The present disclosure generally relates to mobile devices and communications networks. In particular the disclosure is directed to monitoring one or more mobile terminals using internal proxies and processing and distributing the related data through customized interfaces utilizing cumulative and centralized intelligence for data handling.
There has been considerable interest in monitoring the use of mobile terminals, such as smart phones, tablets, laptops, etc. for audience measurement and/or marketing purposes. In the area of media exposure monitoring, ancillary audio codes have shown themselves to be particularly effective in assisting media measurement entities to determine and establish media exposure data. One technique for encoding and detecting ancillary audio codes is based on Critical Band Encoding Technology (CBET), pioneered by Arbitron Inc., which is currently being used in conjunction with a special-purpose Personal People Meters (PPM™) to detect codes via ambient encoded audio.
Challenges currently exist in the realm of general-purpose “smart” devices to be able to configure them to read ancillary code from digital audio that may be reproduced on the device itself and/or received and reproduced from a computer network, such as the Internet. For one, general purpose devices will not typically come equipped with special-purpose digital signal processors (DSPs), and require special consideration when incorporating decoding algorithms together with the device's software application architecture. Additionally, since the process of decoding or reading ancillary audio codes is sensitive to noise, it may not be desirable to use a device's microphone to receiving audio input.
Currently, techniques exist for collecting data relating to digital media received on mobile terminals, but they typically require the collection of metadata related to the digital media, which must be separately processed. One such example may be found in U.S. patent appliaction Ser. No. 13/341,646, titled “Monitoring Streaming Media Content” to Ramaswamy et al., filed Dec. 30, 2011, which is incorporated by reference herein. In this example, metering data is extracted from media using a transport stream, where the metering data must be transcoded into a second format in order to be decoded. The transcoded metering data is then encoded into a metadata channel, where it is transmitted to a content presentation device for subsequent identification. While it may be effective, such a process is unnecessarily complex and requires multiple processing steps in order to obtain the metered data. It would be desirable to have a configuration where ancillary audio codes may be efficiently read out on a device without resorting to metadata, in order to provide a more simplified system for media audience measurement.
Under one exemplary embodiment, a processing device is disclosed, wherein the processing device comprises an audio input configured to receive digital audio from one of (i) a computer network and (ii) a digital media file; a memory, operatively coupled to the audio input; and a processing apparatus, communicatively coupled to the audio input, wherein the processing apparatus is configured to activate a decoder application on said processing device to transform the received digital audio from a time domain to a frequency domain and store the transformed digital audio in the memory; wherein the decoding application is configured to process the stored digital audio using a decoder application interface to determine the presence of ancillary codes encoded into the digital audio.
Under another exemplary embodiment, a processor-based method is disclosed for configuring a processing device to read ancillary codes embedded in digital audio, comprising the steps of receiving digital audio at an input of the processing device from one of (i) a computer network and (ii) a digital media file; and configuring a processor on the processing device to activate a decoder application on said processing device to transform the received digital audio from a time domain to a frequency domain and store the transformed digital audio in a memory; wherein the decoding application is configured to process the stored digital audio using a decoder application interface to determine the presence of ancillary codes encoded into the digital audio.
In yet another exemplary embodiment, a computer program product is disclosed, comprising a computer usable medium having a computer readable program code tangibly embodied therein, said computer readable program code adapted to be executed to implement a method for reading ancillary code from digital audio, said method comprising: sampling the digital audio from an input of the processing device, said input being configured to receive the digital audio from one of (i) a computer network and (ii) a digital media file; and activating a decoder application on said processing device to transform the received digital audio from a time domain to a frequency domain and store the transformed digital audio in a memory; wherein the decoding application is configured to process the stored digital audio using a decoder application interface to determine the presence of ancillary codes encoded into the digital audio.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
A mobile terminal as used herein comprises at least one wireless communications transceiver. Non-limiting examples of the transceivers include a GSM (Global System for Mobile Communications) transceiver, a GPRS (General Packet Radio Service) transceiver, an EDGE (Enhanced Data rates for Global Evolution) transceiver, a UMTS (Universal Mobile Telecommunications System) transceiver, a WCDMA (wideband code division multiple access) transceiver, a PDC (Personal Digital Cellular) transceiver, a PHS (Personal Handy-phone System) transceiver, and a WLAN (Wireless LAN, wireless local area network) transceiver. The transceiver may be such that it is configured to co-operate with a predetermined communications network (infrastructure), such as the transceivers listed above. The network may further connect to other networks and provide versatile switching means for establishing circuit switched and/or packet switched connections between the two end points. Additionally, the device may include a wireless transceiver such as a Bluetooth adapter meant for peer-to-peer communication and piconet/scatternet use. Furthermore, the terminal may include interface(s) for wired connections and associated communication relative to external entities, such as an USB (Universal Serial Bus) interface or a Firewire interface.
As will be explained in further detail below, mobile terminal events may be monitored, where the events may include, for example, substantially non-user-initiated incidents such as battery status change, not at least directly initiated by the user of the device. The actions may include substantially user-initiated intentional activities and incidents, for example use of the web browser, movements, reading a message, etc. Some incidents may be also considered to conveniently fit both the above incident classes.
Turning to
In one example, decoder 213 may be configured as software tangibly embodied in memory 208, which may communicate with other software in memory 208 and CPU 201, as well as audio circuitry 206, and serves to decode ancillary data embedded in audio signals in order to detect exposure to media. Examples of techniques for encoding and decoding such ancillary data are disclosed in U.S. Pat. No. 6,871,180, titled “Decoding of Information in Audio Signals,” issued Mar. 22, 2005, and is incorporated by reference in its entirety herein. Other suitable techniques for encoding data in audio data are disclosed in U.S. Pat. No. 7,640,141 to Ronald S. Kolessar and U.S. Pat. No. 5,764,763 to James M. Jensen, et al., which are incorporated by reference in their entirety herein. Other appropriate encoding techniques are disclosed in U.S. Pat. No. 5,579,124 to Aijala, et al., U.S. Pat. Nos. 5,574,962, 5,581,800 and 5,787,334 to Fardeau, et al., and U.S. Pat. No. 5,450,490 to Jensen, et al., each of which is assigned to the assignee of the present application and all of which are incorporated herein by reference in their entirety.
An audio signal which may be encoded with a plurality of code symbols may be received via data communication through RF interface 205 via audio circuitry 206, or through any other data interface allowing for the receipt of audio/visual data in digital form. Also, encoded audio signals may be reproduced on device 200 through digital files stored in memory 208 and executed through one or more applications (214) stored in memory 208 such as a media player that is linked to audio circuitry 206. From the following description in connection with the accompanying drawings, it will be appreciated that decoder 213 is capable of detecting codes in addition to those arranged in the formats disclosed hereinabove. Memory 208 may also include high-speed random access memory (RAM) and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 208 by other components of the device 200, such as processor 203, decoder 213 and peripherals interface 204, may be controlled by the memory controller 202. Peripherals interface 204 couples the input and output peripherals of the device to the processor 203 and memory 208. The one or more processors 203 run or execute various software programs and/or sets of instructions stored in memory 208 to perform various functions for the device 200 and to process data. In some embodiments, the peripherals interface 204, processor(s) 203, decoder 213 and memory controller 202 may be implemented on a single chip, such as a chip 201. In some other embodiments, they may be implemented on separate chips.
The RF (radio frequency) circuitry 205 receives and sends RF signals, also known as electromagnetic signals. The RF circuitry 205 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. The RF circuitry 205 may include well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 205 may communicate with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The wireless communication may use any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g and/or IEEE 802.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for email (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), and/or Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS)), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 206, speaker 220, and microphone 221 provide an audio interface between a user and the device 200. Audio circuitry 206 may receive audio data from the peripherals interface 204, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 221. The speaker 221 converts the electrical signal to human-audible sound waves. Audio circuitry 206 also receives electrical signals converted by the microphone 221 from sound waves, which may include encoded audio, described above. The audio circuitry 206 converts the electrical signal to audio data and transmits the audio data to the peripherals interface 204 for processing. Audio data may be retrieved from and/or transmitted to memory 208 and/or the RF circuitry 205 by peripherals interface 204. In some embodiments, audio circuitry 206 also includes a headset jack for providing an interface between the audio circuitry 206 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
I/O subsystem 211 couples input/output peripherals on the device 200, such as touch screen 215 and other input/control devices 217, to the peripherals interface 204. The I/O subsystem 211 may include a display controller 218 and one or more input controllers 220 for other input or control devices. The one or more input controllers 220 receive/send electrical signals from/to other input or control devices 217. The other input/control devices 217 may include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 220 may be coupled to any (or none) of the following: a keyboard, infrared port, USB port, and a pointer device such as a mouse, an up/down button for volume control of the speaker 221 and/or the microphone 222. Touch screen 215 may also be used to implement virtual or soft buttons and one or more soft keyboards.
Touch screen 215 provides an input interface and an output interface between the device and a user. The display controller 218 receives and/or sends electrical signals from/to the touch screen 215. Touch screen 215 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output may correspond to user-interface objects. Touch screen 215 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 215 and display controller 218 (along with any associated modules and/or sets of instructions in memory 208) detect contact (and any movement or breaking of the contact) on the touch screen 215 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on the touch screen. In an exemplary embodiment, a point of contact between a touch screen 215 and the user corresponds to a finger of the user. Touch screen 215 may use LCD (liquid crystal display) technology, or LPD (light emitting polymer display) technology, although other display technologies may be used in other embodiments. Touch screen 215 and display controller 218 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with a touch screen 215.
Device 200 may also include one or more sensors 216 such as optical sensors that comprise charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. The optical sensor may capture still images or video, where the sensor is operated in conjunction with touch screen display 215. Device 200 may also include one or more accelerometers 207, which may be operatively coupled to peripherals interface 204. Alternately, the accelerometer 207 may be coupled to an input controller 214 in the I/O subsystem 211. The accelerometer is preferably configured to output accelerometer data in the x, y, and z axes.
In some embodiments, the software components stored in memory 208 may include an operating system 209, a communication module 210, a text/graphics module 211, a Global Positioning System (GPS) module 212, audio decoder 213 and applications 214. Operating system 209 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components. Communication module 210 facilitates communication with other devices over one or more external ports and also includes various software components for handling data received by the RF circuitry 205. An external port (e.g., Universal Serial Bus (USB), Firewire, etc.) may be provided and adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.
Text/graphics module 211 includes various known software components for rendering and displaying graphics on the touch screen 215, including components for changing the intensity of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like. Additionally, soft keyboards may be provided for entering text in various applications requiring text input. GPS module 212 determines the location of the device and provides this information for use in various applications. Applications 214 may include various modules, including address books/contact list, email, instant messaging, video conferencing, media player, widgets, instant messaging, camera/image management, and the like. Examples of other applications include word processing applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
Returning briefly to the example of
Turning to
Core services layer 302 comprises fundamental system services that all applications use, and also provides interfaces that use object-oriented abstractions for working with network protocols and for providing control over protocols stack and provide simplified use of lower-level constructs such as BSD sockets. Functions of core services layer 302 provide simplified tasks such as communicating with FTP and HTTP servers or resolving DNS hosts. Core OS layer 301 is the deepest layer of the architecture of
Turning to
During one exemplary mode of operation, which will be discussed in greater detail below, the audio portion of media played using media player 401 is stored and/or forwarded to decoder application 402. Using one or more techniques described herein below, decoder 402 processes the audio portion to detect if ancillary codes are present within the audio. If present, the ancillary codes are read, stored, and ultimately transmitted to a remote or central location (114) where the codes may be further processed to determine characteristics (e.g., identification, origin, etc.) of the media and further determine media exposure for a user associated with a device (200) for audience measurement purposes.
With regard to encoding audio,
When utilizing a multi-layered message, a plurality of layers may be present in an encoded data stream, and each layer may be used to convey different data. Turning to
The second layer 502 of message 500 is illustrated having a similar configuration to layer 501, where each symbol set includes two synchronization symbols 509, 511, a larger number of data symbols 510, 512, and time code symbols 513. The third layer 503 includes two synchronization symbols 514, 516, and a larger number of data symbols 515, 517. The data symbols in each symbol set for the layers (501-503) should preferably have a predefined order and be indexed (e.g., 1, 2, 3). The code components of each symbol in any of the symbol sets should preferably have selected frequencies that are different from the code components of every other symbol in the same symbol set. Under one embodiment, none of the code component frequencies used in representing the symbols of a message in one layer (e.g., Layer1 501) is used to represent any symbol of another layer (e.g., Layer2 502). In another embodiment, some of the code component frequencies used in representing symbols of messages in one layer (e.g., Layer3 503) may be used in representing symbols of messages in another layer (e.g., Layer1 501). However, in this embodiment, it is preferable that “shared” layers have differing formats (e.g., Layer3 503, Layer1 501) in order to assist the decoder in separately decoding the data contained therein.
Sequences of data symbols within a given layer are preferably configured so that each sequence is paired with the other and is separated by a predetermined offset. Thus, as an example, if data 905 contains code 1, 2, 3 having an offset of “2”, data 507 in layer 501 would be 3, 4, 5. Since the same information is represented by two different data symbols that are separated in time and have different frequency components (frequency content), the message may be diverse in both time and frequency. Such a configuration is particularly advantageous where interference would otherwise render data symbols undetectable. Under one embodiment, each of the symbols in a layer have a duration (e.g., 0.2-0.8 sec) that matches other layers (e.g., Layer1 501, Layer2 502). In another embodiment, the symbol duration may be different (e.g., Layer 2 502, Layer 3 503). During a decoding process, the decoder detects the layers and reports any predetermined segment that contains a code.
For received audio signals in the time domain, decoder 350 transforms such signals to the frequency domain by means of function 356. Function 356 preferably is performed by a digital processor implementing a fast Fourier transform (FFT) although a direct cosine transform, a chirp transform or a Winograd transform algorithm (WFTA) may be employed in the alternative. Any other time-to-frequency-domain transformation function providing the necessary resolution may be employed in place of these. It will be appreciated that in certain implementations, function 356 may also be carried out by filters, by an application specific integrated circuit, or any other suitable device or combination of devices. Function 356 may also be implemented by one or more devices which also implement one or more of the remaining functions illustrated in
The frequency domain-converted audio signals are processed in a symbol values derivation function 360, to produce a stream of symbol values for each code symbol included in the received audio signal. The produced symbol values may represent, for example, signal energy, power, sound pressure level, amplitude, etc., measured instantaneously or over a period of time, on an absolute or relative scale, and may be expressed as a single value or as multiple values. Where the symbols are encoded as groups of single frequency components each having a predetermined frequency, the symbol values preferably represent either single frequency component values or one or more values based on single frequency component values. Function 360 may be carried out by a digital processor, which advantageously carries out some or all of the other functions of decoder 350. However, the function 360 may also be carried out by an application specific integrated circuit, or by any other suitable device or combination of devices, and may be implemented by apparatus apart from the means which implement the remaining functions of the decoder 350.
The stream of symbol values produced by the function 360 are accumulated over time in an appropriate storage device on a symbol-by-symbol basis, as indicated by function 366. In particular, function 366 is advantageous for use in decoding encoded symbols which repeat periodically, by periodically accumulating symbol values for the various possible symbols. For example, if a given symbol is expected to recur every X seconds, the function 366 may serve to store a stream of symbol values for a period of nX seconds (n>1), and add to the stored values of one or more symbol value streams of nX seconds duration, so that peak symbol values accumulate over time, improving the signal-to-noise ratio of the stored values. Function 366 may be carried out by a digital processor (or a DSP) which advantageously carries out some or all of the other functions of decoder 350. However, the function 360 may also be carried out using a memory device separate from such a processor, or by an application specific integrated circuit, or by any other suitable device or combination of devices, and may be implemented by apparatus apart from the means which implements the remaining functions of the decoder 300.
The accumulated symbol values stored by the function 366 are then examined by the function 370 to detect the presence of an encoded message and output the detected message at an output 376. Function 370 can be carried out by matching the stored accumulated values or a processed version of such values, against stored patterns, whether by correlation or by another pattern matching technique. However, function 370 advantageously is carried out by examining peak accumulated symbol values and their relative timing, to reconstruct their encoded message. This function may be carried out after the first stream of symbol values has been stored by the function 366 and/or after each subsequent stream has been added thereto, so that the message is detected once the signal-to-noise ratios of the stored, accumulated streams of symbol values reveal a valid message pattern.
In order to separate the various components, a processor on device 200 repeatedly carries out FFTs on audio signal samples falling within successive, predetermined intervals. The intervals may overlap, although this is not required. In an exemplary embodiment, ten overlapping FFT's are carried out during each second of decoder operation. Accordingly, the energy of each symbol period falls within five FFT periods. The FFT's are preferably windowed, although this may be omitted in order to simplify the decoder. The samples are stored and, when a sufficient number are thus available, a new FFT is performed, as indicated by steps 434 and 438.
In this embodiment, the frequency component values are produced on a relative basis. That is, each component value is represented as a signal-to-noise ratio (SNR), produced as follows. The energy within each frequency bin of the FFT in which a frequency component of any symbol can fall provides the numerator of each corresponding SNR Its denominator is determined as an average of adjacent bin values. For example, the average of seven of the eight surrounding bin energy values may be used, the largest value of the eight being ignored in order to avoid the influence of a possible large bin energy value which could result, for example, from an audio signal component in the neighborhood of the code frequency component. Also, given that a large energy value could also appear in the code component bin, for example, due to noise or an audio signal component, the SNR is appropriately limited. In this embodiment, if SNR>6.0, then SNR is limited to 6.0, although a different maximum value may be selected. The ten SNR's of each FFT and corresponding to each symbol which may be present, are combined to form symbol SNR's which are stored in a circular symbol SNR buffer, as indicated in step 442. In certain embodiments, the ten SNR's for a symbol are simply added, although other ways of combining the SNR's may be employed. The symbol SNR's for each of the twelve symbols are stored in the symbol SNR buffer as separate sequences, one symbol SNR for each FFT for 50 μl FFT's. After the values produced in the 50 FFT's have been stored in the symbol SNR buffer, new symbol SNR's are combined with the previously stored values, as described below.
When the symbol SNR buffer is filled, this is detected in a step 446. In certain advantageous embodiments, the stored SNR's are adjusted to reduce the influence of noise in a step 452, although this step may be optional. In this optional step, a noise value is obtained for each symbol (row) in the buffer by obtaining the average of all stored symbol SNR's in the respective row each time the buffer is filled. Then, to compensate for the effects of noise, this average or “noise” value is subtracted from each of the stored symbol SNR values in the corresponding row. In this manner, a “symbol” appearing only briefly, and thus not a valid detection, is averaged out over time.
After the symbol SNR's have been adjusted by subtracting the noise level, the decoder attempts to recover the message by examining the pattern of maximum SNR values in the buffer in a step 456. In certain embodiments, the maximum SNR values for each symbol are located in a process of successively combining groups of five adjacent SNR's, by weighting the values in the sequence in proportion to the sequential weighting (6 10 10 10 6) and then adding the weighted SNR's to produce a comparison SNR centered in the time period of the third SNR in the sequence. This process is carried out progressively throughout the fifty FFT periods of each symbol. For example, a first group of five SNR's for a specific symbol in FFT time periods (e.g., 1-5) are weighted and added to produce a comparison SNR for a specific FFT period (e.g., 3). Then a further comparison SNR is produced using the SNR's from successive FFT periods (e.g., 2-6), and so on until comparison values have been obtained centered on all FFT periods. However, other means may be employed for recovering the message. For example, either more or less than five SNR's may be combined, they may be combined without weighing, or they may be combined in a non-linear fashion.
After the comparison SNR values have been obtained, the decoder algorithm examines the comparison SNR values for a message pattern. Under a preferred embodiment, the synchronization (“marker”) code symbols are located first. Once this information is obtained, the decoder attempts to detect the peaks of the data symbols. The use of a predetermined offset between each data symbol in the first segment and the corresponding data symbol in the second segment provides a check on the validity of the detected message. That is, if both markers are detected and the same offset is observed between each data symbol in the first segment and its corresponding data symbol in the second segment, it is highly likely that a valid message has been received. If this is the case, the message is logged, and the SNR buffer is cleared 466. It is understood by those skilled in the art that decoder operation may be modified depending on the structure of the message, its timing, its signal path, the mode of its detection, etc., without departing from the scope of the present invention. For example, in place of storing SNR's, FFT results may be stored directly for detecting a message.
Steps employed in the decoding process illustrated in
Since each five symbol message repeats every 2½ seconds, each symbol repeats at intervals of 2½ seconds or every 25 FFT's. In order to compensate for the effects of burst errors and the like, the SNR's R1 through R150 are combined by adding corresponding values of the repeating messages to obtain 25 combined SNR values SNRn, n=1,2 . . . 25, as follows:
Accordingly, if a burst error should result in the loss of a signal interval i, only one of the six message intervals will have been lost, and the essential characteristics of the combined SNR values are likely to be unaffected by this event. Once the combined SNR values have been determined, the decoder detects the position of the marker symbol's peak as indicated by the combined SNR values and derives the data symbol sequence based on the marker's position and the peak values of the data symbols. Once the message has thus been formed, as indicated in steps 582 and 583, the message is logged. However, unlike the embodiment of
As in the decoder of
In a further variation which is especially useful in audience measurement applications, a relatively large number of message intervals are separately stored to permit a retrospective analysis of their contents to detect a media content change. In another embodiment, multiple buffers are employed, each accumulating data for a different number of intervals for use in the decoding method of
Turning to
In an alternate embodiment, multiple instances of the decoder may be initialized multiple times using different memory areas. In such a case, the decoder application would be responsible for keeping track of which memory pointers are used in subsequent calls to initialize and retrieve code from the proper decoder.
In the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.