A. Overview
For a better understanding of the invention and its aspects, one particular example of how the invention can be built and operated will now be described in detail. Frequent reference will be taken to the appended drawings. Reference numerals or letters will be used to indicate certain parts or locations in the drawings. The same reference numerals or letters will be used to indicate the same parts and locations throughout the drawings, unless otherwise indicated.
B. Context of the Exemplary Embodiment
1. Based on U.S. Pat. Nos. 5,839,375 and 6,244,196
This embodiment will be in the context of a reactor combustor like that of incorporated-by-reference U.S. Pat. Nos. 5,839,375 and 6,244,196. Proportions will be similar or the same. For example, a firebox of metal will enclose a volume of space into which biomass fuel is loaded. An air lance or combustion air tube with exit openings is positioned in the firebox towards the bottom but within the fuel, once loaded in the firebox. An exhaust tube with inlet openings is positioned near the top of interior of the firebox. In this embodiment, an air heat exchanger is positioned between the air tube or header and the exhaust tube or header. The heat exchanger is designed to be positioned so it would tend to be in the center of the combustion fireball within the fuel in the firebox.
2. Fuel
By the term “fuel” it is meant material, either substantially the same or a mixture of materials, but is predominantly combustible and has the characteristic that it tends to naturally bridge. That is, it does not naturally flow under gravity, but rather tends to hold its shape, even if there are gaps, spaces, or voids in the material, either when filled into the firebox or caused by consumption of the material through combustion.
As can be appreciated from U.S. Pat. Nos. 5,839,375 and 6,244,196 and the discussion herein, the bridging action causes the fuel mixture to, in effect, be an insulation layer or refractory around the inside of the wall of the combustor. It resists collapse of this layer, even when combustion consumes a substantial amount of the center of the fuel. It replaces a refractory. The bridging of the fuel creates an insulating/refractory layer around the inside of the firebox that allows collection of energy from within the burn rather than exhaust it and take the energy out of the exhaust. Combustion, heat exchange, and exhaust all come from within the fuel. It has been found, however, that many times the weaker the bridging characteristic of the fuel, the better. It is believed that just enough bridging to resist collapse by gravity or other forces of normal operation of the combustor is better than strong bridging. Principally this is because it is believed it would normally make the fuel less dense and thus easier to move and combust.
Examples of some types of naturally bridging materials are given in U.S. Pat. Nos. 5,839,375 and 6,244,196, but the invention is not limited to those examples.
However, one primary example is biomass, either alone, or in combination with other materials such as manure. Examples of such biomass is wood, fodder, grass, tree parts, and beddings. Many others exist. In this exemplary embodiment, the biomass material, and anything mixed with it, is ground or in particulate form.
For example, one definition of “biomass” is found at en.wikipedia.org: “In energy production and industry, biomass refers to living and recently living biological material which can be used as fuel or for industrial production. Most commonly biomass refers to plant matter grown for use as biofuel, but also includes plant or animal matter used for production of fibres, chemicals or heat. It excludes organic material which has been transformed by geological processes into substances such as coal or petroleum. It is usually measured by dry weight. The term biomass is especially useful for plants, where some internal structures may not always be considered living tissue, such as the wood (secondary xylem) of a tree. Biofuels include bioethanol, biobutanol and biodiesel; these two last ones are direct biofuels (so they can be used directly in petroleum engines). Biomass is grown from several plants, including switchgrass, hemp, corn, and sugarcane. The particular plant used is usually not important to the end product. Production of biomass is a growing industry as interest in sustainable fuel sources is growing. Biomass may also include animal waste, which may be burnt as fuel. Other uses of biomass, besides fuel: building materials, biodegradable plastics and paper (using cellulose fibers).”
Such fuel is typically organic, in whole or in part. For example, fuel could be entirely biomass. Another example would be that it could be one type of biomass in combination with another type of biomass. There could even be some non-biomass combustibles or there could be some non-combustibles.
One form the fuel could take is to be, on average, in relatively small pieces. It can be naturally For example, pieces approximately two inches in diameter or less have been used. It has been found that pieces of such size tend to be able to be moved with vibration (or other mechanical help), but also insulate and bridge. They can be that size, on average, naturally or can be grind or processed to that size. Such sizes are not required, however.
It has been found advantageous if moisture content of the fuel is less than 65%. This is compared with many prior art biomass combustors which operate only if moisture is less than 20%. However, the mixture must bridge.
Thus, the fuel could be a single substance or a mixture of substances. In a mixture, at least one of the substances (or the mixture) naturally bridges.
C. Apparatus
1. Firebox
The overall apparatus will be referred to as system 10. A metal firebox 12 of the dimensions shown in
2. Clean-out Auger
As shown in broken-lines, a cleanout auger 16 (100 inches long, 3 inch outside diameter flighting, 3 inch spacing of flights, 45 degrees pitch) is supported along the V-bottom 14 of tubular sidewall 11 to remove ash and remnant materials out of firebox 12. Auger 16 is made from carbon steel. It is supported at opposite end walls 13 and 15 of firebox 12 by suitable bearings or bushings, and rotated by an appropriate motor M7, which is controlled by a variable frequency drive (VFD), such as are commercially available and well known to those of skill in the art.
As shown in
In the exemplary embodiment, the spacing of the flightings on the one-half of auger 16 nearest wall 23 are twice as close to one another (e.g. 1½ inches apart as opposed to three inches apart) as on the opposite half of auger 16 nearest wall 15 (nearest the outlet of auger 16 from firebox 16). This is designed to promote, on average, removing ash evenly from firebox 12. It is believed this takes more ash from the left side of firebox 12 in
3. Combustion Air Header and Blower
Combustion air fan 18 is attached to the exhaust stack 74 side of firebox 12. It is in fluid communication with a vertical plenum 19 at that end of firebox 12 which extends down to a combustion air manifold 20 that extends horizontally across firebox 12 above cleanout auger 16.
FIGS. 5A/B and 6A/B show combustion manifold 20 in more detail, including a plurality of air outlets 21 along each opposite upper side of tube or manifold 20 through which combustion air is injected into firebox 12. These figures also show how combustion manifold 20 has an entrance end which extends through and outside end wall 13 of firebox 12. That entrance end to manifold 20 would be in fluid communication through a vertical plenum with the output of a suitable blower or fan 18.
Blower or fan 18 can be any of a number of commercially available blowers. An exemplary device is Model #7H125 from Dayton Electric Manufacturing of Chicago, Ill. (USA). It has the capability of providing on the order of 800 CFM of available ambient atmospheric air, under a pressure of from 0 to 2 in water column. The size and performance of fan 18 can vary, however, depending primarily on size of combustor system 10.
Manifold 20, with air jets or outlets 21 along its length, is designed to supply combustion air through and along the lower part of fuel when loaded into firebox. Note also that manifold 20 is spaced apart but just above clean out auger 16 (see
4. Heat Exchanger and Blower
A heat exchanger 24 also extends from the stack side of firebox 12 across the interior of firebox 12, but above combustion air manifold 20.
Heat exchanger fan or blower 22, mounted on the outside of the stack 74 side of firebox 12, injects outside ambient air through inlet 84 (see
Blower or fan 22 can be any of a number of commercially available blowers (e.g. the same as blower 18). The size and performance of fan 22 can vary, however, depending primarily on size of combustor system 10.
Exchanger 24 can be made of sheet metal having a relatively high thermal conductivity to conduct heat from combustion in firebox 12 and transfer it, as efficiently as possible, to air in exchanger 24.
It is to be understood, however, that heat exchanger 24 could take different forms and embodiments. For example, alternatively, it could circulate liquid instead of air. It could heat water or other fluid to collect and extract heat from the combustion. The heated fluid could then be moved to a different location for beneficial use.
Furthermore, heat exchanger 24 could instead be a boiler that would boil water or other liquid. The steam could then be put to beneficial use, including to turn a turbine to generate mechanical or electrical power. Such systems are well known.
5. Exhaust Manifold
Exhaust manifold 26 extends across firebox 12 above heat exchange manifold 24. One end (the end away from the stack end of firebox 12) is closed. The other end is open to an exhaust chamber or plenum 72 that is in fluid communication with stack 74.
6. Feed or Fill Auger
As can be seen in
Feed auger 30 is supported at the stack side of firebox 12 (at wall 13) by an appropriate bearing or bushing (preferably a high temperature component). Auger 30 extends basically without any enclosure along the interior top or peak of the roof of firebox 30 until it exits firebox 12 through a feed or inlet tube 36 at the opposite end. Feed tube 36 provides a conduit for fuel to firebox 12 from feed hopper 40. Auger 30 extends through feed tube 36, out of firebox 12 and then across the V-shaped bottom of feed hopper 40 and is supported at an end wall 41 of feed hopper 40 by an appropriate bearing or bushing. An appropriate electrical motor M6 is operatively connected to auger 30 and turns it. It can turn in opposite directions, as will be discussed below. It can be turned at a selected speed. Motor M6 is operated through a VFD.
For reasons discussed later, and as indicated in
Note that there is an inverted V-shaped cover 28 on top of exhaust manifold 26 (see for example
Even though section 34 of auger 30 has no flighting or small flighting, flighting 42 of auger 30 in feed hopper 40 would carry fuel through inlet tube 36 and drop fuel into firebox 12. Even though the fuel is a bridging fuel, it would fall and move down into an empty firebox 12. As it starts to fill that end of firebox 12 (the end nearest feed inlet tube 36), the fuel will continue to fall down by gravity. It tends to tumble down the growing pile of fuel in firebox 12 at an angle. This angle can vary but is on the order of 60 degrees. Fuel will eventually fill to near the top of the firebox along that first end wall 13 of firebox 12. At that time, the flighting of auger 30 inside feed hopper 40 would continue to carry fuel into feed tube 36. Even though section 34 of auger 30 without flighting would not be able to carry fuel along auger 30, the continual supply carried by the feed hopper flighting 42 would push fuel over the file that has developed in firebox 12. Eventually the part 32 of flighting of auger 30 inside firebox 12 would pick up fuel and start carrying it farther into firebox 12. The pile of fuel in firebox would then gradually fill firebox to the top across the horizontal length of firebox 12 until firebox 12 is essentially full of fuel. The inlet tube 36 would basically be full of fuel and thus be at least substantially plugged or sealed.
7. Feed Hopper
As shown in
An inlet fitting 48 (see
8. Ground Hopper
As shown in
A fill opening 58, to ground hopper 50, allows machinery or vehicles to dump fuel into ground hopper 50.
9. Vibrator Assemblies for Firebox and Ground Hopper
In this embodiment, firebox 12 has plates 60 on opposite lower portions of firebox 12 (see
Vibrators 61 can be a commercially available device. In the exemplary embodiment, it is a Model SCR-1000 adjustable speed and force electric vibrator (with vibration controller) by VIBCO, 75 Stilson Road, Wyoming, R.I. 02898 (USA) (See
Similarly, ground hopper 50 has vibrator plates 66 connected to feet (see
Legs and feet 68 support ground hopper 50 on the ground or a slab but vibrators 67 would vibrate ground hopper 50 to deter packing of fuel to promote more efficient transfer and movement of it.
10. Interaction of Components
The basic structure of system 10 thus includes a firebox 12 having essentially a combustion chamber 70 (see
Heat is collected and extracted by heat exchanger 24. Exhaust gasses are collected through exhaust manifold 26 and routed to an exhaust plenum or chamber 72 and out stack 74.
Fuel can be mechanically provided by feed auger 30 using a supply of fuel available through ground hopper 50 and feed hopper 40. It should be noted that, in the exemplary embodiment, the amount of fuel moved from feed hopper 40 is designed to be greater than the amount of fuel that moves from ground hopper 50 to feed hopper 40 to prevent overfilling and plugging of feed hopper 40. This can be controlled by any of a number of parameters. If the ground hopper augers and feed auger are essentially the same size, this can be controlled by appropriate adjustment of the speed of the augers.
Likewise, clean out auger 16 could be designed to move more material than feed auger 30 for a similar reason, to prevent overload or plugging of clean out auger 16.
Also, as previously mentioned, tubes 17A and B around opposite interior combustion zone ends of cleanout auger 16 would promote fuel to stack up above, and not be moved by, cleanout auger 16. It would tend to hold a vertical section of fuel along the inside end walls 23 and 15 of combustion zone 70. The benefit is it creates an insulation layer each opposite end wall so that heat does not transfer to the metal end walls of firebox 12.
11. Thermostat
In the exemplary embodiment, combustor 10 is operatively connected to building to provide heated air to heat the building. As will be discussed further below, the exemplary embodiment is designed to provide needed heat to the building on demand.
To do so, as indicated diagrammatically of
Thermostat 94 can be a conventional thermostat that allows the building owner/operator to create a thermostat set point which defines the building temperature that is desired. In this embodiment, thermostat 94 generates an output signal that can be sent to a PLC or other controller and be recognized as the set point of the thermostat.
Thermostat 94 can be any of a number of commercially available thermostats. In this embodiment it is programmable to a set point with a three degree F. swing (i.e. it calls for heat if sensed temperature goes more than 1½ degree F. below the set point). It has the capability of providing an output signal that can be read by PLC 102 (see
12. Smoke Detector
A smoke detector 95 can be placed in the heat exchanger 22 outlet plenum (same location as thermistor T1 in
It can be any of a number of commercially available devices. It has the capability of sending a signal to PLC 102 that would be recognized as an indication that smoke about a certain threshold is indicated (see
13. Load Sensors
Load sensor 96 can be any of a number of commercially available load sensors or strain gauges. A summing board 97A (commercially available) is used to communicate with strain gauge input module 97B (Model I-7016 from ICP DAS of Hsinchu, Taiwan 303 (ROC)) to allow the load sensors to communicate with PLC 102.
In this embodiment there are two load sensors, one for each end of ground hopper 50. However, there could be four (one for each leg of hopper 50). If more than one, their readings are summed by summing board 97A to get total weight.
14. Strip Heater
Strip heater 98 can be any of a number of commercially available devices. In the exemplary embodiment, it is a Model #OS1430-1250B from Vulcan Electric Company of Porter, Me. (USA). It has the capability of providing on the order of 1000 degrees F.
D. Control Circuit
The exemplary embodiment features an electrical control circuit 100 that works in combination with certain components to allow monitoring and control of system 10.
1. PLC
A programmable digital device such as a PLC 102 is connected to an appropriate electrical power supply 104. It could be programmed for a variety of functions such as is well known in the art. PLC 102 can be any of a number of commercially available programmable logic controllers. It could also be other types of programmable controllers. In the exemplary embodiment it is a Model I-7188EGD embedded controller with processor (512K static RAM, 512K flash memory) from ICP DAS of Hsinchu, Taiwan (ROC) (see
2. Operator Interface
PLC 102 works in combination with operator interface 103, which communicates with PLC 102 over its Ethernet connection through a five port Ethernet switch (e.g. Model NS-205 from ICP DAS) (see
PLC 102 and operator interface 103 can thus be programmable for a variety of functions for system 10. This can include inputs from peripheral devices and outputs to control peripheral devices.
3. Inputs to PLC and/or Operator Interface
a) Thermostat
In this embodiment, one input is from building thermostat 94. Thermostat 94 would send an electrical signal to PLC 102 when there was a call for heat in the building. Thermostat 94 could, of course, have an adjustable set point so that the user could select the level of heat desired for the building. Thermostat 94 has an output that can be communicated to PLC 102 via 16 channel isolated digital input module 110 (Model #I-7051D from ICP DAS) (see
b) Smoke Detector
An additional input is from smoke detector 95. If a signal is generated from smoke detector 95 indicating the presence of smoke above a threshold in heat exchanger 24, the PLC would shut down combustion air to allow investigation as to the causes of smoke in the heat exchanger 24. Smoke detector 95 would also communicate to PLC 102 through digital input module 110 of
c) Load Cells
An additional input would be from load cells 96. They would send an electrical signal proportional to the weight experienced by them to summing board 97A (
d) Thermocouples
As illustrated in
Thermocouples T1-T29 can be commercially available stainless steel washer-type thermocouples that could be screwed to metal components of system 10 and read the temperature at or near their location in system 10.
(1) Supply Air Temperature for Heat Exchanger
Thermocouple T1 would be placed at or near supply air outlet 86 (see
This can be used by system 10 to monitor the performance and efficiency of heat exchange, as it could log the temperature exiting heat exchanger 24.
(2) Firebox Exterior Skin Temperature
Thermocouples T2-T9 would be placed directly in contact with the external skin of firebox 12 in the eight positions indicated in
In the exemplary embodiment, the set point for thermocouples T2-9 is around 250° F. for an iron firebox 12. This could vary depending on the type of material used for firebox 12, the type of fuel being combusted, or other factors.
(3) Stack Temperature
Thermocouples T11 and T12 are placed in stack 74 (see
Upon that condition, PLC 102 would assume a stack fire and issue an alarm. For example, the alarm could be to turn off combustion air blower 18 to drastically reduce combustion and heat from firebox 12 and allow the stack fire to burn out. Once the temperature difference between T11 and T12 returns to within normal range, TLC 102 could increase combustion air to bring system 10 back up to full combustion.
(4) Exhaust Chamber Temperature
Thermocouple T13 is placed in exhaust chamber 72 (see
(5) Firebox/Heat Exchanger Temperature
Thermocouples T14-T29 are positioned as diagrammatically indicated in
In the exemplary embodiment, they are placed about 3 or 4 inches away from exchange manifold 24. They would therefore be inside the fuel, as opposed to being in direct contact with the exterior of heat exchanger 24. They are used as inputs to monitor the temperatures at those locations. This information could be data logged to simply make a record of operation of system 10 or to help control the combustion air and/or exhaust air flow to fine tune combustion.
In the exemplary embodiment, T14-T29 include four on the top of and spaced about 4 inches into the burn around exchanger 24 (two on each side of the top). Another four (2 on each side) are spaced about 4 inches away from the bottom of exchanger 24. They are mounted on but extended about 4 inches from exchanger 24 by a metal bushing or mounting piece.
e) Variable Frequency Drives
As discussed earlier, a number of motors are used for various functions in system 10. As indicated at
However, a VFD also can read the amperage or other operational characteristics of the motor it controls. In this embodiment, VFDs 1-7 communicate an amperage reading or draw of motors M1-7 respectively to PLC 102. These inputs to PLC 102 are used to monitor operational state of certain of the components of system 10, as will be discussed in more detail below. For example, an increased amperage draw implies that an auger motor is bogging down. System 10 assumes that this means the auger is full and that whatever it is filling is full. This can be used by control circuit 100.
VFDs 1-7 can communicate between an RJ-45 serial communications port on each (not shown) to corresponding RJ-45 connections at operator interface 103 (see
VFD's 1-7 can be appropriately protected with fusing (see
f) PC
As indicated diagrammatically in
g) Electrical Power
h) Switches
Also, “manual fill” allows the operator to decide if fuel is to be filled into firebox 12. For example, this can be used when firebox 12 is empty and is to be filled with the fuel initially. This switch operates the ground hopper and feed augers.
Similarly, “manual clean out” allows the operator, at any time, to operate the clean out auger. This could, for example, be done on a scheduled basis (e.g. every week or month or year) or at any given, chosen time.
Also,
4. Outputs to PLC and/or Operator Interface
a) Variable Frequency Drives for Motors
As previously mentioned, VFDs 1-7 are operatively connected between PLC 102 and motors M1-7 respectively, to start and stop, as well as control speed and direction of motors M1-7.
Motors M1 and M2 of incline auger 56 and bottom auger 54 of ground hopper 50 can be controlled through a variable frequency drives VFD 1 and 2 (see
Additionally, it is to be understood that certain augers of system 10 preferably will be run at different speeds or throughputs. For example, in the exemplary embodiment augers 54 and 56 of ground hopper 50 are programmed to run at a lower speed than feed auger 30. Similarly, cleanout auger 16 would be run at a faster speed that feed auger 30. This is to prevent packing or overload from section to section of system 10. The use of the variable frequency drives allows easy programming and adjustment of such speeds as needed or desired.
PLC 102 also can control the vibrator motor M3 for vibration of ground hopper 50 through variable frequency drive VFD3 (see
PLC 102 additionally can control motors M4, M5, M6, and M7 for firebox 12. M4 controls volume and speed of combustion air. M5 controls volume and speed of heat exchange air. M6 controls feed auger 30. M7 controls cleanout auger 16. Each utilizes a variable frequency drive as explained earlier (see
b) Strip Heater Contactor
Additionally, strip heater 98 is controlled by PLC 102 after momentary switch MSH is manually closed by the operator. As shown in
Heater 98 can be any of a variety of commercially available types. It is extended along the top of combustion air manifold 20 substantially across the longitudinal length of firebox 12. It is operated when combustor 10 is initially fired up after initial filling with fuel. It can also be used to re-ignite fuel if combustion has intentionally or unintentionally discontinued.
Strip heater 98 can be a stainless steel, resistance-type strip heater which generates temperatures on the order of approximately 575° F. This could be adjusted depending primarily on moisture content of the fuel. Such heaters can reach up to approximately 1,000° F.
c) Vibrator Contactors
PLC 102 also controls a contactor or relay (see
d) PC
Additionally, as mentioned, data can be output from control circuit 100 to peripherals such as a PC. This allows storage of data about operation of combustor 10. This can allow the operator to evaluate and make modifications to operation to optimize performance. It also allows data logging to see how system 10 is operating for research and development purposes. For example, by logging temperature along the heat exchanger, modifications to the heat exchanger might be suggested to improve performance.
5. Miscellaneous
Some features to note are as follows.
E. Operation
Control circuit 100, in combination with the hardware of system 10, is designed to allow automatic, continuous, on demand generation of heat through combustion for the purpose of providing heated air to a building. This is in contrast to batch-mode or intermittent-mode combustion. It promotes consistent, highly efficient combustion by automatically maintaining pressurization inside firebox 12 while utilizing and maintaining surrounding insulation of the combustion area to keep the outer part of firebox 12 relatively cool and to avoid the need for refractory material on the inside of firebox 12. It automatically senses loss of the insulating layer through thermocouples T2-9 which sense an increase of temperature on the outside skin of firebox 12. This automatic operation is designed to allow continuous operation of the combustor at a relatively constant burn and constant heat output. This can not only be more efficient, but also can effectively operated, for example, a steam generator, which needs a relatively constant, long-lasting heat source. Prior art biomass combustors have been plagued with the problem of being essentially batch mode—they are filled with a batch of biomass. It is combusted, but once substantially combusted, the process either extinguishes because the fuel is consumed, or extinguishes. The system must be shut down and the next batch filled. It must then be re-ignited. It takes a while to build up heat to a high level.
In contrast, the batch-mode type combustor builds up to operating output 242, but then the batch of fuel is either consumed or is substantially consumed to the point output drops quickly and substantially (see portion 243). It must be essentially shut down, refilled and reignited. This takes substantially time with little or no output (portion 244). Also, a substantial amount of time is needed to build up to operating output again (portion 245). When the second batch of fuel is consumed, output drops out again. This repeats.
As can be seen by comparison of lines 230 and 240 in
The exemplary embodiment theoretically can run indefinitely. Hundreds and even thousands of hours of continuous operation are contemplated between periodic maintenance or cleanings.
1. Initial Fill Sequence (see
Initial filling of an empty firebox 12 (FIGS. 22A and 12A/B) is by depression of “manual fill” momentary switch (see
When firebox 12 gets full of fuel 90 (FIGS. 14A/B), pressure (resistance) builds against fill auger 30. When this pressure, converted from amperage of fill auger motor M6 (monitored by PLC 102 by reading VFD 6) reaches a set point, circuit 100 assumes firebox 12 is full of biomass or fuel. A higher amp draw on motor M6 occurs because torque packs in fuel 90 and works against auger 30.
If amperage of auger motor M6 exceeds its set point (step 212), feed auger 30 is stopped from turning forward (step 213) and reversed (FIGS. 14A/B) in direction for a set period of time (step 214). Alternatively, instead of simply reversing auger 30 for a set period of time or times, auger 30 can be reversed and amp draw of motor M6 monitored, and if amp draw rises to a level indicative of inlet tube 36 being packed or sealed with fuel 90 (i.e. it is sensed to bog down because of packing of fuel 90 in tube 36), it is stopped from operation. This reversal of auger 30 organically seals firebox 12. As previously described, there is a “drop out” of flighting at section 34 of feed auger 30. This drop out section has no or reduced diameter flighting, depending on the fuel, of approximately 6 to 8 inches around the point where inlet tube 36 spills into firebox 12. When fill auger 30 is reversed, it packs fuel against this entrance hole because of the drop out section. In other words, the drop out section does not move fuel backward along auger 30. However, the flighting of auger 30 on the firebox side of drop out section 34 would move fuel and plug or jam it at that location which in turn plugs or seals inlet tube 34.
In the exemplary embodiment, auger 30 is reversed three successive set periods of time, to further ensure the seal is formed. Fuel remaining in feed auger 30 over the combustion zone inside firebox 12 would move back toward inlet tube 34, but because of the drop out of flighting, would pack the fuel in the most adjacent flights of flighting 32 and that part of inlet tube 34 to pack and seal the fuel in inlet tube 34 and around its opening into firebox 12. This deters any air or gas flow out of inlet tube 34 and promotes an air flow path from the outlets of combustion air tube or manifold 20, which is pressurized, through the combustion zone inside firebox 12, through the fuel above the combustion zone and into the exhaust manifold 26 for venting through stack 74. This is called an “organic seal” because it is using the biomass fuel to plug or seal that opening to maintain the pressurization and air flow accordingly for combustion, instead of any mechanical part or structure.
As noted at step 214 in
2. Ignition (see
Initial firing of the reactor combustor involves manual activation of momentary ignition switch “manual ignition” of
As described earlier, this ignition is only needed, ideally, once at the beginning of the heating system. The fire usually does not go out unless the machine is run to empty and sits idle for at least a few days. However, the manual ignition is made available in the event it is required at any time. Combustor 10 is ready for normal continuous operation (step 223).
3. Normal Operation (see
After initial ignition and firing with igniters 98, system 10 would wait until thermostat 94 calls for heat (when the temperature of this conventional thermostat is below and adjustable set point) (see step 224 of
Combustion air blower 18 runs continually unless one of the following cycles it off (or alternatively slows blower 18 down—see step 242):
a. The set point of thermostat 94 is satisfied (step 230).
b. A high temperature limit (e.g. one Underwriters Laboratories, Inc. standard is 175 degrees F. or greater) of the exchange medium (heat exchanger air output in this case) is reached (would be indicated by thermocouple T1 exceeding its set point) (step 232).
c. Automatic continuous reaction fill cycle is in operation (step 234). Thermocouples T2-T9 would signal if a refill sequence is needed. During that time, combustion air is turned off so smoke or fire does not leak out of feed auger entrance to firebox 12. In other words, as described later below, if the feed auger 30 is operating, combustion air is turned down or off to depress combustion until firebox 12 has its organic seal back in place.
d. Exhaust stack alarm is active (step 236). Depending on the makeup of the bio fuel, creosote tends to build up in exhaust stack 74. This build up can ignite because the exhaust can reach temperatures in the range of 1000° F. or more. Thermocouples T11 and T12 are monitored by PLC 102. Thermocouple T11 is towards the bottom of stack 74, whereas thermocouple T12 is above it (e.g. separated by a few feed). When higher sensor T12 measures a higher temperature than lower sensor T11 (e.g. by more than a few degrees) circuit 100 assumes there is a stack fire because normally higher sensor T12 would register a lower temperature than lower sensor T11 because exhaust tends to cool as it travels up and away from firebox 12. At this point, combustion air blower of fan 18 is cycled off to prevent sparks from coming out of stack 74.
It is noted that system 100 has a optimization routine regarding either combustion air or exchanger air. PLC 102 can automatically increase combustion air during this continuous combustion operation. Through the various monitors in system 10, it can decide at what point optimal combustion is occurring relative to the amount of combustion air being supplied. It does so in a manner in which it increases combustion air until it senses a condition that indicates detrimental trend in the combustion. It then reduces combustion air linearly or in a step fashion until it senses diminishing returns. It continues to go back and forth until it settles on a “sweet spot” for operation. This could be on a continuous basis or periodic basis. It essentially is fine tuning the combustion air, first between a larger upper and lower limit but then continuously narrowing that range until it settles into a single value or very narrow range of operation.
Alternatively, or in addition, exchanger air blower 22 can be adjusted similarly. Even though it is not directly moving air through combustion zone, the amount of air moved through heat exchange manifold 26 can increase or decrease the amount of heat removed from firebox 12 which in turn can affect the combustion.
As indicated at
Similarly, if thermocouple T29 at the outlet of heat exchanger manifold 24 exceeds a set point, combustion air could also be turned off. This could be a back up to thermostat 94 or a safety feature. Likewise, if stack fire is indicated, combustion air is turned off until the problem is fixed.
Note in
Note also that combustion air can be turned off or slowed down if thermistor T10 exceeds its set point (step 310,
4. Automatic Fill Sequence (see
As described above,
However, as fuel 90 burns from the inside out, the void or fire ball in the center of firebox 12 gets larger and larger (compare
One of the temperature sensors or thermocouples T4 or T5 associated with zone 2 of firebox 12 would exceed its set point because the fire ball would be released to move up and heat up the skin of firebox 12 in that area (step 234). The system would then go to an auto fill sequence (see step 246 and
When the auto fill sequence is initiated by controller 102, the following occurs:
a. Cleanout auger 16 and vibrators 61 on the bottom of firebox 12 are turned on after combustion air is shut off (see steps 250, 252, 254 of
b. If the cleanout auger operation cycle times out (step 260), fill auger 30 is turned on (step 270), along with ground hopper augers and vibrators (steps 271, 272). The system watches amperage draw of fill auger 30 (step 280). If fill auger 30 reaches its amperage set point too soon (step 282), control circuit 102 stops it and displays an error message (e.g., “plugged fill auger”) (steps 284, 286). This can occur if for example large rocks obstruct its operation. This gives the operator a chance to unplug the fill auger before operation of system 10 continues.
c. On the other hand, if a fill auger 30 does not reach its amperage set point in the correct time (too late, step 290), circuit 102 stops it and an error message (e.g., “long fill”) is displayed (steps 292, 294). The system assumes that the fill hopper 40 is empty.
d. Otherwise, the fill cycle continues with the fill and ground hopper augers and vibrators on (steps 270, 271, and 272) until firebox 12 is full, which is observed by circuit 100 when fill auger 30 exceeds its amperage set point within a time window between too short and too long (step 280). Fresh fuel 90 moves along existing fuel in firebox until it reaches the gap caused by the collapse (FIGS. 20A/B). The fresh fuel 90 falls into the gap. Some falls through the gap into the combustion, and even to the bottom of firebox 12. But the natural bridging characteristics of fuel 90 eventually fill, plug, and/or bridge the gap to close it and re-insulate the firebox 12 (FIGS. 21A/B).
e. Once the firebox is assumed full, the forward direction of feed or fill auger 30 is terminated (step 300) and then the organic seal is “proven” by reversing fill auger 30 (step 302) for a preprogrammed time (step 304) as previously described. System 10 is then ready to return to normal continuous operation (step 206 of
The auto fill sequence therefore automatically senses a need to plug a collapse of the insulating fuel around the fire ball, feeds fuel across fill auger 30 to fill any such plug by operating fill auger 30 for a timed period and then monitoring when it starts to labor because the fuel has completely filled up firebox 12. It proves the fill and the organic seal by reversing feed auger 30 and thus reinstitutes a complete seal around the fire of insulating fuel to continue efficient, consistent operation of the combustor.
Of course, the operator must make sure there is sufficient supply of fuel in ground hopper 50 to allow that continuous operation. As can be appreciated, the ground hopper 50 can be made to various sizes to have whatever feed supply or fuel is desirable. System 10 could theoretically operate indefinitely with sufficient supply of fuel and if any of the conditions mentioned do not cause circuit 100 to shut down the system.
As can be further appreciated, optimum heating likely occurs when there is a fully developed fireball and void surrounded by fuel in firebox 12. Once developed enough that one area of fuel collapses, other areas would likely shortly follow. In other words, when one area collapses, it is likely that fuel has been consumed and fuel has been dried out sufficiently that it is more likely to collapse. The system monitors this and when any part or areas of fuel collapse, the auto fill sequence is initiated. The setup is such that even though some areas are not yet collapsed, the operation of auger 30 would move fuel to where gravity would drop it into any collapsed area. This would tend to drop it through the collapsed area and fill up some of the fireball void. However, the fuel would tend to stack up and then plug the collapsed area. Feed auger 30 would then start feeling the pressure of fuel all along its length and reach its amperage set point and then reverse for proving the organic seal and shut down.
Sometimes there could be a collapse of fuel in multiple areas. The fill cycle would take care of that.
As can be appreciated, at the end of the heating system, the system can be intentionally shut down by either shutting off the automatic fill sequence so that all fuel in firebox 12 is consumed and then turn off system 10. Alternatively, combustion air could be turned off and heat exchanged air turned off to hopefully shut down combustion and then the remaining fuel augured out with the cleanout auger 16.
F. Failsafes
As described, a number of failsafes are built into system 10. For example:
a. Thermocouples T2-9 on firebox skin. If the fireball is lost because of a dropout of fuel, combustion air is turned off until the firebox is refilled, plugged, and pressurized.
b. Stack thermocouples T11-12. They sense and dose stack fires. Normally they should both see about 200 to 500° F. However, if offset in sensed temperature between them (e.g. top thermocouple T12 is hotter than bottom thermocouple T11 by greater than approximately 50 degrees F.), the system assumes a stack fire and turns off combustion air.
c. Thermocouple 13 in the exhaust path could indicate if emissions contain undesirable substances.
Other failsafes are possible. Below are some examples:
a. A thermocouple could be placed and monitored in the inlet tube 36 from the feed hopper. If it exceeds a set point, it could indicate there is a faulty fill or the feed hopper is empty (
b. Auto damper—if the thermostat is not calling for heat, after a set period of time a damper could be closed either partially or fully to diminish or shut off combustion air to save fuel.
c. There could be an electronically controlled lock on an access door to the interior of the firebox 12 so that it can't be opened so long as there is a fire generated in it.
d. Not only could combustion air be turned off and augers turned off if they indicate a plugging or binding from a rock or whatever, any of the augers could be reversed to try to eject rocks for example.
G. Options and Alternatives
It will be appreciated that the present invention can take many forms and embodiments. Variations obvious to those skilled in the art are included within the invention which is defined solely by the appended claims. The invention is not limited to the specific exemplary embodiment disclosed herein.
For example, the scale of system 10 or its components could be changed according to need and desire.
By further example, substitutions and shape, materials, or configurations are possible.
One of the features of the present invention is that it has been found to work with a variety of different types and characteristics of fuel. There may be some fine-tuning needed for different fuels but basic principles and structures can be used for a variety of such fuels.
Another example is mode of operation. While the exemplary embodiment has an electrical control circuit, there could be a much more manually operated system. For example, there could be manually operated augers. A thermometer or pop-up temperature sensor could visually indicate to the operator a fuel collapse. The operator could manually operate an auger to have a fill sequence and reverse the auger for the organic plug.
The mode of operation can vary. The exemplary embodiment utilizes an adjustment of combustion air to find the “sweet spot”. For example if there is poor fuel, an increase in oxygen and/or decrease in exchanger air fan speed might be indicated. For good fuel just the opposite might be indicated.
Utilization of the heated combustion can vary. As indicated, the exemplary embodiment circulates air through the interior of the firebox to collect and extract heat. Any type of heat exchanger could be utilized including fluid types or the like. Additionally a boiler to generate steam could be utilized.
It will be appreciated that the auto fill sequence many times brings new fuel into the firebox. Therefore, the gap caused by the collapsed area fuel, in this case, would be filled with new and usually higher moisture fuel. It would then take longer to dry out and collapse. On the other hand, the fuel could have quite different characteristics than the fuel already in the firebox. Again, the feature of the invention is its ability to handle fuel of different characteristics.
It has been found that as a general rule, in a system 10 of the size with good fuel, it can take several hours for the initial fill of fuel to get to the point it starts collapsing. It has been found that normally there will only be one area that collapses. The auto fill sequence is completed and has been found that usually it will be another couple hours before another collapse. Therefore, normally system 10 operates for extended periods of time with the complete fuel insulation around the fireball.
It is to be also understood that there is a natural air flow through the firebox 12 even when combustion air is fully turned off. Therefore, as described earlier, on the event of cycling off combustion air, normally combustion continues in the firebox for somewhat extended period of time. This allows it to be regenerated into a full fireball by reinstigation of combustion air. On the other hand, it allows conservation of fuel until such time as the thermostat calls for heat or the system is in a state enabling reinstigation of the full fireball. For example, complete shutdown of combustion air can normally continue a low level fire in the firebox for a couple of days. Therefore even if heat is not called for that period of time, there does not have to be a re-ignition. This again, is dependent on a number of factors including the type and condition and characteristics of the fuel.