1. Field of the Invention
Embodiments of the invention described herein pertain to the field of electric submersible pump (ESP) assemblies. More particularly, but not by way of limitation, one or more embodiments of the invention enable an apparatus, system and method for treatment of an ESP power cable.
2. Description of the Related Art
Submersible pump assemblies are used to artificially lift fluid from underground formations, such as oil, natural gas and/or water wells, to the surface. These wells are typically thousands of feet deep, with the pump assembly placed inside the deep well. A typical electric submersible pump (ESP) assembly consists, from bottom to top, of an electric motor, seal section, pump intake and centrifugal pump, which are all connected together with shafts. The electric motor supplies torque to the shafts, which provides power to the centrifugal pump. The electric motor is generally a two-pole, three-phase, squirrel cage induction design connected by a power cable to a power source located at the surface of the well. The power cable includes a motor lead cable and extension cord, and extends from the downhole motor deep within the well, to the power source at the surface of the well. These ESP power cables are typically between about 4,000 to 12,000 feet in length, depending on well depth, since the cable must extend from the ESP motor deep within the well to the surface where the power source is located.
ESP Power cables conventionally include three insulated copper conductors that are enclosed by a helically wrapped strip of galvanized steel armor. The galvanized steel armor strip on these cables is typically between 20 and 34 mils thick, and the power cable typically weighs about 1.5 pounds per foot. Thus, a 12,000 foot-long power cable weights about 9 tons. When a power cable is new, a zinc coating covers the surface of the galvanized steel armor. The zinc coating protects the cable from rusting before it is deployed. However, during ordinary use of the cable, the zinc coating decays.
ESP power cables are typically the single most expensive component of the ESP assembly. Currently, the cost of an ESP power cable is about $4.00-$12.00 per foot of cable, making the current cost of a 12,000 foot cable as much as $144,000 USD. For this reason, it is often desirable to reuse ESP power cables. In such instances, the cable to be reused is stored between uses. However, since the zinc coating deteriorates during ESP operation, a secondhand power cable quickly rusts when exposed to the elements. Rust decays the galvanized steel armor, causing failure of decompression containment or mechanical protection to the underlying phases, such that the power cable cannot be reused. Conventionally, the shelf life of a gently used power cable is about three to six months.
One approach to extending the shelf life of power cables is to wrap the power cable in a sheet during storage in order to protect the cable from the elements. However, rudimentary wrapping has failed to significantly reduce degradation due to rust. Another approach has been to pull the cable through a rust inhibitor by unspooling the cable, pulling it through the rust inhibitor, and then respooling the cable onto a new reel. But unspooling the cable, pulling it, and respooling has proven difficult to implement and labor intensive. Since the cable is up to 12,000 feet long and nine tons heavy, the cable is difficult to handle, particularly once it is unwound off the reel. In addition, this unspooling process takes up a large amount of space.
Yet another approach has been to use a crane to submerge the cable in a pit full of rust inhibitor. This undesirably requires a large pit and a large quantity of rust inhibitor to cover 12,000 feet of cable—about 2,500 gallons of rust inhibitor—and much of the rust inhibitor is spilled or wasted in the process. Furthermore, overhead cranes are expensive and often not readily available, and submerging a spooled cable often fails to coat the entire cable, since air bubbles become trapped in the cable string and prevent the rust inhibitor from being applied to those areas.
As is apparent from the above, current ESP power cables are not adequately protected from degradation due to rust, and current attempts to apply rust inhibitors to ESP cables are expensive, wasteful and difficult to implement. Therefore, there is a need for an apparatus, system and method for treatment of ESP power cables to improve the shelf life of the cables and the feasibility of rust treatment techniques.
One or more embodiments of the invention enable an apparatus, system and method for treatment of an electric submersible pump (ESP) power cable.
An apparatus, system and method for treatment of an ESP power cable is described. An illustrative embodiment of an ESP power cable treatment system includes a reel including a tubular drum having an aperture extending between an inner surface of the tubular drum and an outer surface of the tubular drum, the tubular drum including a pair of open flanged ends, each opening of the flanged ends fluidly coupled to the inner surface of the tubular drum, and a spoke extending across each of the openings and defining a central hub, an ESP power cable windingly wrapped around the outer surface of the tubular drum to form a cable-wrapped reel, a rotatable horizontal shaft extending longitudinally through the central hub, the reel removeably secured to the rotatable horizontal shaft such that the reel rotates with the horizontal shaft when secured, each end of the horizontal shaft supportively suspended above a tank by a pair of support members, the tank including a treatment fluid, the pair of support members actuatable between: a lowered position, wherein a lower portion of the cable-wrapped reel extends into and cycles through the treatment fluid when in the lowered position, and wherein the treatment fluid flows to the inner surface of the tubular drum in the lowered position, and a raised position, wherein the lower portion of the cable-wrapped reel is above a surface of the treatment fluid in the raised position. In some embodiments, the cable wrapped reel is rotatable within the tank such that in the lowered position a particular portion of the ESP power cable reel passes through the treatment fluid in the tank as the reel rotates and the particular portion becomes a bottom portion. In certain embodiments, all portions of the ESP power cable become the particular portion in succession as the reel rotates. In some embodiments, the aperture and openings define a treatment fluid pathway that flows from the tank into one of the openings, along the inner surface of the tubular drum and through the aperture to reach an inner layer of the ESP power cable. In certain embodiments, a series of vents extend through flanges of the pair of flanged ends. In certain embodiments, the series of vents define a treatment fluid pathway from the tank, through the vents and to layers of the ESP power cable. In some embodiments, the flanged of each flanged end of the pair of flanged ends includes an undulated surface. In some embodiments, the pair of support members telescope to move between the lowered position and the raised position. In certain embodiments, the ESP power cable is between 4,000 and 12,000 feet long and includes three insulated copper conductors that are enclosed by a helically wrapped strip of galvanized steel armor. In some embodiments, the cable-wrapped reel is rotatable by a bull gear drive coupled to the horizontal shaft. In certain embodiments, the ESP power cable treatment system further includes a hydraulic power unit operatively coupled to the pair of support members and the bull gear drive. In some embodiments, the bull gear drive includes a bull gear, the bull gear including a clevis fastener, the clevis fastener removeably secured to one of the spokes. In certain embodiments, the ESP power cable treatment system includes a pair of cradles, each cradle of the pair of cradles seating one side of the horizontal shaft.
An illustrative embodiment of a method of treating an ESP power cable includes wrapping an ESP power cable around a reel as the ESP power cable is removed from a production well to form ESP power cable layers, supporting the ESP power cable-wrapped reel horizontally above a tank, the reel supported on a shaft extending between a pair of actuatable support members, pumping treatment fluid into the tank, lowering the ESP power cable-wrapped reel partially into the tank by activating the actuatable support members such that a lower portion of the ESP power cable reel is submerged in the treatment fluid and an inner diameter of the ESP power cable-wrapped reel is fluidly coupled to the treatment fluid in the tank, and rotating the ESP power cable reel around its central axis such that each circumferential portion of an outermost layer of the ESP power cable layers is submerged in the treatment fluid at least once to coat the ESP power cable. In some embodiments, the treatment fluid is one of rust remover or rust inhibitor. In certain embodiments, the treatment fluid is first rust remover, the rust remover is drained from the tank, and then the pumping, lowering and rotating are repeated with rust inhibitor as the treatment fluid. In some embodiments the method further includes lifting the coated ESP power cable out of the tank by reactivating the actuatable support members, and draining the treatment fluid from the tank to a treatment fluid storage container. In certain embodiments, coating the ESP power cable includes successively and repeatedly submerging each circumferential portion of the outermost layer of the ESP power cable in the treatment fluid. In certain embodiments, the method further includes exposing an innermost layer of the ESP power cable layers to the treatment fluid through an aperture in the reel. In some embodiments, the ESP power cable reel is rotated by a bull gear drive. In some embodiments, the method further includes locking an end of the shaft into a cradle coupled to one of the support members of the pair of support members with a locking bar. In some embodiments, the method includes straightening flanges of the reel before supporting the ESP power cable-wrapped reel above the tank. In certain embodiments, the method includes storing the coated ESP power cable for a period of time on the reel, and deploying the ESP power cable into a second production well by unwinding it from the reel.
An illustrative embodiment of an electric submersible pump (ESP) power cable treatment apparatus includes an ESP power cable windingly wrapped around an ESP power cable deployment reel, the reel removeably attached to a dip tank, rotatable about a central axis of the reel and lowerable into the dip tank, and wherein a lower portion of the reel with ESP cable windings submerges into a rust treatment fluid in the dip tank as the reel rotates.
In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments. In further embodiments, additional features may be added to the specific embodiments described herein.
The above and other aspects, features and advantages of illustrative embodiments of the invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. The drawings may not be to scale. It should be understood, however, that the embodiments described herein and shown in the drawings are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives to such embodiments that fall within the scope of the present invention as defined by the appended claims.
An apparatus, system and method for treatment of an electric submersible pump (ESP) power cable will now be described. In the following exemplary description, numerous specific details are set forth in order to provide a more thorough understanding of embodiments of the invention. It will be apparent, however, to an artisan of ordinary skill that the present invention may be practiced without incorporating all aspects of the specific details described herein. In other instances, specific features, quantities, or measurements well known to those of ordinary skill in the art have not been described in detail so as not to obscure the invention. Readers should note that although examples of the invention are set forth herein, the claims, and the full scope of any equivalents, are what define the metes and bounds of the invention.
As used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a support member includes one or more support members.
“Coupled” refers to either a direct connection or an indirect connection (e.g., at least one intervening connection) between one or more objects or components. The phrase “directly attached” means a direct connection between objects or components.
As used herein, the term “outer” or “outward” means the radial direction away from the center of a reel. In the art, “outer diameter” (OD) and “outer circumference” are sometimes used equivalently. As used herein, the outer diameter is used to describe what might otherwise be called the outer circumference or outer surface of a component such as tubular drum of a reel.
As used herein, the term “inner’ or “inward” means the radial direction towards the center of the reel. In the art, “inner diameter” (ID) and “inner circumference” are sometimes used equivalently. As used herein, the inner diameter is used to describe what might otherwise be called the inner circumference or inner surface of a component such as a tubular drum of a reel.
As used herein, the term “dip tank” means a container holding a substance that is used for dipping or coating. An object may be immersed (or partially immersed) in a dip tank or it may be suspended over a vapor wafting from the tank.
For ease of description and so as not to obscure the invention, illustrative embodiments are described in terms of an ESP power cable being treated with a rust remover or rust inhibitor. However, illustrative embodiments are not so limited and may be employed where it is desirable to coat any cable, wire, hose, spool, reel or flexible pipe with any fluid or powder substance. In one example, the treatment fluid may be washing fluid. In another example, the treatment fluid may be water and used as a grounding plane.
Illustrative embodiments provide a system for treating an ESP power cable with a rust remover, rust inhibitor or both. Illustrative embodiments may provide an efficient method of coating an ESP power cable with rust treatment fluid, increasing the shelf life of used ESP power cables from the conventional untreated time frame of three to six months, instead to one year, three years or more. Illustrative embodiments allow improved handling of power cables that are heavy and long, such as up to about 9 tons in weight and up to about 12,000 feet in length, and at the same time require 15% or less by volume of the treatment fluid required—reducing the conventionally required 2,500 gallons to instead about 330 gallons. Illustrative embodiments may eliminate the need for an overhead crane and decrease spillage and waste of treatment fluid as compared to full submersion treatment methods. Illustrative embodiments may also reduce or eliminate air pockets between the layers of cable that may otherwise prevent coating of those areas. Illustrative embodiments may provide flexibility of use for any type of treatment fluid and be modified to fit any size of steel cable reel, may be employed in close quarters and may minimize waste of treatment fluid.
Illustrative embodiments provide a dip tank for an ESP power cable reel, which reel includes an ESP power cable wrapped on the reel. The reel may include about two to twenty layers of cable, depending on the length of the cable and the size of the reel. The dip tank may include a shallow basin containing rust treatment fluid such as a rust remover or rust inhibitor. The ESP power cable reel may be suspended horizontally on a shaft above the dip tank, and may be raised and lowered with respect to the basin. In illustrative embodiments, when lowered into the basin only the lower third portion of the ESP power cable reel may be immersed in the treatment fluid. In illustrative embodiments, the treatment fluid may cover just enough of the reel to allow fluid to reach the inner surface of the reel, and travel through an aperture in the reel barrel to reach the innermost layer of wrapped power cable. This positioning may allow both the ID and the OD of the power cable layers to be exposed to treatment fluid.
When lowered into the basin, the ESP power cable reel may be rotated such that each portion of the reel is successively dipped into the treatment fluid as it reaches the bottom of the rotation cycle, and then removed from the treatment fluid as it turns towards the top of the rotation cycle. The ESP power cable reel may be rotated once (one 360° cycle), more than once, or for about one to four hours at about five rotations per minute (rpm), to permit the entire ESP power cable to be coated with treatment fluid. Rotation of the reel may also cause any air bubbles between the layers of cable to be displaced or moved such that the entire cable may be coated without any untreated pockets. Once the ESP power cable is sufficiently coated, the reel may be actuated upwards above the basin to dry, where the basin may catch any drippings. Treatment fluid may be pumped in and out of the basin with a fluid transfer pump and hoses attached to the dip tank. A bull gear drive, tire drive, chain and sprocket, belt and pulley, spray nozzle and/or other rotation mechanism known to those of skill in the art may cause rotation of the reel during treatment and/or apply treatment fluid to the power cable. A control panel may allow operation of the dip tank.
A reel of illustrative embodiments is shown in
Returning to
Returning to
Once reel 100 has been lowered into basin 115 and partially submerged in treatment fluid 165, ram 190 may be switched off and/or selector valve 310 may be switched to divert controlled flow coming from facility hydraulic power unit 230 to hydraulic gear motor 205, and then reel 100 may be rotated in a fashion similar to a rotisserie. Prior to rotation, cable phase ends 195 may be sealed to the lead jacket with clear fluorinated ethylene propylene (FEP) and/or polyimide splice tape. Cable phase ends 195 may be affixed to flange 120, such as with an eye bolt or U bolt, to secure cable phase ends during rotation of reel 100. In this fashion, cable phase ends 195 may be kept from coming loose during rotation, and sealed to prevent treatment fluid 165 from migrating up under the lead jacket of insulation.
In some embodiments, reel 100 may be rotated 360° about its central axis. As shown in
Returning to
In certain embodiments, a tire drive may be used to rotate reel 100 by friction. When a tire drive is used, care should be taken to ensure flanges 120 are not bent to improve effectiveness of tire drive 175 rotation.
Tire drive 175 and/or bull gear drive 235 may be rotatable in both a clockwise and counter-clockwise direction, the rotation controlled by rotation switch 1030 (shown in
As shown in
As reel 100 with wrapped power cable 105 rotates, the bottom portion of reel 100 moves in and out of treatment fluid 165, such that each portion of ESP power cable 105 may be submerged in succession. When bottom portion of reel 100 is submerged, the portion of ESP power cable 105 at the bottom of reel 100 may be submerged at least at the outer most layer of ESP power cable 105. Drum inner surface 145 may also be submerged at the bottom portion of reel 100, allowing treatment fluid 165 to reach the innermost layer of ESP power cable near drum inner surface 145 through aperture 415. Additionally, treatment fluid may enter vents 425, further exposing middle layers of power cable 105 to treatment fluid 165. In this manner ESP power cable 105 layers may be exposed to treatment fluid 165 from both sides, and then seep inwards from both the inside (proximate drum inner surface 145) and the outside to treat inner and outer layers of ESP power cable 105. Reel 100 may rotate at about five revolutions per minute (rpm), and be permitted to rotate for about one to four hours, or another period of time depending on the type of treatment fluid 165 employed and/or the thickness of coating required. In one example, reel 100 may only be rotated once (one 360° cycle), for example to wet ESP power cable 105 with water. In another example, reel 100 may be rotated at 5 rpm for two hours to coat ESP power cable 105 with a rust inhibitor. In this time period, each portion of ESP cable 105 may be repeatedly exposed to treatment fluid 165 while reel 100 continuously rotates. Where treatment fluid 165 is rust inhibitor, the rust inhibitor may coat ESP power cable 105. The rotation of reel 100 may prevent any air bubbles from blocking a portion of ESP power cable 105 from receiving a coating. As reel 100 rotates, treatment fluid 165 may drip from reel 100. Basin 115, base 185 and/or spill tray 1100 may catch drippings from reel 100 and/or power cable 105. Drops that are caught may be reused.
In addition to, or instead of, tire drive 175 and/or bull gear drive 235, another or alternative rotation means may be employed to rotate reel 100. In one example, a chain and sprocket or belt and pulley, which are well known to those of skill in the art, may be employed. Like bull gear drive 235, the belt and pulley or chain and sprocket may rotate reel 100 from spokes 140, hub 135 and/or the ends of shaft 130 rather than from the outer layer of ESP power cable 105 to prevent slipping. A spray nozzle 240 (shown in
Once ESP power cable 105 is sufficiently coated with rust inhibitor, rust remover or other treatment fluid 165, support members 125 may be actuated and/or extended to a raised position, as shown in
An apparatus, system and method for treating ESP power cables has been described. Illustrative embodiments provide a system and method for removing rust from an ESP power cable and/or coating an ESP power cable with rust inhibitor. Illustrative embodiments may treat 100% of an ESP power cable with minimal waste of treatment fluid, and requiring less volume (such as 85-87% less) of treatment fluid than conventional methods. Further, the same system may be used for both rust removal and rust inhibitor application. Illustrative embodiments may require only a small amount of space since only a single reel is needed and no deep pits are required, and may eliminate the need for an overhead crane. Illustrative embodiments may prevent air bubbles between layers of ESP power cable from blocking coverage of treatment fluid coating. Illustrative embodiments may provide improved handling of long, heavy ESP power cables. The treatment of ESP power cables with rust inhibitor using illustrative embodiments may prolong the shelf-life of ESP power cables and permit those cables to be reused multiple times, saving on cost and waste.
An apparatus, system and method for treatment of an ESP power cable has been described. Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the scope and range of equivalents as described in the following claims. In addition, it is to be understood that features described herein independently may, in certain embodiments, be combined.
This application claims the benefit of U.S. Provisional Application No. 62/286,159 to Glasscock et al., filed Jan. 22, 2016 and entitled “APPARATUS, SYSTEM AND METHOD FOR TREATMENT OF ELECTRIC SUMBERSIBLE PUMP POWER CABLES,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
111511 | Bomby | Feb 1871 | A |
201259 | Maus | Mar 1878 | A |
3931748 | Tertinek | Jan 1976 | A |
3987537 | Warren | Oct 1976 | A |
5180014 | Cox | Jan 1993 | A |
6142406 | Newman | Nov 2000 | A |
6587054 | Besser | Jul 2003 | B2 |
20150122929 | Garton | May 2015 | A1 |
Entry |
---|
Corrosion protection and rust removal, Wurth. |
CA Application Serial No. 2,955,938, Office Action, dated Jun. 4, 2019, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20170211190 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62286159 | Jan 2016 | US |