, and any combination thereof.
With reference back to
In various aspects, the sensors 5414 typically contact the patient 106 (
In various aspects, the feedback module 5416 may be implemented with software, hardware, circuitry, various devices, and combinations thereof. The function of the feedback module 5416 is to provide communication with the patient 106 (
In the specific example of the system 5500 shown in
In one aspect, the system D includes a framework 5502. The framework 5502 is a chassis for the system 5500 and multiple components are attached to, deposited upon, or secured to the framework 5502. In this aspect of the system 5500, a digestible material 5504 is physically associated with the framework 5502. The material 5504 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as “deposit” with respect to the framework 5502. The material 5504 is deposited on one side of the framework 5502. The materials of interest that can be used as material 5504 include, but are not limited to: Cu, CuCl, or CuI. The material 5504 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols. The material 5504 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. The shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 5500 may contain two or more electrically unique regions where the material 5504 may be deposited, as desired.
At a different side, which is the opposite side as shown in
According to the disclosure set forth, the materials 5504, 5506 can be any pair of materials with different electrochemical potentials. Additionally, in the aspects wherein the system 5500 is used in-vivo, the materials 5504, 5506 may be vitamins that can be absorbed. More specifically, the materials 5504, 5506 can be made of any two materials appropriate for the environment in which the system 5500 will be operating. For example, when used with an ingestible product, the materials 5504, 5506 are any pair of materials with different electrochemical potentials that are ingestible. An illustrative example includes the instance when the system 5500 is in contact with an ionic solution, such as stomach acids. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
Materials and pairings of interest include, but are not limited to, those reported in TABLE 1 below. In one aspect, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage potential created between the materials as they come into contact with a conducting liquid. Non-metals that may be used as doping agents in certain aspects include, but are not limited to: sulfur, iodine, and the like. In another aspect, the materials are copper iodine (CuI) as the anode and magnesium (Mg) as the cathode. Aspects of the present disclosure use electrode materials that are not harmful to the human body.
Thus, when the system 5500 is in contact with the conducting fluid, a current path is formed through the conducting fluid between the dissimilar materials 5504, 5506. A control device 5508 is secured to the framework 5502 and electrically coupled to the materials 5504, 5506. The control device 5508 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between the materials 5504, 5506.
The voltage potential created between the dissimilar materials 5504, 5506 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system 5500. In one aspect, the system 5500 operates in direct current mode. In an alternative aspect, the system 5500 controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current. As the system reaches the conducting fluid or the electrolyte, where the fluid or electrolyte component is provided by a physiological fluid, e.g., stomach acid, the path for current flow between the dissimilar materials 5504, 5506 is completed external to the system 5500; the current path through the system 5500 is controlled by the control device 5508. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 2100 has been activate and the desired event is occurring or has occurred.
In one aspect, the two dissimilar materials 5504, 5506 are similar in function to the two electrodes needed for a direct current power source, such as a battery. The conducting liquid acts as the electrolyte needed to complete the power source. The completed power source described is defined by the physical chemical reaction between the dissimilar materials 5504, 5506 of the system 5500 and the surrounding fluids of the body. The completed power source may be viewed as a power source that exploits reverse electrolysis in an ionic or a conduction solution such as gastric fluid, blood, or other bodily fluids and some tissues. Additionally, the environment may be something other than a body and the liquid may be any conducting liquid. For example, the conducting fluid may be salt water or a metallic based paint.
In certain aspects, the two dissimilar materials 5504, 5506 are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials 5504, 5506 are exposed to the target site, a voltage potential is generated.
In certain aspects, the complete power source or supply is one that is made up of active electrode materials, electrolytes, and inactive materials, such as current collectors, packaging. The active materials are any pair of materials with different electrochemical potentials. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.
A variety of different materials may be employed as the materials that form the electrodes. In certain aspects, electrode materials are chosen to provide for a voltage upon contact with the target physiological site, e.g., the stomach, sufficient to drive the system of the identifier. In certain aspects, the voltage provided by the electrode materials upon contact of the metals of the power source with the target physiological site is 0.001 V or higher, including 0.01 V or higher, such as 0.1 V or higher, e.g., 0.3 V or higher, including 0.5 volts or higher, and including 1.0 volts or higher, where in certain aspects, the voltage ranges from about 0.001 to about 10 volts, such as from about 0.01 to about 10 V.
Still referring to
The system 5500 may be grounded through a ground contact. The system 5500 also may include a sensor module. In operation, ion or current paths are established between the first material 5504 to the second material 5506 and through a conducting fluid in contact with the system 5500. The voltage potential created between the first and second materials 5504, 5506 is created through chemical reactions between the first and second materials 5504, 5506 and the conducting fluid. In one aspect, the surface of the first material 5504 is not planar, but rather an irregular surface. The irregular surface increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid.
In one aspect, at the surface of the first material 5504, there is chemical reaction between the material 5504 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term mass as used herein refers to protons and neutrons that form a substance. One example includes the instant where the material is CuCl and when in contact with the conducting fluid, CuCl becomes Cu (solid) and Cl— in solution. The flow of ions into the conduction fluid is via ion paths. In a similar manner, there is a chemical reaction between the second material 5506 and the surrounding conducting fluid and ions are captured by the second material 5506. The rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by the control device 5508. The control device 5508 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the first and second materials 5504, 5506. Through controlling the ion exchange, the system 5500 can encode information in the ionic exchange process. Thus, the system 5500 uses ionic emission to encode information in the ionic exchange.
The control device 5508 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 5508 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 5508 encodes information in the current flow or the ionic exchange. For example, the control device 5508 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency Modulation (FM), Amplitude Modulation (AM), On-Off Keying, and PSK with On-Off Keying.
Various aspects of the system 5500 may comprise electronic components as part of the control device 5508. Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters. Each component may be secured to the framework and/or to another component. The components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.
The system 5500 controls the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the system 5500 is capable of producing various different unique exchanges or signatures and, thus, provides additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.
Turning now to
Turning now to
It will be appreciated that the term “mobile device” may refer generally to any device which can be configured as a communication node for receiving a first communication from a first device and transmitting a second communication to a second device. In one aspect, the mobile device may comprise various physical or logical elements implemented as hardware, software, or any combination thereof, as desired for a given set of design parameters or performance constraints. In various aspects, the physical or logical elements may be connected by one or more communications media. For example, communication media may comprise wired communication media, wireless communication media, or a combination of both, as desired for a given implementation.
In various aspects, the mobile device or elements of the mobile device such as the physical or logical elements of the device may be incorporated in any suitable device including, without limitation, a personal digital assistant (PDA), laptop computer, ultra-laptop computer, combination cellular telephone/PDA, smartphone, mobile unit, subscriber station, user terminal, portable computer, handheld computer, palmtop computer, wearable computer, media player, messaging device, data communication device, a laptop computer, ultra-laptop computer, portable computer, handheld computer, palmtop computer, tablet computer, e-book reader, cellular telephone, pager, one-way pager, two-way pager, messaging device, data communication device, computers that are arranged to be worn by a person, such as a wrist computer, finger computer, ring computer, eyeglass computer, belt-clip computer, arm-band computer, shoe computers, clothing computers, and other wearable computers, media or multimedia controllers (e.g., audio and/or visual remote control devices), intelligent devices/appliances such as consumer and home devices and appliances that are capable of receipt of data such as physiologic data and perform other data-related functions, e.g., transmit, display, store, and/or process data, refrigerators, weight scales, toilets, televisions, door frame activity monitors, bedside monitors, bed scales, mobile telephones, portable telephones, eyeglasses, hearing aids, headwear (e.g., hats, caps, visors, helmets, goggles, earmuffs, headbands), wristbands, jewelry, furniture, and/or any suitable object that may be configured to incorporate the appropriate physical and/or logical elements for implementing the mobile device and to receive a first communication from a first device and transmit a second communication to a second device.
It will be appreciated that the term “medication” or “medicinal dose” as used throughout this disclosure may include, without limitation, various forms of ingestible, inhalable, injectable, absorbable, or otherwise consumable medicaments and/or carriers therefor such as, for example, pills, capsules, gel caps, placebos, over capsulation carriers or vehicles, herbal, over-the-counter (OTC) substances, supplements, prescription-only medication, and the like, to be taken in conjunction with an IEM. Such carriers are described in commonly owned applications U.S. application Ser. No. 12/673,150 titled “Pharmaceutical Dosages Delivery System,” filed Feb. 11, 2010 which is incorporated by reference in its entirety.
It also will be appreciated that as described in the present disclosure, that the mobile devices that incorporate an image capture device (e.g., a digital camera) may be used to capture an image of the IEM device, medication, container in which the medication, among others. Once the image is captured it can be used to verify the patient taking the medication, the medication itself, expiration dates on the package, among other information. The digitally captured image can be stored, compressed, transmitted over local and wide area networks (such as the Internet), and so on.
It is worthy to note that any reference to “one aspect” or “an aspect” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect” or “in an aspect” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
While certain features of the aspects have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the aspects.
Number | Name | Date | Kind |
---|---|---|---|
3589943 | Grubb et al. | Jun 1971 | A |
3607788 | Adolph | Sep 1971 | A |
3628669 | McKinnis et al. | Dec 1971 | A |
3642008 | Bolduc | Feb 1972 | A |
3679480 | Brown et al. | Jul 1972 | A |
3682160 | Murata | Aug 1972 | A |
3719183 | Schwartz | Mar 1973 | A |
3799802 | Schneble, Jr. et al. | Mar 1974 | A |
3828766 | Krasnow | Aug 1974 | A |
3837339 | Aisenberg et al. | Sep 1974 | A |
3893111 | Cotter | Jul 1975 | A |
3944064 | Bashaw et al. | Mar 1976 | A |
3967202 | Batz | Jun 1976 | A |
3989050 | Buchalter | Nov 1976 | A |
4017856 | Wiegand | Apr 1977 | A |
4055178 | Harrigan | Oct 1977 | A |
4062750 | Butler | Dec 1977 | A |
4077397 | Ellis | Mar 1978 | A |
4077398 | Ellis | Mar 1978 | A |
4082087 | Howson | Apr 1978 | A |
4090752 | Long | May 1978 | A |
4106348 | Auphan | Aug 1978 | A |
4129125 | Lester | Dec 1978 | A |
4166453 | McClelland | Sep 1979 | A |
4239046 | Ong | Dec 1980 | A |
4251795 | Shibasaki et al. | Feb 1981 | A |
4269189 | Abraham | May 1981 | A |
4331654 | Morris | May 1982 | A |
4345588 | Widder et al. | Aug 1982 | A |
4418697 | Tama | Dec 1983 | A |
4425117 | Hugemann | Jan 1984 | A |
4439196 | Higuchi | Mar 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4559950 | Vaughan | Dec 1985 | A |
4564363 | Bagnall et al. | Jan 1986 | A |
4578061 | Lemelson | Mar 1986 | A |
4635641 | Hoffman | Jan 1987 | A |
4654165 | Eisenber | Mar 1987 | A |
4663250 | Ong et al. | May 1987 | A |
4669479 | Dunseath | Jun 1987 | A |
4681111 | Silvian | Jul 1987 | A |
4687660 | Baker et al. | Aug 1987 | A |
4725997 | Urquhart et al. | Feb 1988 | A |
4763659 | Dunseath | Aug 1988 | A |
4767627 | Caldwell et al. | Aug 1988 | A |
4784162 | Ricks | Nov 1988 | A |
4793825 | Benjamin et al. | Dec 1988 | A |
4809705 | Ascher | Mar 1989 | A |
4844076 | Lesho | Jul 1989 | A |
4876093 | Theeuwes et al. | Oct 1989 | A |
4896261 | Nolan | Jan 1990 | A |
4975230 | Pinkhasov | Dec 1990 | A |
4987897 | Funke | Jan 1991 | A |
5000957 | Eckenhoff et al. | Mar 1991 | A |
5016634 | Vock et al. | May 1991 | A |
5079006 | Urquhart | Jan 1992 | A |
5167626 | Casper et al. | Dec 1992 | A |
5176626 | Soehendra | Jan 1993 | A |
5245332 | Katzenstein | Sep 1993 | A |
5261402 | DiSabito | Nov 1993 | A |
5263481 | Axelgaard et al. | Nov 1993 | A |
5279607 | Schentag et al. | Jan 1994 | A |
5281287 | Lloyd | Jan 1994 | A |
5283136 | Peled et al. | Feb 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5318557 | Gross | Jun 1994 | A |
5394882 | Mawhinney | Mar 1995 | A |
5395366 | D'Andrea et al. | Mar 1995 | A |
5436091 | Shackle et al. | Jul 1995 | A |
5443461 | Atkinson et al. | Aug 1995 | A |
5443843 | Curatolo et al. | Aug 1995 | A |
5458141 | Neil et al. | Oct 1995 | A |
5485841 | Watkin et al. | Jan 1996 | A |
5511548 | Riazzi et al. | Apr 1996 | A |
5567210 | Bates et al. | Oct 1996 | A |
5596302 | Mastrocola et al. | Jan 1997 | A |
D377983 | Sabri et al. | Feb 1997 | S |
5600548 | Nguyen et al. | Feb 1997 | A |
5634466 | Gruner | Jun 1997 | A |
5634468 | Platt | Jun 1997 | A |
5645063 | Straka et al. | Jul 1997 | A |
5705189 | Lehmann et al. | Jan 1998 | A |
5720771 | Snell | Feb 1998 | A |
5738708 | Peachey et al. | Apr 1998 | A |
5740811 | Hedberg | Apr 1998 | A |
5757326 | Koyama et al. | May 1998 | A |
5792048 | Schaefer | Aug 1998 | A |
5802467 | Salazar | Sep 1998 | A |
5833716 | Bar-Or | Nov 1998 | A |
5845265 | Woolston | Dec 1998 | A |
5862803 | Besson | Jan 1999 | A |
5862808 | Albarello | Jan 1999 | A |
5868136 | Fox | Feb 1999 | A |
5921925 | Cartmell et al. | Jul 1999 | A |
5925030 | Gross et al. | Jul 1999 | A |
5925066 | Kroll et al. | Jul 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5963132 | Yoakum | Oct 1999 | A |
5974124 | Schlueter, Jr. et al. | Oct 1999 | A |
5981166 | Mandecki | Nov 1999 | A |
5999846 | Pardey et al. | Dec 1999 | A |
6023631 | Cartmell et al. | Feb 2000 | A |
6038464 | Axelgaard et al. | Mar 2000 | A |
6042710 | Dubrow | Mar 2000 | A |
6047203 | Sackner | Apr 2000 | A |
6076016 | Feierbach et al. | Jun 2000 | A |
6081734 | Batz | Jun 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6090489 | Hayakawa et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6095985 | Raymond et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6117077 | Del Mar et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6149940 | Maggi et al. | Nov 2000 | A |
6200265 | Walsh et al. | Mar 2001 | B1 |
6204764 | Maloney | Mar 2001 | B1 |
6206702 | Hayden et al. | Mar 2001 | B1 |
6217744 | Crosby | Apr 2001 | B1 |
6231593 | Meserol | May 2001 | B1 |
6245057 | Sieben et al. | Jun 2001 | B1 |
6269058 | Yamanoi et al. | Jul 2001 | B1 |
6275476 | Wood | Aug 2001 | B1 |
6285897 | Kilcoyne et al. | Sep 2001 | B1 |
6287252 | Lugo | Sep 2001 | B1 |
6288629 | Cofino et al. | Sep 2001 | B1 |
6289238 | Besson et al. | Sep 2001 | B1 |
6315719 | Rode et al. | Nov 2001 | B1 |
6342774 | Kreisinger et al. | Jan 2002 | B1 |
6344824 | Takasugi et al. | Feb 2002 | B1 |
6358202 | Arent | Mar 2002 | B1 |
6364834 | Reuss | Apr 2002 | B1 |
6366206 | Ishikawa et al. | Apr 2002 | B1 |
6368190 | Easter et al. | Apr 2002 | B1 |
6371927 | Brune | Apr 2002 | B1 |
6374670 | Spelman | Apr 2002 | B1 |
6380858 | Yarin et al. | Apr 2002 | B1 |
6390088 | Nohl et al. | May 2002 | B1 |
6394953 | Devlin et al. | May 2002 | B1 |
6394997 | Lemelson | May 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6426863 | Munshi | Jul 2002 | B1 |
6432292 | Pinto et al. | Aug 2002 | B1 |
6440069 | Raymond et al. | Aug 2002 | B1 |
6441747 | Khair | Aug 2002 | B1 |
6453199 | Kobozev | Sep 2002 | B1 |
6477424 | Thompson et al. | Nov 2002 | B1 |
6482156 | Lliff | Nov 2002 | B2 |
6494829 | New et al. | Dec 2002 | B1 |
6496705 | Ng et al. | Dec 2002 | B1 |
6526315 | Inagawa | Feb 2003 | B1 |
6531026 | Takeichi et al. | Mar 2003 | B1 |
6544174 | West | Apr 2003 | B2 |
6564079 | Cory | May 2003 | B1 |
6572636 | Hagen et al. | Jun 2003 | B1 |
6577893 | Besson et al. | Jun 2003 | B1 |
6579231 | Phipps | Jun 2003 | B1 |
6595929 | Stivoric | Jul 2003 | B2 |
6599284 | Faour et al. | Jul 2003 | B2 |
6605038 | Teller | Aug 2003 | B1 |
6605046 | Del Mar | Aug 2003 | B1 |
6609018 | Cory | Aug 2003 | B2 |
6612984 | Kerr | Sep 2003 | B1 |
6632175 | Marshall | Oct 2003 | B1 |
6632216 | Houzego et al. | Oct 2003 | B2 |
6635279 | Kolter et al. | Oct 2003 | B2 |
6643541 | Mok et al. | Nov 2003 | B2 |
6654638 | Sweeney | Nov 2003 | B1 |
6663846 | McCombs | Dec 2003 | B1 |
6673474 | Yamamoto | Jan 2004 | B2 |
6680923 | Leon | Jan 2004 | B1 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6694161 | Mehrotra | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6720923 | Hayward et al. | Apr 2004 | B1 |
6738671 | Christophersom et al. | May 2004 | B2 |
6740033 | Olejniczak et al. | May 2004 | B1 |
6745082 | Axelgaard et al. | Jun 2004 | B2 |
6755783 | Cosentino | Jun 2004 | B2 |
6757523 | Fry | Jun 2004 | B2 |
6759968 | Zierolf | Jul 2004 | B2 |
6773429 | Sheppard et al. | Aug 2004 | B2 |
6800060 | Marshall | Oct 2004 | B2 |
6801137 | Eggers et al. | Oct 2004 | B2 |
6814706 | Barton et al. | Nov 2004 | B2 |
6822554 | Vrijens et al. | Nov 2004 | B2 |
6836862 | Erekson et al. | Dec 2004 | B1 |
6839659 | Tarassenko et al. | Jan 2005 | B2 |
6840904 | Goldberg | Jan 2005 | B2 |
6842636 | Perrault | Jan 2005 | B2 |
6845272 | Thomsen | Jan 2005 | B1 |
6864780 | Doi | Mar 2005 | B2 |
6879810 | Bouet | Apr 2005 | B2 |
6882881 | Lesser et al. | Apr 2005 | B1 |
6897788 | Khair et al. | May 2005 | B2 |
6909878 | Haller | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6928370 | Anuzis et al. | Aug 2005 | B2 |
6929636 | Von Alten | Aug 2005 | B1 |
6937150 | Medema | Aug 2005 | B2 |
6942616 | Kerr | Sep 2005 | B2 |
6951536 | Yokoi | Oct 2005 | B2 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6959929 | Pugnet et al. | Nov 2005 | B2 |
6968153 | Heinonen | Nov 2005 | B1 |
6987965 | Ng et al. | Jan 2006 | B2 |
6990082 | Zehavi et al. | Jan 2006 | B1 |
7002476 | Rapchak | Feb 2006 | B2 |
7004395 | Koenck | Feb 2006 | B2 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7009946 | Kardach | Mar 2006 | B1 |
7013162 | Gorsuch | Mar 2006 | B2 |
7016648 | Haller | Mar 2006 | B2 |
7020508 | Stivoric | Mar 2006 | B2 |
7024248 | Penner et al. | Apr 2006 | B2 |
7031745 | Shen | Apr 2006 | B2 |
7031857 | Tarassenko et al. | Apr 2006 | B2 |
7039453 | Mullick | May 2006 | B2 |
7044911 | Drinan et al. | May 2006 | B2 |
7046649 | Awater et al. | May 2006 | B2 |
7076437 | Levy | Jul 2006 | B1 |
7118531 | Krill | Oct 2006 | B2 |
7127300 | Mazar et al. | Oct 2006 | B2 |
7146228 | Nielsen | Dec 2006 | B2 |
7146449 | Do et al. | Dec 2006 | B2 |
7149581 | Goedeke et al. | Dec 2006 | B2 |
7154071 | Sattler et al. | Dec 2006 | B2 |
7155232 | Godfrey et al. | Dec 2006 | B2 |
7160258 | Imran | Jan 2007 | B2 |
7161484 | Tsoukalis | Jan 2007 | B2 |
7164942 | Avrahami | Jan 2007 | B2 |
7171166 | Ng et al. | Jan 2007 | B2 |
7171177 | Park et al. | Jan 2007 | B2 |
7171259 | Rytky | Jan 2007 | B2 |
7176784 | Gilbert et al. | Feb 2007 | B2 |
7187960 | Abreu | Mar 2007 | B2 |
7188767 | Penuela | Mar 2007 | B2 |
7194038 | Inkinen | Mar 2007 | B1 |
7206630 | Tarler | Apr 2007 | B1 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7215660 | Perlman | May 2007 | B2 |
7215991 | Besson | May 2007 | B2 |
7218967 | Bergelson | May 2007 | B2 |
7231451 | Law | Jun 2007 | B2 |
7243118 | Lou | Jul 2007 | B2 |
7246521 | Kim | Jul 2007 | B2 |
7249212 | Do | Jul 2007 | B2 |
7252792 | Perrault | Aug 2007 | B2 |
7253716 | Lovoi et al. | Aug 2007 | B2 |
7261690 | Teller | Aug 2007 | B2 |
7270633 | Goscha | Sep 2007 | B1 |
7273454 | Raymond et al. | Sep 2007 | B2 |
7285090 | Stivoric et al. | Oct 2007 | B2 |
7289855 | Nghiem | Oct 2007 | B2 |
7291497 | Holmes | Nov 2007 | B2 |
7292139 | Mazar et al. | Nov 2007 | B2 |
7294105 | Islam | Nov 2007 | B1 |
7313163 | Liu | Dec 2007 | B2 |
7317378 | Jarvis et al. | Jan 2008 | B2 |
7318808 | Tarassenko et al. | Jan 2008 | B2 |
7336929 | Yasuda | Feb 2008 | B2 |
7342895 | Serpa | Mar 2008 | B2 |
7346380 | Axelgaard et al. | Mar 2008 | B2 |
7349722 | Witkowski et al. | Mar 2008 | B2 |
7352998 | Palin | Apr 2008 | B2 |
7353258 | Washburn | Apr 2008 | B2 |
7357891 | Yang et al. | Apr 2008 | B2 |
7359674 | Markki | Apr 2008 | B2 |
7366558 | Virtanen et al. | Apr 2008 | B2 |
7368190 | Heller et al. | May 2008 | B2 |
7368191 | Andelman et al. | May 2008 | B2 |
7373196 | Ryu et al. | May 2008 | B2 |
7375739 | Robbins | May 2008 | B2 |
7376435 | McGowan | May 2008 | B2 |
7382263 | Danowski et al. | Jun 2008 | B2 |
7387607 | Holt | Jun 2008 | B2 |
7388903 | Godfrey et al. | Jun 2008 | B2 |
7389088 | Kim | Jun 2008 | B2 |
7392015 | Farlow | Jun 2008 | B1 |
7395106 | Ryu et al. | Jul 2008 | B2 |
7396330 | Banet | Jul 2008 | B2 |
7404968 | Abrams et al. | Jul 2008 | B2 |
7413544 | Kerr | Aug 2008 | B2 |
7414534 | Kroll et al. | Aug 2008 | B1 |
7414543 | Rye et al. | Aug 2008 | B2 |
7415242 | Ngan | Aug 2008 | B1 |
7424268 | Diener | Sep 2008 | B2 |
7424319 | Muehlsteff | Sep 2008 | B2 |
7427266 | Ayer et al. | Sep 2008 | B2 |
7471665 | Perlman | Dec 2008 | B2 |
7499674 | Salokannel | Mar 2009 | B2 |
7502643 | Farringdon et al. | Mar 2009 | B2 |
7505795 | Lim et al. | Mar 2009 | B1 |
7510121 | Koenck | Mar 2009 | B2 |
7512448 | Malick | Mar 2009 | B2 |
7515043 | Welch | Apr 2009 | B2 |
7519416 | Sula et al. | Apr 2009 | B2 |
7523756 | Minai | Apr 2009 | B2 |
7525426 | Edelstein | Apr 2009 | B2 |
7539533 | Tran | May 2009 | B2 |
7542878 | Nanikashvili | Jun 2009 | B2 |
7551590 | Haller | Jun 2009 | B2 |
7554452 | Cole | Jun 2009 | B2 |
7558620 | Ishibashi | Jul 2009 | B2 |
7575005 | Mumford | Aug 2009 | B2 |
7616111 | Covannon | Nov 2009 | B2 |
7616710 | Kim et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7639473 | Hsu et al. | Dec 2009 | B2 |
7640802 | King et al. | Jan 2010 | B2 |
7647112 | Tracey | Jan 2010 | B2 |
7647185 | Tarassenko et al. | Jan 2010 | B2 |
7653031 | Godfrey et al. | Jan 2010 | B2 |
7668437 | Yamada et al. | Feb 2010 | B1 |
7672703 | Yeo et al. | Mar 2010 | B2 |
7672714 | Kuo | Mar 2010 | B2 |
7673679 | Harrison et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7689437 | Teller et al. | Mar 2010 | B1 |
7697994 | VanDanacker et al. | Apr 2010 | B2 |
7720036 | Sadri et al. | May 2010 | B2 |
7729776 | Von Arx et al. | Jun 2010 | B2 |
7733224 | Tran | Jun 2010 | B2 |
7736318 | Cosentino | Jun 2010 | B2 |
7756587 | Penner et al. | Jul 2010 | B2 |
7779614 | McGonagle et al. | Aug 2010 | B1 |
7796043 | Euliano et al. | Sep 2010 | B2 |
7797033 | D'Andrea et al. | Sep 2010 | B2 |
7806852 | Jurson | Oct 2010 | B1 |
7809399 | Lu | Oct 2010 | B2 |
7844341 | Von Arx et al. | Nov 2010 | B2 |
7904133 | Gehman et al. | Mar 2011 | B2 |
D639437 | Bishay et al. | Jun 2011 | S |
8025149 | Sterry et al. | Sep 2011 | B2 |
8036731 | Kimchy et al. | Oct 2011 | B2 |
8073707 | Teller et al. | Dec 2011 | B2 |
8083128 | Dembo et al. | Dec 2011 | B2 |
8123576 | Kim | Feb 2012 | B2 |
8180425 | Selvitelli et al. | May 2012 | B2 |
8200320 | Kovacs | Jun 2012 | B2 |
8214007 | Baker et al. | Jul 2012 | B2 |
8224667 | Miller et al. | Jul 2012 | B1 |
8238998 | Park | Aug 2012 | B2 |
8249686 | Libbus et al. | Aug 2012 | B2 |
8258962 | Robertson et al. | Sep 2012 | B2 |
8285356 | Bly et al. | Oct 2012 | B2 |
8290574 | Felid et al. | Oct 2012 | B2 |
8301232 | Albert et al. | Oct 2012 | B2 |
8308640 | Baldus et al. | Nov 2012 | B2 |
8315687 | Cross et al. | Nov 2012 | B2 |
8369936 | Farringdon et al. | Feb 2013 | B2 |
8386009 | Lindberg et al. | Feb 2013 | B2 |
8389003 | Mintchev et al. | Mar 2013 | B2 |
8440274 | Wang | May 2013 | B2 |
8597186 | Hafezi et al. | Dec 2013 | B2 |
9047746 | Euliano, II | Jun 2015 | B1 |
20010027331 | Thompson | Oct 2001 | A1 |
20010031071 | Nichols et al. | Oct 2001 | A1 |
20010044588 | Mault | Nov 2001 | A1 |
20010051766 | Gazdzinski | Dec 2001 | A1 |
20010056262 | Cabiri et al. | Dec 2001 | A1 |
20020002326 | Causey et al. | Jan 2002 | A1 |
20020026111 | Ackerman | Feb 2002 | A1 |
20020032384 | Raymond et al. | Mar 2002 | A1 |
20020032385 | Raymond et al. | Mar 2002 | A1 |
20020040278 | Anuzis et al. | Apr 2002 | A1 |
20020077620 | Sweeney et al. | Jun 2002 | A1 |
20020132226 | Nair | Sep 2002 | A1 |
20020138009 | Brockway et al. | Sep 2002 | A1 |
20020192159 | Reitberg | Dec 2002 | A1 |
20020193669 | Glukhovsky | Dec 2002 | A1 |
20020193846 | Pool et al. | Dec 2002 | A1 |
20020198470 | Imran et al. | Dec 2002 | A1 |
20030017826 | Fishman | Jan 2003 | A1 |
20030023150 | Yokoi et al. | Jan 2003 | A1 |
20030028226 | Thompson | Feb 2003 | A1 |
20030063522 | Sagar | Apr 2003 | A1 |
20030065536 | Hansen | Apr 2003 | A1 |
20030076179 | Branch et al. | Apr 2003 | A1 |
20030083559 | Thompson | May 2003 | A1 |
20030126593 | Mault | Jul 2003 | A1 |
20030130714 | Nielsen et al. | Jul 2003 | A1 |
20030135128 | Suffin et al. | Jul 2003 | A1 |
20030135392 | Vrijens et al. | Jul 2003 | A1 |
20030152622 | Louie-Helm et al. | Aug 2003 | A1 |
20030158466 | Lynn et al. | Aug 2003 | A1 |
20030158756 | Abramson | Aug 2003 | A1 |
20030162556 | Libes | Aug 2003 | A1 |
20030164401 | Andreasson et al. | Sep 2003 | A1 |
20030167000 | Mullick et al. | Sep 2003 | A1 |
20030171791 | KenKnight | Sep 2003 | A1 |
20030171898 | Tarassenko et al. | Sep 2003 | A1 |
20030181788 | Yokoi et al. | Sep 2003 | A1 |
20030181815 | Ebner et al. | Sep 2003 | A1 |
20030185286 | Yuen | Oct 2003 | A1 |
20030187337 | Tarassenko et al. | Oct 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030195403 | Berner et al. | Oct 2003 | A1 |
20030213495 | Fujita et al. | Nov 2003 | A1 |
20030214579 | Iddan | Nov 2003 | A1 |
20030216622 | Meron et al. | Nov 2003 | A1 |
20030216625 | Phipps | Nov 2003 | A1 |
20030216666 | Ericson et al. | Nov 2003 | A1 |
20030216729 | Marchitto | Nov 2003 | A1 |
20030229382 | Sun et al. | Dec 2003 | A1 |
20030232895 | Omidian et al. | Dec 2003 | A1 |
20040008123 | Carrender et al. | Jan 2004 | A1 |
20040018476 | LaDue | Jan 2004 | A1 |
20040019172 | Yang et al. | Jan 2004 | A1 |
20040034295 | Salganicoff | Feb 2004 | A1 |
20040049245 | Gass | Mar 2004 | A1 |
20040073095 | Causey et al. | Apr 2004 | A1 |
20040073454 | Urquhart et al. | Apr 2004 | A1 |
20040077995 | Ferek-Petric | Apr 2004 | A1 |
20040082982 | Gord et al. | Apr 2004 | A1 |
20040087839 | Raymond et al. | May 2004 | A1 |
20040092801 | Drakulic | May 2004 | A1 |
20040106859 | Say et al. | Jun 2004 | A1 |
20040111011 | Uchiyama et al. | Jun 2004 | A1 |
20040115517 | Fukuda et al. | Jun 2004 | A1 |
20040121015 | Chidlaw et al. | Jun 2004 | A1 |
20040122297 | Stahmann et al. | Jun 2004 | A1 |
20040148140 | Tarassenko et al. | Jul 2004 | A1 |
20040153007 | Harris | Aug 2004 | A1 |
20040167226 | Serafini | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171914 | Avni | Sep 2004 | A1 |
20040193020 | Chiba | Sep 2004 | A1 |
20040193029 | Gluhovsky | Sep 2004 | A1 |
20040193446 | Mayer et al. | Sep 2004 | A1 |
20040199222 | Sun et al. | Oct 2004 | A1 |
20040215084 | Shimizu et al. | Oct 2004 | A1 |
20040218683 | Batra | Nov 2004 | A1 |
20040220643 | Schmidt | Nov 2004 | A1 |
20040224644 | Wu | Nov 2004 | A1 |
20040225199 | Evanyk | Nov 2004 | A1 |
20040253304 | Gross et al. | Dec 2004 | A1 |
20040258571 | Lee et al. | Dec 2004 | A1 |
20040260154 | Sidelnik | Dec 2004 | A1 |
20040267240 | Gross et al. | Dec 2004 | A1 |
20050017841 | Doi | Jan 2005 | A1 |
20050020887 | Goldberg | Jan 2005 | A1 |
20050021103 | DiLorenzo | Jan 2005 | A1 |
20050021370 | Riff | Jan 2005 | A1 |
20050024198 | Ward | Feb 2005 | A1 |
20050027205 | Tarassenko et al. | Feb 2005 | A1 |
20050038321 | Fujita et al. | Feb 2005 | A1 |
20050043634 | Yokoi et al. | Feb 2005 | A1 |
20050043894 | Fernandez | Feb 2005 | A1 |
20050054897 | Hashimoto et al. | Mar 2005 | A1 |
20050055014 | Coppeta et al. | Mar 2005 | A1 |
20050062644 | Leci | Mar 2005 | A1 |
20050065407 | Nakamura et al. | Mar 2005 | A1 |
20050070778 | Lackey | Mar 2005 | A1 |
20050075145 | Dvorak et al. | Apr 2005 | A1 |
20050090753 | Goor et al. | Apr 2005 | A1 |
20050092108 | Andermo | May 2005 | A1 |
20050096514 | Starkebaum | May 2005 | A1 |
20050096562 | Delalic et al. | May 2005 | A1 |
20050101843 | Quinn | May 2005 | A1 |
20050101872 | Sattler | May 2005 | A1 |
20050115561 | Stahmann et al. | Jun 2005 | A1 |
20050116820 | Goldreich | Jun 2005 | A1 |
20050117389 | Worledge | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131281 | Ayer et al. | Jun 2005 | A1 |
20050137480 | Alt et al. | Jun 2005 | A1 |
20050143623 | Kojima | Jun 2005 | A1 |
20050148883 | Boesen | Jul 2005 | A1 |
20050151625 | Lai | Jul 2005 | A1 |
20050154428 | Bruinsma | Jul 2005 | A1 |
20050156709 | Gilbert et al. | Jul 2005 | A1 |
20050165323 | Montgomery | Jul 2005 | A1 |
20050177069 | Takizawa | Aug 2005 | A1 |
20050182389 | LaPorte | Aug 2005 | A1 |
20050187789 | Hatlestad et al. | Aug 2005 | A1 |
20050192489 | Marshall | Sep 2005 | A1 |
20050197680 | DelMain et al. | Sep 2005 | A1 |
20050228268 | Cole | Oct 2005 | A1 |
20050234307 | Heinonen | Oct 2005 | A1 |
20050240305 | Bogash et al. | Oct 2005 | A1 |
20050245794 | Dinsmoor | Nov 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050259768 | Yang et al. | Nov 2005 | A1 |
20050261559 | Mumford | Nov 2005 | A1 |
20050267556 | Shuros et al. | Dec 2005 | A1 |
20050267756 | Schultz et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050277999 | Strother et al. | Dec 2005 | A1 |
20050280539 | Pettus | Dec 2005 | A1 |
20050285746 | Sengupta | Dec 2005 | A1 |
20050288594 | Lewkowicz et al. | Dec 2005 | A1 |
20060001496 | Abrosimov et al. | Jan 2006 | A1 |
20060028727 | Moon et al. | Feb 2006 | A1 |
20060036134 | Tarassenko et al. | Feb 2006 | A1 |
20060058602 | Kwiatkowski et al. | Mar 2006 | A1 |
20060061472 | Lovoi et al. | Mar 2006 | A1 |
20060065713 | Kingery | Mar 2006 | A1 |
20060068006 | Begleiter | Mar 2006 | A1 |
20060074283 | Henderson | Apr 2006 | A1 |
20060074319 | Barnes et al. | Apr 2006 | A1 |
20060078765 | Yang et al. | Apr 2006 | A1 |
20060095091 | Drew | May 2006 | A1 |
20060095093 | Bettesh et al. | May 2006 | A1 |
20060100533 | Han | May 2006 | A1 |
20060109058 | Keating | May 2006 | A1 |
20060110962 | Powell | May 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060122667 | Chavan et al. | Jun 2006 | A1 |
20060136266 | Tarassenko et al. | Jun 2006 | A1 |
20060142648 | Banet | Jun 2006 | A1 |
20060145876 | Kimura | Jul 2006 | A1 |
20060148254 | McLean | Jul 2006 | A1 |
20060149339 | Burnes | Jul 2006 | A1 |
20060155174 | Glukhovsky et al. | Jul 2006 | A1 |
20060155183 | Kroecker | Jul 2006 | A1 |
20060158820 | Takiguchi | Jul 2006 | A1 |
20060161225 | Sormann et al. | Jul 2006 | A1 |
20060179949 | Kim | Aug 2006 | A1 |
20060183992 | Kawashima | Aug 2006 | A1 |
20060183993 | Horn | Aug 2006 | A1 |
20060184092 | Atanasoska et al. | Aug 2006 | A1 |
20060204738 | Dubrow et al. | Sep 2006 | A1 |
20060210626 | Spaeder | Sep 2006 | A1 |
20060216603 | Choi | Sep 2006 | A1 |
20060218011 | Walker | Sep 2006 | A1 |
20060229053 | Sivard | Oct 2006 | A1 |
20060235489 | Drew | Oct 2006 | A1 |
20060243288 | Kim et al. | Nov 2006 | A1 |
20060247505 | Siddiqui | Nov 2006 | A1 |
20060253005 | Drinan | Nov 2006 | A1 |
20060255064 | Donaldson | Nov 2006 | A1 |
20060265246 | Hoag | Nov 2006 | A1 |
20060267774 | Feinberg et al. | Nov 2006 | A1 |
20060270346 | Ibrahim | Nov 2006 | A1 |
20060273882 | Posamentier | Dec 2006 | A1 |
20060276702 | McGinnis | Dec 2006 | A1 |
20060280227 | Pinkney | Dec 2006 | A1 |
20060282001 | Noel | Dec 2006 | A1 |
20060289640 | Mercure | Dec 2006 | A1 |
20060293607 | Alt | Dec 2006 | A1 |
20070000776 | Karube et al. | Jan 2007 | A1 |
20070002038 | Suzuki | Jan 2007 | A1 |
20070006636 | King et al. | Jan 2007 | A1 |
20070008113 | Spoonhower et al. | Jan 2007 | A1 |
20070016089 | Fischell et al. | Jan 2007 | A1 |
20070027386 | Such | Feb 2007 | A1 |
20070027388 | Chou | Feb 2007 | A1 |
20070038054 | Zhou | Feb 2007 | A1 |
20070049339 | Barak et al. | Mar 2007 | A1 |
20070055098 | Shimizu et al. | Mar 2007 | A1 |
20070060797 | Ball | Mar 2007 | A1 |
20070060800 | Drinan et al. | Mar 2007 | A1 |
20070066929 | Ferren et al. | Mar 2007 | A1 |
20070073353 | Rooney et al. | Mar 2007 | A1 |
20070096765 | Kagan | May 2007 | A1 |
20070106346 | Bergelson | May 2007 | A1 |
20070123772 | Euliano | May 2007 | A1 |
20070129622 | Bourget | Jun 2007 | A1 |
20070130287 | Kumar | Jun 2007 | A1 |
20070135691 | Zingelewicz et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070142721 | Berner et al. | Jun 2007 | A1 |
20070156016 | Betesh | Jul 2007 | A1 |
20070160789 | Merical | Jul 2007 | A1 |
20070162089 | Mosesov | Jul 2007 | A1 |
20070162090 | Penner | Jul 2007 | A1 |
20070167495 | Brown et al. | Jul 2007 | A1 |
20070167848 | Kuo et al. | Jul 2007 | A1 |
20070173701 | Al-Ali | Jul 2007 | A1 |
20070179347 | Tarassenko et al. | Aug 2007 | A1 |
20070179371 | Peyser et al. | Aug 2007 | A1 |
20070180047 | Dong et al. | Aug 2007 | A1 |
20070185393 | Zhou | Aug 2007 | A1 |
20070191002 | Ge | Aug 2007 | A1 |
20070196456 | Stevens | Aug 2007 | A1 |
20070207793 | Myer | Sep 2007 | A1 |
20070207858 | Breving | Sep 2007 | A1 |
20070208233 | Kovacs | Sep 2007 | A1 |
20070213659 | Trovato et al. | Sep 2007 | A1 |
20070237719 | Jones | Oct 2007 | A1 |
20070244370 | Kuo et al. | Oct 2007 | A1 |
20070249946 | Kumar et al. | Oct 2007 | A1 |
20070255198 | Leong et al. | Nov 2007 | A1 |
20070255330 | Lee | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070279217 | Venkatraman | Dec 2007 | A1 |
20070282174 | Sabatino | Dec 2007 | A1 |
20070282177 | Pilz | Dec 2007 | A1 |
20070291715 | Laroia et al. | Dec 2007 | A1 |
20070299480 | Hill | Dec 2007 | A1 |
20080014866 | Lipowski | Jan 2008 | A1 |
20080015421 | Penner | Jan 2008 | A1 |
20080015494 | Santini et al. | Jan 2008 | A1 |
20080020037 | Robertson et al. | Jan 2008 | A1 |
20080021519 | DeGeest | Jan 2008 | A1 |
20080021521 | Shah | Jan 2008 | A1 |
20080027679 | Shklarski | Jan 2008 | A1 |
20080033273 | Zhou | Feb 2008 | A1 |
20080033301 | Dellavecchia et al. | Feb 2008 | A1 |
20080038588 | Lee | Feb 2008 | A1 |
20080039700 | Drinan et al. | Feb 2008 | A1 |
20080045843 | Tsuji et al. | Feb 2008 | A1 |
20080046038 | Hill | Feb 2008 | A1 |
20080051647 | Wu et al. | Feb 2008 | A1 |
20080051667 | Goldreich | Feb 2008 | A1 |
20080051767 | Rossing et al. | Feb 2008 | A1 |
20080058614 | Banet | Mar 2008 | A1 |
20080062856 | Feher | Mar 2008 | A1 |
20080065168 | Bitton et al. | Mar 2008 | A1 |
20080074307 | Boric-Lubecke | Mar 2008 | A1 |
20080077015 | Boric-Lubecke | Mar 2008 | A1 |
20080077028 | Schaldach et al. | Mar 2008 | A1 |
20080077188 | Denker et al. | Mar 2008 | A1 |
20080091089 | Guillory et al. | Apr 2008 | A1 |
20080091114 | Min | Apr 2008 | A1 |
20080097549 | Colbaugh | Apr 2008 | A1 |
20080097917 | Dicks | Apr 2008 | A1 |
20080099366 | Niemic et al. | May 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080114224 | Bandy et al. | May 2008 | A1 |
20080119705 | Patel | May 2008 | A1 |
20080119716 | Boric-Lubecke | May 2008 | A1 |
20080121825 | Trovato et al. | May 2008 | A1 |
20080137566 | Marholev | Jun 2008 | A1 |
20080139907 | Rao et al. | Jun 2008 | A1 |
20080140403 | Hughes et al. | Jun 2008 | A1 |
20080146871 | Arneson et al. | Jun 2008 | A1 |
20080146889 | Young | Jun 2008 | A1 |
20080146892 | LeBoeuf | Jun 2008 | A1 |
20080154104 | Lamego | Jun 2008 | A1 |
20080166992 | Ricordi | Jul 2008 | A1 |
20080175898 | Jones et al. | Jul 2008 | A1 |
20080183245 | Van Oort | Jul 2008 | A1 |
20080188837 | Belsky et al. | Aug 2008 | A1 |
20080194912 | Trovato et al. | Aug 2008 | A1 |
20080208009 | Shklarski | Aug 2008 | A1 |
20080214901 | Gehman | Sep 2008 | A1 |
20080214985 | Yanaki | Sep 2008 | A1 |
20080223936 | Mickle et al. | Sep 2008 | A1 |
20080243020 | Chou | Oct 2008 | A1 |
20080249360 | Li | Oct 2008 | A1 |
20080262320 | Schaefer et al. | Oct 2008 | A1 |
20080262336 | Ryu | Oct 2008 | A1 |
20080269664 | Trovato et al. | Oct 2008 | A1 |
20080275312 | Mosesov | Nov 2008 | A1 |
20080281636 | Jung et al. | Nov 2008 | A1 |
20080284599 | Zdeblick et al. | Nov 2008 | A1 |
20080288026 | Cross et al. | Nov 2008 | A1 |
20080288027 | Kroll | Nov 2008 | A1 |
20080294020 | Sapounas | Nov 2008 | A1 |
20080299197 | Toneguzzo et al. | Dec 2008 | A1 |
20080300572 | Rankers | Dec 2008 | A1 |
20080303638 | Nguyen | Dec 2008 | A1 |
20080306357 | Korman | Dec 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20080306360 | Robertson et al. | Dec 2008 | A1 |
20080306362 | Davis | Dec 2008 | A1 |
20080311852 | Hansen | Dec 2008 | A1 |
20080312522 | Rowlandson | Dec 2008 | A1 |
20080316020 | Robertson | Dec 2008 | A1 |
20090009330 | Sakama et al. | Jan 2009 | A1 |
20090009332 | Nunez et al. | Jan 2009 | A1 |
20090024045 | Prakash | Jan 2009 | A1 |
20090024112 | Edwards et al. | Jan 2009 | A1 |
20090030293 | Cooper et al. | Jan 2009 | A1 |
20090030297 | Miller | Jan 2009 | A1 |
20090034209 | Joo | Feb 2009 | A1 |
20090043171 | Rule | Feb 2009 | A1 |
20090048498 | Riskey | Feb 2009 | A1 |
20090062634 | Say et al. | Mar 2009 | A1 |
20090062670 | Sterling | Mar 2009 | A1 |
20090069642 | Gao | Mar 2009 | A1 |
20090069655 | Say et al. | Mar 2009 | A1 |
20090069656 | Say et al. | Mar 2009 | A1 |
20090069657 | Say et al. | Mar 2009 | A1 |
20090069658 | Say et al. | Mar 2009 | A1 |
20090076340 | Libbus et al. | Mar 2009 | A1 |
20090076343 | James | Mar 2009 | A1 |
20090076397 | Libbus et al. | Mar 2009 | A1 |
20090082645 | Hafezi et al. | Mar 2009 | A1 |
20090087483 | Sison | Apr 2009 | A1 |
20090088618 | Ameson | Apr 2009 | A1 |
20090099435 | Say et al. | Apr 2009 | A1 |
20090105561 | Boyden et al. | Apr 2009 | A1 |
20090110148 | Zhang | Apr 2009 | A1 |
20090112626 | Talbot | Apr 2009 | A1 |
20090124871 | Arshak | May 2009 | A1 |
20090131774 | Sweitzer | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090142853 | Warrington et al. | Jun 2009 | A1 |
20090149839 | Hyde et al. | Jun 2009 | A1 |
20090157113 | Marcotte | Jun 2009 | A1 |
20090157358 | Kim | Jun 2009 | A1 |
20090161602 | Matsumoto | Jun 2009 | A1 |
20090163789 | Say et al. | Jun 2009 | A1 |
20090171180 | Pering | Jul 2009 | A1 |
20090173628 | Say et al. | Jul 2009 | A1 |
20090177055 | Say et al. | Jul 2009 | A1 |
20090177056 | Say et al. | Jul 2009 | A1 |
20090177057 | Say et al. | Jul 2009 | A1 |
20090177058 | Say et al. | Jul 2009 | A1 |
20090177059 | Say et al. | Jul 2009 | A1 |
20090177060 | Say et al. | Jul 2009 | A1 |
20090177061 | Say et al. | Jul 2009 | A1 |
20090177062 | Say et al. | Jul 2009 | A1 |
20090177063 | Say et al. | Jul 2009 | A1 |
20090177064 | Say et al. | Jul 2009 | A1 |
20090177065 | Say et al. | Jul 2009 | A1 |
20090177066 | Say et al. | Jul 2009 | A1 |
20090182206 | Najafi | Jul 2009 | A1 |
20090182207 | Riskey et al. | Jul 2009 | A1 |
20090182212 | Say et al. | Jul 2009 | A1 |
20090182213 | Say et al. | Jul 2009 | A1 |
20090182214 | Say et al. | Jul 2009 | A1 |
20090182215 | Say et al. | Jul 2009 | A1 |
20090182388 | Von Arx | Jul 2009 | A1 |
20090187088 | Say et al. | Jul 2009 | A1 |
20090187089 | Say et al. | Jul 2009 | A1 |
20090187090 | Say et al. | Jul 2009 | A1 |
20090187091 | Say et al. | Jul 2009 | A1 |
20090187092 | Say et al. | Jul 2009 | A1 |
20090187093 | Say et al. | Jul 2009 | A1 |
20090187094 | Say et al. | Jul 2009 | A1 |
20090187095 | Say et al. | Jul 2009 | A1 |
20090187381 | King et al. | Jul 2009 | A1 |
20090192351 | Nishino | Jul 2009 | A1 |
20090192368 | Say et al. | Jul 2009 | A1 |
20090192369 | Say et al. | Jul 2009 | A1 |
20090192370 | Say et al. | Jul 2009 | A1 |
20090192371 | Say et al. | Jul 2009 | A1 |
20090192372 | Say et al. | Jul 2009 | A1 |
20090192373 | Say et al. | Jul 2009 | A1 |
20090192374 | Say et al. | Jul 2009 | A1 |
20090192375 | Say et al. | Jul 2009 | A1 |
20090192376 | Say et al. | Jul 2009 | A1 |
20090192377 | Say et al. | Jul 2009 | A1 |
20090192378 | Say et al. | Jul 2009 | A1 |
20090192379 | Say et al. | Jul 2009 | A1 |
20090198115 | Say et al. | Aug 2009 | A1 |
20090198116 | Say et al. | Aug 2009 | A1 |
20090198175 | Say et al. | Aug 2009 | A1 |
20090203964 | Shimizu et al. | Aug 2009 | A1 |
20090203971 | Sciarappa | Aug 2009 | A1 |
20090203972 | Heneghan | Aug 2009 | A1 |
20090203978 | Say et al. | Aug 2009 | A1 |
20090204265 | Hackett | Aug 2009 | A1 |
20090210164 | Say et al. | Aug 2009 | A1 |
20090216101 | Say et al. | Aug 2009 | A1 |
20090216102 | Say et al. | Aug 2009 | A1 |
20090227204 | Robertson et al. | Sep 2009 | A1 |
20090227876 | Tran | Sep 2009 | A1 |
20090227940 | Say et al. | Sep 2009 | A1 |
20090227941 | Say et al. | Sep 2009 | A1 |
20090227988 | Wood et al. | Sep 2009 | A1 |
20090228214 | Say et al. | Sep 2009 | A1 |
20090231125 | Baldus | Sep 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090243833 | Huang | Oct 2009 | A1 |
20090253960 | Takenaka et al. | Oct 2009 | A1 |
20090256702 | Robertson | Oct 2009 | A1 |
20090264714 | Chou | Oct 2009 | A1 |
20090264964 | Abrahamson | Oct 2009 | A1 |
20090265186 | Tarassenko et al. | Oct 2009 | A1 |
20090273467 | Elixmann | Nov 2009 | A1 |
20090277815 | Kohl | Nov 2009 | A1 |
20090281539 | Selig | Nov 2009 | A1 |
20090292194 | Libbus et al. | Nov 2009 | A1 |
20090295548 | Ronkka | Dec 2009 | A1 |
20090296677 | Mahany | Dec 2009 | A1 |
20090301925 | Alloro et al. | Dec 2009 | A1 |
20090303920 | Mahany | Dec 2009 | A1 |
20090306633 | Trovato et al. | Dec 2009 | A1 |
20090312619 | Say et al. | Dec 2009 | A1 |
20090318303 | Delamarche et al. | Dec 2009 | A1 |
20090318761 | Rabinovitz | Dec 2009 | A1 |
20090318779 | Tran | Dec 2009 | A1 |
20090318783 | Rohde | Dec 2009 | A1 |
20090318793 | Datta | Dec 2009 | A1 |
20100001841 | Cardullo | Jan 2010 | A1 |
20100006585 | Flowers et al. | Jan 2010 | A1 |
20100010330 | Rankers | Jan 2010 | A1 |
20100033324 | Shimizu et al. | Feb 2010 | A1 |
20100049004 | Edman et al. | Feb 2010 | A1 |
20100049006 | Magar | Feb 2010 | A1 |
20100049012 | Dijksman et al. | Feb 2010 | A1 |
20100049069 | Tarassenko et al. | Feb 2010 | A1 |
20100056878 | Partin | Mar 2010 | A1 |
20100056891 | Say et al. | Mar 2010 | A1 |
20100056939 | Tarassenko et al. | Mar 2010 | A1 |
20100057041 | Hayter | Mar 2010 | A1 |
20100062709 | Kato | Mar 2010 | A1 |
20100063438 | Bengtsson | Mar 2010 | A1 |
20100063841 | D'Ambrosia et al. | Mar 2010 | A1 |
20100069002 | Rong | Mar 2010 | A1 |
20100069717 | Hafezi et al. | Mar 2010 | A1 |
20100081894 | Zdeblick et al. | Apr 2010 | A1 |
20100099967 | Say et al. | Apr 2010 | A1 |
20100099968 | Say et al. | Apr 2010 | A1 |
20100099969 | Say et al. | Apr 2010 | A1 |
20100100077 | Rush et al. | Apr 2010 | A1 |
20100100078 | Say et al. | Apr 2010 | A1 |
20100106001 | Say et al. | Apr 2010 | A1 |
20100118853 | Godfrey | May 2010 | A1 |
20100139672 | Kroll et al. | Jun 2010 | A1 |
20100160742 | Seidl et al. | Jun 2010 | A1 |
20100168659 | Say et al. | Jul 2010 | A1 |
20100179398 | Say et al. | Jul 2010 | A1 |
20100185055 | Robertson et al. | Jul 2010 | A1 |
20100191073 | Tarassenko et al. | Jul 2010 | A1 |
20100210299 | Gorbachov | Aug 2010 | A1 |
20100222652 | Cho | Sep 2010 | A1 |
20100228113 | Solosko | Sep 2010 | A1 |
20100233026 | Ismagliov et al. | Sep 2010 | A1 |
20100234706 | Gilland | Sep 2010 | A1 |
20100234715 | Shin | Sep 2010 | A1 |
20100234914 | Shen | Sep 2010 | A1 |
20100245091 | Singh | Sep 2010 | A1 |
20100249881 | Corndorf | Sep 2010 | A1 |
20100256461 | Mohamedali | Oct 2010 | A1 |
20100259543 | Tarassenko et al. | Oct 2010 | A1 |
20100268048 | Say et al. | Oct 2010 | A1 |
20100268049 | Say et al. | Oct 2010 | A1 |
20100268050 | Say et al. | Oct 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100280345 | Say et al. | Nov 2010 | A1 |
20100280346 | Say et al. | Nov 2010 | A1 |
20100295694 | Kauffman et al. | Nov 2010 | A1 |
20100298668 | Hafezi et al. | Nov 2010 | A1 |
20100298730 | Tarassenko et al. | Nov 2010 | A1 |
20100299155 | Findlay et al. | Nov 2010 | A1 |
20100312188 | Robertson et al. | Dec 2010 | A1 |
20100312577 | Goodnow et al. | Dec 2010 | A1 |
20100312580 | Tarassenko et al. | Dec 2010 | A1 |
20100332443 | Gartenberg | Dec 2010 | A1 |
20110004079 | Al-Ali et al. | Jan 2011 | A1 |
20110009715 | O'Reilly et al. | Jan 2011 | A1 |
20110040203 | Savage et al. | Feb 2011 | A1 |
20110050431 | Hood et al. | Mar 2011 | A1 |
20110054265 | Hafezi et al. | Mar 2011 | A1 |
20110065983 | Hafezi et al. | Mar 2011 | A1 |
20110077660 | Janik et al. | Mar 2011 | A1 |
20110081860 | Brown et al. | Apr 2011 | A1 |
20110105864 | Robertson et al. | May 2011 | A1 |
20110124983 | Kroll et al. | May 2011 | A1 |
20110144470 | Mazar et al. | Jun 2011 | A1 |
20110193704 | Harper et al. | Aug 2011 | A1 |
20110224912 | Bhavaraju et al. | Sep 2011 | A1 |
20110230732 | Edman et al. | Sep 2011 | A1 |
20110237924 | McGusty et al. | Sep 2011 | A1 |
20110279963 | Kumar et al. | Nov 2011 | A1 |
20120024889 | Robertson et al. | Feb 2012 | A1 |
20120029309 | Paquet et al. | Feb 2012 | A1 |
20120062371 | Radivojevic et al. | Mar 2012 | A1 |
20120083715 | Yuen et al. | Apr 2012 | A1 |
20120089000 | Bishay et al. | Apr 2012 | A1 |
20120101396 | Solosko et al. | Apr 2012 | A1 |
20120197144 | Christ et al. | Aug 2012 | A1 |
20120214140 | Brynelsen et al. | Aug 2012 | A1 |
20120265544 | Hwang et al. | Oct 2012 | A1 |
20120299723 | Hafezi et al. | Nov 2012 | A1 |
20120310070 | Kumar et al. | Dec 2012 | A1 |
20120316413 | Liu et al. | Dec 2012 | A1 |
20130030259 | Thomsen et al. | Jan 2013 | A1 |
20130057385 | Murakami et al. | Mar 2013 | A1 |
20130060115 | Gehman et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
1991868 | Jul 2007 | CN |
101005470 | Jul 2007 | CN |
201076456 | Jun 2008 | CN |
0344939 | Dec 1989 | EP |
1246356 | Oct 2002 | EP |
1534054 | May 2005 | EP |
1702553 | Sep 2006 | EP |
1789128 | May 2007 | EP |
2143369 | Jan 2010 | EP |
2432862 | Jun 2007 | GB |
172917 | Jun 2010 | IL |
61017949 | Jan 1986 | JP |
61072712 | Apr 1986 | JP |
05-228128 | Sep 1993 | JP |
09-330159 | Dec 1997 | JP |
10-14898 | Jan 1998 | JP |
2000-506410 | May 2000 | JP |
2002-224053 | Aug 2002 | JP |
2002263185 | Sep 2002 | JP |
2002291684 | Oct 2002 | JP |
2004-7187 | Jan 2004 | JP |
2004134384 | Apr 2004 | JP |
2004-313242 | Nov 2004 | JP |
2005-073886 | Mar 2005 | JP |
2005-087552 | Apr 2005 | JP |
2005-304880 | Apr 2005 | JP |
2005124708 | May 2005 | JP |
2005-532841 | Nov 2005 | JP |
2005-532849 | Nov 2005 | JP |
2006006377 | Jan 2006 | JP |
2006509574 | Mar 2006 | JP |
2006-177699 | Jul 2006 | JP |
2006-187611 | Jul 2006 | JP |
2006278091 | Oct 2006 | JP |
2006346000 | Dec 2006 | JP |
2007159631 | Jun 2007 | JP |
2007-313340 | Dec 2007 | JP |
2008011865 | Jan 2008 | JP |
2008501415 | Jan 2008 | JP |
2009-061236 | Mar 2009 | JP |
20020015907 | Mar 2002 | KR |
20020061744 | Jul 2002 | KR |
200609977523 | Jul 2006 | KR |
927471 | Nov 2009 | KR |
10-2012-09995 | Sep 2012 | KR |
553735 | Sep 2003 | TW |
200724094 | Jul 2007 | TW |
WO8802237 | Apr 1988 | WO |
WO9221307 | Dec 1992 | WO |
WO9308734 | May 1993 | WO |
WO9319667 | Oct 1993 | WO |
WO9401165 | Jan 1994 | WO |
WO9714112 | Apr 1997 | WO |
WO9739963 | Oct 1997 | WO |
WO9843537 | Oct 1998 | WO |
WO9937290 | Jul 1999 | WO |
WO9959465 | Nov 1999 | WO |
WO0033246 | Jun 2000 | WO |
WO0100085 | Jan 2001 | WO |
WO0147466 | Jul 2001 | WO |
WO0149364 | Jul 2001 | WO |
WO0174011 | Oct 2001 | WO |
WO0180731 | Nov 2001 | WO |
WO0245489 | Jun 2002 | WO |
WO0258330 | Jul 2002 | WO |
WO0262276 | Aug 2002 | WO |
WO02087681 | Nov 2002 | WO |
WO02095351 | Nov 2002 | WO |
WO03005877 | Jan 2003 | WO |
WO03050643 | Jun 2003 | WO |
WO03068061 | Aug 2003 | WO |
WO2004014225 | Feb 2004 | WO |
WO2004019172 | Mar 2004 | WO |
WO2004039256 | May 2004 | WO |
WO2004059551 | Jul 2004 | WO |
WO2004066833 | Aug 2004 | WO |
WO2004066834 | Aug 2004 | WO |
WO2004066903 | Aug 2004 | WO |
WO2004068748 | Aug 2004 | WO |
WO2004068881 | Aug 2004 | WO |
WO2004075751 | Sep 2004 | WO |
WO2004109316 | Dec 2004 | WO |
WO2005011237 | Feb 2005 | WO |
WO2005020023 | Mar 2005 | WO |
WO2005024687 | Mar 2005 | WO |
WO2005041767 | May 2005 | WO |
WO2005047837 | May 2005 | WO |
WO2005051166 | Jun 2005 | WO |
WO2005053517 | Jun 2005 | WO |
WO2005082436 | Sep 2005 | WO |
WO2005083621 | Sep 2005 | WO |
WO2005110238 | Nov 2005 | WO |
WO2006021932 | Mar 2006 | WO |
WO2006027586 | Mar 2006 | WO |
WO2006028347 | Mar 2006 | WO |
WO2006035351 | Apr 2006 | WO |
WO2006046648 | May 2006 | WO |
WO2006055892 | May 2006 | WO |
WO2006055956 | May 2006 | WO |
WO2006075016 | Jul 2006 | WO |
WO2006100620 | Sep 2006 | WO |
WO2006109072 | Oct 2006 | WO |
WO2006116718 | Nov 2006 | WO |
WO2006119345 | Nov 2006 | WO |
WO2006127355 | Nov 2006 | WO |
WO2007001724 | Jan 2007 | WO |
WO2007001742 | Jan 2007 | WO |
WO2007013952 | Feb 2007 | WO |
WO2007014084 | Feb 2007 | WO |
WO2007014527 | Feb 2007 | WO |
WO2007021496 | Feb 2007 | WO |
WO2007027660 | Mar 2007 | WO |
WO2007028035 | Mar 2007 | WO |
WO2007036687 | Apr 2007 | WO |
WO2007036741 | Apr 2007 | WO |
WO2007036746 | Apr 2007 | WO |
WO2007040878 | Apr 2007 | WO |
WO2007067054 | Jun 2007 | WO |
WO2007071180 | Jun 2007 | WO |
WO2007096810 | Aug 2007 | WO |
WO2007101141 | Sep 2007 | WO |
WO2007115087 | Oct 2007 | WO |
WO2007120946 | Oct 2007 | WO |
WO2007127316 | Nov 2007 | WO |
WO2007127879 | Nov 2007 | WO |
WO2007127945 | Nov 2007 | WO |
WO2007128165 | Nov 2007 | WO |
WO2007130491 | Nov 2007 | WO |
WO2007133526 | Nov 2007 | WO |
WO2007143535 | Dec 2007 | WO |
WO2007149546 | Dec 2007 | WO |
WO2006104843 | Jan 2008 | WO |
WO2008008281 | Jan 2008 | WO |
WO2008012700 | Jan 2008 | WO |
WO2008030482 | Mar 2008 | WO |
WO2008052136 | May 2008 | WO |
WO2008061138 | May 2008 | WO |
WO2008063626 | May 2008 | WO |
WO2008066617 | Jun 2008 | WO |
WO2008076464 | Jun 2008 | WO |
WO2008089232 | Jul 2008 | WO |
WO2008091683 | Jul 2008 | WO |
WO2008095183 | Aug 2008 | WO |
WO2008097652 | Aug 2008 | WO |
WO2008101107 | Aug 2008 | WO |
WO2008112577 | Sep 2008 | WO |
WO2008112578 | Sep 2008 | WO |
WO2008120156 | Oct 2008 | WO |
WO2008133394 | Nov 2008 | WO |
WO2008134185 | Nov 2008 | WO |
WO2008150633 | Dec 2008 | WO |
WO2009001108 | Dec 2008 | WO |
WO2009006615 | Jan 2009 | WO |
WO2009029453 | Mar 2009 | WO |
WO2009036334 | Mar 2009 | WO |
WO2009051829 | Apr 2009 | WO |
WO2009051830 | Apr 2009 | WO |
WO2009063377 | May 2009 | WO |
WO2009081348 | Jul 2009 | WO |
WO2009111664 | Sep 2009 | WO |
WO2009146082 | Dec 2009 | WO |
WO2010000085 | Jan 2010 | WO |
WO2010009100 | Jan 2010 | WO |
WO2010011833 | Jan 2010 | WO |
WO2010019778 | Feb 2010 | WO |
WO2010057049 | May 2010 | WO |
WO2010075115 | Jul 2010 | WO |
WO2010080765 | Jul 2010 | WO |
WO2010080843 | Jul 2010 | WO |
WO2010107563 | Sep 2010 | WO |
WO2010115194 | Oct 2010 | WO |
WO2010132331 | Nov 2010 | WO |
WO2010135516 | Nov 2010 | WO |
WO2011068963 | Jun 2011 | WO |
WO2011133799 | Oct 2011 | WO |
WO2011159336 | Dec 2011 | WO |
WO2011159337 | Dec 2011 | WO |
WO2011159338 | Dec 2011 | WO |
WO2011159339 | Dec 2011 | WO |
WO2012104657 | Aug 2012 | WO |
WO2012158190 | Nov 2012 | WO |
WO2013012869 | Jan 2013 | WO |
Entry |
---|
Kit Yee Au-Yeung et al. “A Networked System for Self-Management of Drug Therapy and Wellness” (Proceeding WH '10 Wireless Health 2010, Oct. 2010, pp. 1-9, ACM, ISBN: 978-1-60558-989-3). |
Baskiyar, S. “A Real-time Fault Tolerant Intra-body Network” Dept. of Comp. Sci & Soft Eng; Auburn University; Proceedings of the 27th Annual IEEE Conference; 0742-1303/02 (2002) IEEE; 6 pp. |
Lin et al., “Do Physiological Data Relate to Traditional Usability Indexes?” Proceedings of OZCHI 2005, Canberra, Australia (2005) 10 pp. |
Mandryk et al., “A physiological approach for continuously modeling user emotion in interactive play environments” Proceedings of Measuring Behavior (2008) (Maastrichtm the Netherlandsm Aug. 26-29) 2 pp. |
Mandryk et al., “Objectively Evaluating Entertainment Technology” Simon Fraser University; CHI (2004) ACM 1-58113-703-6/04/0004; 2 pp. |
“PALO Bluetooth Baseband” PALO Bluetooth Resource Center (2002) Retrieved from internet Dec. 12, 2012 at URL: http://palowireless.com/bluearticles/baseband.asp; first cited in Office Action dated Jan. 17, 2013 for EP08853901.0. |
Trutag, Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp. |
Jimbo et al., “Gastric-fluid-utilized micro battery for micro medical devices” The Sixth International Workshop on Micro and Nanotechnology for Power Geneartion and Energy Conservation Applications, (2006) pp. 97-100. |
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp. |
Owano, N., “Study proposes smart sutures with sensors for wounds” phys.org. Aug. 2012. http://phys.org/news/2012-08-smart-sutures-sensors-wounds.html. |
Platt, D., “Modulation and Deviation” AE6EO, Foothills Amateur Radio Society; Oct. 26, 2007; 61 pp. |
Aade, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators (2010); http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pp. |
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, 12pp. |
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. For Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp. |
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract. |
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzorno, Murray & Barrie. |
Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86. |
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf. |
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53. |
Coury, L. “Conductance Measurement Part 1: Theory”; Current Separations, 18:3 (1999) p. 91-96. |
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology (2008) vol. 22, Issue 5, pp. 813-837. |
Dhar et al., “Electroless nickel plated contacts on porous silicon” Appl. Phys. Lett.68 (10) pp. 1392-1393 (1996). |
Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006). |
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band-Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIP—IEEE—Dubai—Conference.pdf. |
Ferguson et al., “Dialectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94 (1934) p. 94-98. |
Furse C. M., “Dipole Antennas” J. Webster (ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) p. 575-581. |
Gaglani S. “Put Your Phone, or Skin, on Vibrate” MedGadget (2012) http://medgadget.com/2012/03/put-your-phone-or-skin-on-vibrate.html 8pp. |
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. 2002, p. 1-43. |
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure—Global—GMB-0118-01.pdf;4pp. |
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12): 2231-6; abstract. |
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html. |
Halthion Medical Technologies “Providing Ambulatory Medical Devices Which Monitor, Measure and Record” webpage. Online website: http://www.halthion.com/;downloaded May 30, 2012. |
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16. |
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/. |
ISFET—Ion Sensitive Field-Effect Transistor; Microsens S.A. pdf document. Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp. |
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp). |
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” (2010); http://www.artificialpancreasproject.com/; 3 pp. |
Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351. |
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48. |
Lifescan, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink (2010) 2 pp. |
MacKay et al., “Radio Telemetering from within the Body Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal” Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C. |
MacKay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group. |
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11. |
Medtronic, “CareLink Therapy Management Software for Diabetes” (2010); https://carelink.minimed.com/patient/entry.jsp?bhcp=1; 1 pp. |
Medtronic, “Carelink™ USB” (2008) http://www.medtronicdiabetes.com/pdf/carelink—usb—factsheet.pdf 2pp. |
Medtronic “The New MiniMed Paradigm® REAL-Time Revel™ System” (2010) http://www.medtronicdiabetes.com/products/index.html; 2 pp. |
Medtronic, “Mini Med Paradigm® Revel™ Insulin Pump” (2010) http://www.medtronicdiabetes.com/products/insulinpumps/index.html; 2 pp. |
Medtronic, Mini Med Paradigm™ Veo™ System: Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf ; 4 pp. |
Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/. |
Minimitter Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27, 2005. |
Minimitter Co. Inc. Noninvasive technology to help your studies succeed. Mini Mitter.com Mar. 31, 2009. |
Mini Mitter Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. Sep. 21, 1999. |
Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004. |
Minimitter Co. Inc. VitalSense Integrated Physiological Monitoring System Product Description. (2005). |
Minimitter Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009. |
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7. |
“New ‘smart pill’ to track adherence” E-Health-lnsider (2010) http://www.e-health-insider.com/news/5910/new ‘smart pill’ monitors—medicines. |
NPL—AntennaBasics.pdf, Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 3pp. |
O'Brien et al., “The Production and Characterization of Chemically Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206. |
Park, “Medtronic to Buy MiniMed for $3.7 Billion” (2001) HomeCare; http://homecaremag.com/mag/medical—medtronic—buy—minimed/; 2 pp. |
“RFID “pill” monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/. |
Rolison et al., “Electrically conductive oxide aerogels: new materials in electrochemistry” J. Mater. Chem. (2001) 1, 963-980. |
Roulstone, et al., “Studies on Polymer Latex Films: I. A study of latex film morphology” Polymer International 24 (1991) pp. 87-94. |
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8. |
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407. |
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf. |
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334. |
Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936. |
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronics—and—telecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010. |
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009). |
“The SmartPill Wireless Motility Capsule” Smartpill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/The—SmartPill—Capsule &id=17814. |
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31. |
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007). |
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal Apr. 27, 2010; http://www.rfidjournal.com/article/view/7560/13pp. |
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30. |
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72. |
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006. |
U.S. Appl. No. 12/238,345, filed Sep. 25, 2008, Hooman et al., Non-Final Office Action mailed Jun. 13, 2011 22pp. |
Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20; Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 24 pp. |
Watson, et al., “Determination of the relationship between the pH and conductivity of gastric juice” Physiol Meas. 17 (1996) pp. 21-27. |
Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125. |
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6. |
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52. |
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3, 2006. |
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17. |
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA—Web/documents/ME/ePatch—ECG—EMG.pdf, Dated Sep. 2, 2010. |
Zworkin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group. |
Winter, J. et al. “The material properties of gelatin gels”; USA Ballistic Research Laboratories, Mar. 1975, p. 1-157. |
Hotz “The Really Smart Phone” The Wall Street Journal, What They Know (2011); 6 pp.; http://online.wsj.com/article/SB10001424052748704547604576263261679848814.html?mod=djemTECH—t. |
Evanczuk, S., “PIC MCU software library uses human body for secure communications link” EDN Network; edn.com; Feb. 26, 2013 Retrieved from Internet Jun. 19, 2013 at http://www.edn.com/electronics-products/other/4407842/PIC-MCU-software-library-uses-human-body-for-secure-communications-link; 5 pp. |
Kim et al., “A Semi-Interpenetrating Network System for a Polymer Membrane”; Eur. Polym. J. vol. 33 No. 7; pp. 1009-1014 (1997). |
Number | Date | Country | |
---|---|---|---|
20130117696 A1 | May 2013 | US |