The present application relates generally to improved automatic apparatuses, systems, and methods for speedy label application to shipping boxes. More particularly, it relates to the use of a multidimensional robotic arm to evenly apply the label regardless of the orientation of the box.
Ever since Amazon and other online retailers introduced the world to ecommerce in the early 2000s, there has been a dramatic shift in customer expectations and behaviors. This shift increased exponentially in mid-2020, as the COVID-19 pandemic kept people home and avoiding in-store purchases to reduce contact with others. Global ecommerce in 2021 was over $4 billion, doubling the 2018 number of approximately $2 billion, and an estimated 165 billion packages are shipped in the United States each year. Worldwide, approximately 2.14 billion people purchase goods online.
As more and more customers shift to ecommerce for more and more of their purchases, and the number of online retailers grow, shippers must move ever faster to get their packages en route as quickly as possible after the order is placed. One of the most important reasons customers choose a given retailer is the shipping speed, and they will often abandon their order if the delivery will take more than a few days. From two-day shipping to next-day to same-day, customers have grown accustomed to a slew of rapid delivery options made available by the giants of ecommerce. They want what they want, and they want it as quickly as possible. If a retailer is not capable of meeting that demand, the customer is more than capable of turning elsewhere to find someone who can.
Thus, it is desirable for a solution to speedy and automatic application of shipping labels to packages to allow shippers to more quickly respond to the ever-growing demand.
It is an object of this invention to create a solution to automatically apply shipping labels to boxes with minimal human involvement.
It is an additional object of this invention to ensure that regardless of the orientation of the package, the shipping label will be applied to the correct place on the package and at the correct angle by use of a multidimensional robotic arm.
It is a further object of this invention to use a combination of an air cushion created by upward-facing fans and suction from the robotic arm to easily transfer the labels from the printer to the arm.
The present invention relates to apparatuses, systems, and methods of automatic package label application.
The present invention comprises, among other components, a barcode reader, a 3D profiler, a conveyor belt, a multi-dimensional robotic arm, a cushion of air, and a label printer. The barcode reader identifies the package so that the printer will create the correct label. The 3D profiler reads the shape and orientation of the box so that the robotic arm knows where to place the label. When the label exits the printer, it floats on an air cushion created by two upward facing fans. The light curtain marks the point on the conveyor belt where the box is ready to be labeled. The robotic arm further comprises a label suction component to pick up a printed label and drop it on a moving package. Plexiglass shields protect the critical zone on either side of the conveyor belt.
The present invention further comprises intelligent software component that intelligently coordinates the components and controls the system. The software controls the volume of the cushion of air such that it can support different sized labels; i.e., 4×4, 4×6, 6×8, etc. The software further controls the conveyor belt speed such that the belt will travel 8.5 feet in 2.5 seconds, or the speed of printing a label in any given moment. The speed of the conveyor belt is adjustable.
In one aspect of the invention, an apparatus is disclosed for an efficient label application comprising: a conveyor belt; a barcode reader that is disposed above a conveyor belt and attached to a first cross beam; a 3D profiler that is disposed above the conveyor belt and attached to a second cross beam, and records size, shape, and orientation of a shipping package; a first plexiglass shield that comprises a light curtain; wherein the first plexiglass shield and light curtain protect a robotic arm's operating space on one side of the conveyor belt; a second plexiglass shield that protects the robotic arm's foot; a printer that is disposed next to the robotic arm; two upward facing fans that are disposed between the printer and the robotic arm, and, together, create an air cushion; a third plexiglass shield that protects the robotic arm, air cushion, and printer on second side of the conveyor belt; the first plexiglass shield, third plexiglass shied, and the conveyor belt define and protect a critical zone of the robotic arm's operating space; a printer control panel that is mounted on the third plexiglass shield; an operator control panel that allows the apparatus to be started, stopped, and calibrated, and is mounted on the third plexiglass shield.
In yet another aspect of the invention, a method for rapid label application comprising: providing a conveyor belt; providing a barcode reader that is disposed above the conveyor belt and attached to a first cross beam; providing a 3D profiler that is disposed above the conveyor belt and attached to a second cross beam; Recording size, shape, and orientation of a shipping package; providing a first plexiglass shield; providing a light curtain; providing a robotic arm; wherein the first plexiglass shield and light curtain protect the robotic arm's operating space on one side of the conveyor belt; providing a second plexiglass shield that protects the robotic arm's foot; providing a printer that is disposed next to the robotic arm;
printing a shipping label; providing two upward facing fans that are disposed between the printer and the robotic arm; creating an air cushion using the two upward facing fans;
providing a third plexiglass shield that protects the robotic arm, air cushion, and printer on a side of the conveyor belt; wherein the first plexiglass shield, third plexiglass shied, and the conveyor belt define and protect a critical zone of the robotic arm's operating space; providing a printer control panel that is mounted on the third plexiglass shield; providing an operator control panel that is mounted on the third plexiglass shield and controls the barcode reader, conveyor belt, 3D profiler, robotic arm, and fans.
The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:
The invention will be described in the context of a preferred embodiment.
In one embodiment, the label used for invention is a 4 in ×2 in format dimension. In other embodiments, the labels used are comprised of labels in (a) 4 in ×6 in format, (b) 6 in ×8 in format and (c) 4 in ×8 in format. Depending on the sizes of the label, the fan speed and the size on the fan varies. Specifically needed will be the proper air cushion volume sufficient to lift the label as it comes off the shipping label printer and being picked up by the robotic arm. Nevertheless, excessive air volume will blow the label off course. In one embodiment, the fans within the air cushion is selected from a group of 5, 12, 24 or 48 VDC fans. In one embodiment, the air cushion is a fan can generate at least 250 cubic feet of air per minute. Preferably, wherein the labels are in the 4 in ×2 in format, it is desirable to use dual 24 VDC fans rated at 250 CFM. In one embodiment, the robotic arm picks up the label using suction pump. In one embodiment, the suction pump is an fan suction pump. In another embodiment, the suction pump is a pneumatic pump. In yet another embodiment, the pneumatic pump provides at least a suction rate of 65 per square inch (PSI).
This application is a continuation-in-part application of, and claims the benefit of priority under 35 U.S.C 120 to the filing date of U.S. application Ser. No. 17/504,417, entitled “Apparatus, System And Method For Shipping Label Application,” filed on 2021 Oct. 18, and which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 17504417 | Oct 2021 | US |
Child | 17827709 | US |