The present invention relates in general to an improved joint for structural components, and in particular to an improved apparatus, system, and method for forming a tapered tension bond joint between structural components.
Closeout panels can present problems for manufacturers, in that panels may attach to a substructure without access to the backside of the panel. In the past, these panels have been bolted to the substructure or attached using blind fasteners, such as pull rivets. These methods require expensive and time-consuming drilling and fastening operations and may weaken the structure. More recently, these panels have been co-bonded or secondarily bonded using resin or a thin layer of adhesive.
Typically, laminating resins are used as the matrix material in woven textiles, this also being true for woven preforms used to connect components made of composites or other materials. An example of a commonly used laminating resin is 977-3, available from Cytec Industries, Inc., of West Paterson, N.J. The laminating resin is infused into a textile product and is cured to form a polymer matrix in the finished composite component. When assembling a typical joint using a preform, the preform may be co-cured along with uncured composite components or the components may be cured prior to assembly using an uncured preform. Because of the inferior bonding characteristics of laminating resins, a thin layer of adhesive is often placed between the preform and the components. Generally, an adhesive film is used, which is expensive and adds to fabrication time.
To achieve proper bonding when using a thin layer of adhesive, such as an adhesive film, between pre-cured components, special attention must be paid to the interface at the adhesive layer. This bond line is critical, and, where two surfaces are brought together, the distance between the surfaces must be within a critical tolerance to ensure a proper bonding layer. The thickness of the adhesives is usually about 0.015″ thick with a bond layer tolerance of +/−0.005″. Methods for ensuring proper bonding may include tools, such as molds or vacuum bags, but particular applications may prevent the use of tools due to the inaccessibility of one or both sides of the joint. An example of this type of application is a closeout panel, such as the skin of a wing being bonded to an internal spar.
Z-pins have been used in joints connecting two composite, laminate components in the prior art. For example, U.S. Pat. Nos. 5,863,635, 5,968,639, and 5,980,665 to Childress discloses inserting z-pins into a first composite component to form stubble at a bonding face, then curing the first component. An uncured second component is then bonded to the first component with the stubble extending into and among the fibers of the second component and through the bond line.
As shown in
An alternative method of assembly using z-pins is disclosed in U.S. Pat. Nos. 5,876,540, 5,876,832, 5,935,698 to Pannell and is shown in
A need exists for an improved method that reduces the steps in assembly and provides for a strong joint when joining components using a woven preform. A further need exists for a method of joining components in a structural joint that provides for a larger dimensional tolerance between components when using an adhesive at the bond line.
One embodiment of the present invention comprises a tapered tension bond joint that utilizes a system of composite and adhesive materials to provide for a high strength, producible closeout joint for high performance structures. The closeout joint is the last major step in assembling the structure. The system includes one skin that is co-bonded to flat panel, pre-cured spars. The tapered tension bond joint is positioned at the opposite side of the spars to provide the closeout joint. A woven preform is bonded to the other skin. The woven preform has an edge portion that mates and bonds with the edge portion of the spar. One of the edge portions is in the configuration of a V-shaped receptacle while the other is in the configuration of a wedge. Preferably, the spar provides a female receptacle or slot that is designed to receive a matching male blade from the closeout skin assembly. The male blade is co-cured with the lower skin.
In the preferred embodiment, the flat panel spars are designed with a series of imbedded nut elements in the receptacle that serve as “internal tooling” to provide a positive stop for locating the lower skin, as well as a means for clamping the lower skin to the upper assembly during the closeout operation. The blade has mating recesses to receive the nut elements. The disruption of the closeout joint by the imbedded nuts gives the final assembled structure a very significantly enhanced ballistics survivability. The nuts act to stop cracks formed in the structure when the structure is impacted. A very significant amount of tolerance is allowed for the fit between the blade and the slot, thereby reducing the cost associated with highly accurate 3-D joints.
The foregoing and other objects and advantages of the present invention will be apparent to those skilled in the art, in view of the following detailed description of the preferred embodiment of the present invention, taken in conjunction with the appended claims and the accompanying drawings.
So that the manner in which the features and advantages of the invention, as well as others which will become apparent, are attained and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the drawings illustrate only an embodiment of the invention and therefore are not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.
Referring to
The closeout assembly 13 also includes a plurality of protrusions 31 (one shown in
In one embodiment, each protrusion 31 comprises a pi-shaped preform 37 (
Each of the protrusions 31 also has a longitudinal profile (see
Again referring to
In the embodiment shown, each of the spar webs 66 includes an unaltered preform 37 (
Spar web 66 has an edge that is split to define a V-shaped trough 68 (
A series of internal fasteners 51 are adhesively bonded to inner surfaces 76 of each spar receptacle 75, as illustrated in
The structural assembly 11 also includes a plurality of external fasteners 83 that extend through the external surface 15 of the closeout assembly 13. External fasteners 83 are connected to the internal fasteners 51 (
The present invention also comprises a method of forming the structure 11. Referring to
The method also includes providing the base assembly 61 with a plurality of the spar webs 66 extending from the external portion 63. Spar webs 66 are bonded to structural member or skin 63 by woven performs 37 in the preferred embodiment. Each of the spar webs 66 has a V-shaped spar receptacle 75 joined to it that is complementary in shape to the blade 43 of a respective one of the performs 37a. Internal fasteners 51 are bonded to inner surfaces 76 of spar receptacles 75. The various components of base assembly 61, including spar webs 66, spar receptacles 75 and fasteners 51, are assembled and cured prior to joining closeout assembly 13, as illustrated in
Then adhesive 79 (
The tapered tension bond joint of the present invention has several advantages including the use of a system of composite and adhesive materials to provide a high strength, producible closeout joint for high performance structures. The system uses woven preform construction for mating parts, and a single part paste adhesive bonding material. The resultant tapered, secondarily bonded tension joint is typically stronger than the adjacent structure. The imbedded nuts serve as “internal tooling” to provide a positive stop for locating the lower skin, as well as a means for clamping the lower skin to the upper assembly during the closeout operation. The disruption of the blade of the closeout joint by the imbedded nuts gives the final assembled structure a significantly enhanced ballistics survivability when impacted. Moreover, a very significant amount of tolerance is allowed for the fit between the blade and the slot, thereby reducing the cost associated with highly accurate 3-D joints. This “de-toleranced” design enables the ability of the mating joint to be effective for large differences in male to female joint interface location.
Additional advantages of the present invention include excellent high strength, especially with regard to high strain rates, hydrodynamic load attenuation, and ballistics survivability, thereby reducing the risk of catastrophic damage to the structure. The improvements of the present invention over the prior art provide an optimal load path for passing major shear loads through the center of the joint to the skin of the structure. The present design also significantly reduces the parts and fasteners required to complete construction, which greatly reduces the tooling requirements, assembly time, and cost for assembly.
While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention. For example, internal and external fasteners 51, 83 and discontinuities could be eliminated in some cases. Adhesive 79 provides sufficient strength to bond spar receptacle 75 to blade 43 of preform 37a in those instances. While adhesive 79 is curing, closout assembly 13 and base assembly 61 could be held together by other means.
This application is a continuation-in-part of application Ser. No. 10/422,254, filed Apr. 24, 2003, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3096958 | Koontz | Jul 1963 | A |
4113910 | Loyd | Sep 1978 | A |
4219980 | Loyd | Sep 1980 | A |
4331723 | Hamm | May 1982 | A |
4395450 | Whitener | Jul 1983 | A |
4452657 | Hamm | Jun 1984 | A |
4662587 | Whitener | May 1987 | A |
4813202 | Anderson | Mar 1989 | A |
4893964 | Anderson | Jan 1990 | A |
4904109 | Anderson | Feb 1990 | A |
6173925 | Mueller et al. | Jan 2001 | B1 |
6237873 | Amaoka et al. | May 2001 | B1 |
6374570 | McKague, Jr. | Apr 2002 | B1 |
6520706 | McKague, Jr. et al. | Feb 2003 | B1 |
6676882 | Benson et al. | Jan 2004 | B2 |
6712099 | Schmidt et al. | Mar 2004 | B2 |
6718713 | McKague, Jr. et al. | Apr 2004 | B2 |
Number | Date | Country |
---|---|---|
WO 8401128 | Mar 1984 | WO |
Number | Date | Country | |
---|---|---|---|
20050064134 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10422254 | Apr 2003 | US |
Child | 10986548 | US |