Embodiments of the present disclosure relate generally to the field of gaming and the field of casino table card gaming. More particularly, embodiments of the disclosure relate to the use of equipment for the delivery of playing cards.
Wagering games based on the outcome of randomly generated arrangements of cards are well known. Such games are widely played in gaming establishments and, often, a single deck of 52 playing cards is used to play the game. Some games use multiple decks of cards (typically six or eight decks), such as blackjack and baccarat. Other games use two decks of cards, such as double deck blackjack. Many specialty games use single decks of cards, with or without jokers and with or without selected cards removed. Examples of such games include THREE CARD POKER®, LET IT RIDE®, CARIBBEAN STUD POKER®, SPANISH 21®, FOUR CARD POKER®, CRAZY 4 POKER® and others. As new games are developed, card shufflers are modified to be used in connection with the new games.
From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of hands played and specifically reduces the number of wagers placed and resolved in a given amount of time, consequently reducing casino revenue. Casinos would like to increase the amount of revenue generated by a game without changing the game or adding more tables. One approach is to simply speed up play. One option to increase the speed of play is to decrease the time the dealer spends shuffling.
The desire to decrease shuffling time has led to the development of mechanical and electromechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, thereby increasing actual playing time. Such devices also add to the excitement of a game by reducing the amount of time the dealer or house has to spend in preparing to play the game.
Dealers appreciate using card shufflers that place the minimum strain on the dealer's hands, back and arms. Some existing shuffler designs put unnecessary strain on the muscles of the users. Dealers prefer shufflers that are low profile, especially when the shuffler dispenses cards into a game rather than shuffle batches of cards for shoe games.
Numerous approaches have been taken to the design of card shufflers. These approaches include random ejection designs (e.g., U.S. Pat. Nos. 6,959,925; 6,698,756; 6,299,167; 6,019,368; 5,676,372; and 5,584,483), stack separation and insertion (e.g., U.S. Pat. Nos. 5,683,085 and 5,944,310), interleaving designs (e.g., U.S. Pat. Nos. 5,275,411 and 5,695,189), for example, random insertion using a blade (U.S. Pat. No. 5,382,024) and designs that utilize multiple shuffling compartments.
One such example of a compartment shuffler is disclosed in U.S. Pat. No. 4,586,712 to Lorber et al. The automatic shuffling apparatus disclosed is designed to intermix multiple decks of cards under the programmed control of a computer. The apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. The container includes multiple card-receiving compartments, each one capable of receiving a single card.
Another shuffler having mixing compartments arranged in a carousel is disclosed in U.S. Pat. No. 6,267,248 to Johnson et al. Cards are loaded into an infeed tray, fed sequentially past a card-reading sensor and are inserted into compartments within a carousel to either randomize or sort cards into a preselected order. The carousel moves in two directions during shuffling. U.S. Pat. No. 6,676,127 to Johnson et al. describes another variation of the shuffler, in which cards are inserted into and removed from a same side of the carousel, with the card infeed tray being located above the discard tray (see
U.S. Pat. No. 3,897,954 to Erickson et al. discloses a device for delivering cards, one at a time, into one of a number vertically stacked card-shuffling compartments. A logic circuit is used to determine the sequence for determining the delivery location of a card. The card shuffler can be used to deal stacks of shuffled cards to a player.
U.S. Pat. No. 4,770,421 to Hoffman discloses a card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a finite number of distribution schedules sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the microprocessor completes the execution of a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir.
U.S. Pat. No. 5,275,411 to Breeding discloses a machine for automatically shuffling and dealing hands of cards. Although this device does not shuffle cards by distributing cards to multiple compartments, the machine is the first of its kind to deliver randomly arranged hands of cards to a casino card game. A single deck of cards is shuffled and then cards are automatically dispensed into a hand-forming tray. The shuffler includes a deck-receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. The Breeding shuffler was originally designed to be used in connection with single deck poker style games such as LET IT RIDE® stud poker and a variant of pai gow poker marketed as WHO'S FIRST® Pai Gow Poker.
In an attempt to speed the rate of play of specialty table games equipped with a shuffler, the ACE® card shuffler as disclosed in U.S. Pat. Nos. 6,149,154, 6,588,750, 6,655,684 and 7,059,602 was developed. This shuffler operates at faster speeds than previously known shuffler devices described above, has fewer moving parts, and requires much shorter set up time than the prior designs. The shuffler includes a card infeed tray, a vertical stack of shuffling compartments and a card output tray. A first card moving mechanism advances cards individually from the infeed tray into a compartment. A processor randomly directs the placement of fed cards into the compartments, and an alignment of each compartment with the first card mover, forming random groups of cards within each compartment. Groups of cards are unloaded by a second card-moving mechanism into the output tray.
Another compartment shuffler capable of delivering randomly arranged hands of cards for use in casino card games is the ONE-2-SIX® shuffler (developed by Casino Austria Research & Development (CARD)). This shuffler is disclosed in U.S. Pat. Nos. 6,659,460 and 6,889,979. This shuffler is capable of delivering randomly arranged hands of cards when a first delivery end is attached, and is capable of delivering a continuous supply of cards from a shoe-type structure when a second delivery end is attached. Cards are fed from a feeder individually into compartments within a carousel to accomplish random ordering of cards.
Most of the shuffler designs mentioned above are high profile and require loading cards into the rear of the machine, and then removing cards from the front of the machine. The cards must be lifted over the top of the machine to return spent cards to the infeed tray, causing a dealer to lift his arm over the top of the machine at the conclusion of each round of play. Newer shuffler designs are flush-mounted into a gaming table surface. One such shuffler of this type is disclosed in U.S. Pat. No. 6,651,982.
One particular type of card shuffling device is referred to as a batch type shuffler. One characteristic of a (single or double deck) batch type shuffler is that when all of the cards are dispensed in a round of play, the remaining cards in the pack (one or two decks) are removed and then reinserted. In use, while the game is being dealt using a first deck, a second deck of cards is being randomized and arranged into groups. A discard rack is typically provided on the table so that cards removed from the game are staged in the rack while the other deck of cards is being processed. Following this procedure avoids the possibility that cards will be returned to the input tray and that the two decks will be intermingled. The use of two separate decks (one at a time) speeds game play because shuffling of a first deck occurs during play with a second deck.
Continuous shufflers, in contrast, are not unloaded at the end of a round of play. Spent cards are returned and inserted, and new cards dispensed without removing the entire set.
U.S. Pat. No. 6,959,925 to Sines discloses a single deck continuous card shuffler known in the trade as the POKER-ONE®. This shuffler avoids the alternating use of two different decks of cards during a specialty card game by providing a continuous supply of cards to a card game. Although this shuffler uses only one deck of cards, the shuffler does not verify that the correct number of cards (typically 52) are present prior to each shuffle, and consequently player cheating by inserting extra cards would go undetected.
Shufflers that communicate with network-based game systems have been described in the art. An example is described in U.S. Patent Publication No. 2003/0064798A1. A shuffler with an on board microprocessor and communication port communicates with a local processor and/or a central processor. The local or central processor may manage a game system.
Using these card-handling devices, there are still many variables that can affect a Casino's margin of profit, one of which is the accuracy of a dealer in settling bets during any game play. Each table game in a casino is designed with a certain house advantage. The payouts for any winning hand are pre-determined by the game developer based on rigorous math analysis. Although it is a requirement that a dealer must be able to recognize all winning hands (of all different card combinations) and pay out appropriate amounts, it is common that a dealer makes mistakes by either misreading a hand or paying the wrong amount to a player with a winning hand.
Therefore, there is a need for a shuffler that has all of the performance attributes of known shufflers and enables checking the accuracy of casino games by detecting, storing, and retrieving information about the composition of present and past hands of cards in a casino table game.
The present invention, in various embodiments, comprises methods, devices, systems, and computer-readable media configured for detecting, storing, and retrieving information about the composition of present and past hands of cards dispensed in a casino table game.
An embodiment of the invention includes an apparatus that includes a card-handling device, a card recognition system, a control system, and a display. The card-handling device may be used for randomizing and dispensing cards during a casino table game play. The cards may be dispensed as a plurality of hands, each hand including one or more cards. The card recognition system identifies card information including a rank and a suit of each card while each card is under the control of the card-handling device. The control system includes one or more processors and a memory. The control system is configured to control the card-handling device and receive the card information for each card from the card recognition system. The control system is also configured to maintain a play history including a card composition of a plurality of rounds. The card composition includes card information for each hand of each round. Finally, the card information of at least one hand from at least one round of play is presented on the display.
Another embodiment of the invention comprises a system that includes: (1) a card-handling device, (2) an object recognition device, and (3) a table manager. The card-handling device may be used for randomizing and dispensing cards during a casino table game play wherein the cards may be dispensed as a plurality of hands, each hand including one or more cards. The card-handling device includes a card recognition system for recognizing card information including a rank and a suit of each card while each card is under control of the card-handling device. The system also includes one or more processors for receiving the card information for each card from the card recognition system and determining the cards in each hand of a current round. The object recognition device identifies at least one betting object indicating at least one active player position for the current round. The table manager includes a computer and a display and is configured to receive position information about the at least one active player position from the object recognition device. The table manager also receives the card information from within the card-handling device and analyzes the card information and the position information to display the card information for the at least one active player position. In other embodiments, card information is determined in a processor external to the card-handling device.
Yet another embodiment of the invention includes a method of providing cards during casino table game play. The method includes causing a card-handling device to substantially automatically generate a plurality of hands wherein each hand includes one or more cards. The method also includes identifying card information including a rank and a suit of each card as the card moves through the card-handling device. The method further includes maintaining a play history including a card composition for a plurality of rounds wherein the card composition of each round includes the cards in each hand of the round. Finally, the method includes displaying the card information of at least one hand from at least one round. The display may be mounted to the card-handling device or may be a separate system component.
Yet another embodiment of the invention includes a computer-readable medium including computer-executable instructions which, when executed on one or more computers, perform the method recited above.
In the drawings:
The present invention, in various embodiments, comprises methods, devices, and systems configured for detecting, storing, and retrieving information about the composition of present and past hands of cards in a casino table game.
The following provides a more detailed description of embodiments of the present invention. In this description, circuits and functions may be shown in block diagram form in order not to obscure the present invention in unnecessary detail. Conversely, specific implementations shown and described are exemplary only and should not be construed as the only way to implement the present invention unless specified otherwise herein. Additionally, block definitions and partitioning of functions between various blocks is exemplary of a specific implementation. It will be readily apparent to one of ordinary skill in the art that the present invention may be practiced by numerous other partitioning solutions.
Further, the term “module” is used herein in a non-limiting sense and solely to indicate functionality of particular circuits and assemblies included within embodiments of the invention, and may not be construed as requiring a particular physical structure, or particular partitioning between elements of the invention performing indicated functions.
In this description, some drawings may illustrate signals as a single signal for clarity of presentation and description. Persons of ordinary skill in the art will understand that the signal may represent a bus of signals, wherein the bus may have a variety of bit widths and the present invention may be implemented on any number of data signals including a single data signal.
Software processes illustrated herein are intended to illustrate representative processes that may be performed by the systems illustrated herein. Unless specified otherwise, the order in which the process acts are described is not intended to be construed as a limitation, and acts described as occurring sequentially may occur in a reverse sequence, or in one or more parallel process streams. Furthermore, the processes may be implemented in any suitable hardware, software, firmware, or combinations thereof.
When executed as firmware or software, the instructions for performing the processes may be stored on a computer-readable medium. A computer-readable medium includes, but is not limited to, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact disks), DVDs (digital versatile discs or digital video discs), and semiconductor devices such as RAM, DRAM, ROM, EPROM, and Flash memory.
The disclosures of all patents, published patent applications, and other documents cited in this entire application are incorporated by reference in their respective entireties herein, whether or not such incorporation is specifically asserted in association with such citation.
Card-handling devices that embody teachings of the present invention may include major components that are physically arranged (for example, in a linear arrangement) in the following order: a) a playing card input compartment; b) a playing card retrieval compartment; and c) a playing card-handling zone. Playing cards may be moved from the playing card input compartment into the playing card-handling zone and from the playing card-handling zone into the playing card retrieval compartment. Furthermore, card-handling devices that embody teachings of the present invention may be configured to enable a user to either shuffle or selectively sort cards into a predefined order using the card-handling devices.
A perspective view of a card-handling device 10 according to embodiments of the present invention is shown in
In some embodiments, the card infeed tray 12 and the card output tray 14 may be disposed adjacent one another. Furthermore, the card infeed tray 12 and the card output tray 14 each may be located near a first end 22 of the card-handling device 10. In some embodiments, the card infeed tray 12 and the card output tray 14 may each include a recessed area in the card-handling device 10, as shown in
A major portion of the card-handling system may be located within a card-handling zone 16 of the card-handling device 10. The card-handling system may be enclosed within a cover 18, which, in this embodiment, has a curved upper surface 19 that is arched to enclose an upper portion of a carousel member (which is part of the card-handling system described in further detail below). The cover 18 may include a lock 20 to secure the cover 18 to a frame (not shown) of the card-handling device 10 to prevent unauthorized access to cards in the card-handling device 10. This locking feature advantageously allows a casino operator to shut down a table with cards loaded into the card-handling device 10. When the table is reopened, the operator can be assured that the cards held in the machine are secure. The key to the lock may be held by pit management, and the fact that the cover is, and has been, locked may eliminate any need to unload and verify the rank and suit of each card before play is resumed. Securing the cards within the card-handling device 10 when the machine is not in use is a valuable time and labor saving feature. The lock 20 may be located proximate a second end 24 of the card-handling device 10. Although an exemplary lock is a simple mechanical lock with rollers and a key, other locking systems may be used, such as, for example, electronic locks with keypad controls, locking systems that receive radio frequency identification (RFID) signatures, and computer-controlled locks.
Additional card-handling devices according to embodiments of the present invention may not include an outer cover that is intended to be opened or removed by a user. For example,
Referring back to
In one mounting arrangement, a gaming table surface may be provided with a notch cut into an edge of the table facing the dealer. The first end 22 of the card-handling device 10 may include a recess 32 that has a size and shape that is configured to receive the side of the table therein along the notch. The remainder of the card-handling device 10 (e.g., the second end 24 of the card-handling device 10) may be supported by a support bracket beneath the table surface. In this configuration, the portion of the card-handling device 10 that is inserted into the gaming table may be flush mounted with the upper surface of the table.
In the arrangement described above, the first end 22 of the card-handling device 10 may be nearest the players and the second end 24 of the card-handling device 10 may be nearest the pit when the card-handling device 10 is mounted on or in a gaming table. Furthermore, the card-handling zone 16 may be located behind or to the side of the dealer and out of the way when the card-handling device 10 is mounted on or in the gaming table.
Because the card infeed tray 12 and the card output tray 14 are located on the same side of the card-handling zone 16 (near the first end 22 of the card-handling device 10), the cards may be more accessible to the dealer, and the dealer need not lift cards over the card-handling zone 16 to place spent cards back into the card-handling zone 16. The present design, therefore, may be relatively more ergonomically beneficial to the user (dealer) than known designs. Positioning the card infeed tray 12 at the table level also may reduce the possibility that card faces will be accidentally shown to players.
The placement of an upper edge 26 of the card infeed tray 12 and an upper edge 28 of the output tray 14 substantially in the same plane lying on, or proximate to, the gaming surface also may provide distinct ergonometric advantages. If the dealer moves his or her hands smaller distances during card handling, he or she is likely to experience fewer repetitive stress or strain injuries. Therefore, delivering spent cards to the card-handling device 10 at the gaming surface and retrieving freshly handled cards from substantially the same location or nearby offers distinct user advantages.
The placement of the infeed tray 12 and the output tray 14 on the same side of a carousel-type playing card-handling zone (discussed in further detail below) also allows the user to place spent cards—face down in the infeed tray 12, and at the same time receive fresh cards from the output tray 14 in a face-down configuration. This attribute has been previously described in U.S. Pat. No. 6,676,127 to Johnson et al. This feature improves the security of a carousel card-handling device 10, since no cards are exposed during loading, shuffling, or unloading.
A horizontally disposed centerline intersecting the card infeed tray 12 and the card output tray 14 may also advantageously intersect a centerline of the card-handling zone 16, as will be discussed in more detail below. This arrangement allows the machine to be fairly narrow in width and permits both card tray areas (but not the more bulky card-handling zone 16) to be located on or near the playing table surface.
The card-handling zone 16 of the card-handling device 10 may include card-moving elements located below the card infeed and output trays. The card-handling zone 16 may be capable of performing at least one of the following functions: a) shuffling, b) arranging cards into a desired order, c) verifying completeness of a group of cards, d) reading special markings on cards (such as, for example, a casino identification mark, a manufacturer identification mark, a special bonus card identification mark, a deck identification mark, etc.), e) scanning cards for unauthorized markings, f) identifying cards lacking required markings, g) measuring card wear, h) decommissioning cards, i) applying markings to cards, j) scanning cards for unauthorized electronic devices, k) delivering special cards such as, for example, bonus cards, promotional cards, or wild cards, and many other useful functions.
In some embodiments of the present invention, the card-handling zone 16 may comprise a card-handling system or mechanism comprising a temporary card storage device or system 244 (
Declining finger cut-outs 33A or recesses may be provided in the interior surfaces of the card infeed tray 12, and declining finger cut-outs 33B or recesses may be provided in the interior surfaces of the card output tray 14. The finger cut-outs 33A and 33B may have a size and shape configured to receive or accommodate at least one digit of the hand of a person therein to facilitate handling of cards in the card infeed tray 12 and the card output tray 14 by a user.
The first drive system may include a first card infeed motor 40 (
The second drive system may include a second card infeed motor 70 (
The first card infeed motor 40 and the second card infeed motor 70 each may be operatively controlled by a control system 220 (
In additional embodiments of the present invention, the card infeed system 240 (
Referring to
The gate member 98 may serve a number of functions. For example, as the number of cards 115 in the card infeed tray 12 is reduced, the weight of the stack of cards 115 in the card infeed tray 12 is reduced, which may reduce the frictional force between the lowermost card 115 in the card infeed tray 12 and the card feed roller 42. The reduced frictional force between the lowermost card 115 in the card infeed tray 12 and the card feed roller 42 may impair the ability of the card feed roller 42 to move the lowermost card 115 to the first advancing roller 48 and to other elements of the card infeed system 240 (
The gate member 98 also may be used to provide a physical separation barrier between cards 115 in the card infeed tray 12 belonging or corresponding to different decks, or between different types of cards (such as regular cards and bonus cards, for example). When the card infeed system 240 (
Once the last of the cards 115 below the gate member 98 in the card infeed tray 12 has been removed from the card infeed tray 12 by the card infeed system 240 (
The shaft 102 may be located a selected distance below the upper edge 26 of the card infeed tray 12 (
The infeed gate motor 108, which is used to selectively rotate the gate member 98, may be operatively controlled by a control system 220, which is described in further detail below.
Referring again to
In this configuration, as the packer arm motor 142 drives rotation of the shaft 144 and eccentric cam member 145 in the direction indicated by the directional arrows shown on the eccentric cam member 145 in
The packer arm device 140 may be located in the card-handling device 10 such that the second end 150 of the elongated packer arm will abut against a trailing edge of a card and force the card completely into an aligned compartment 127 of the carousel 120. As the eccentric cam member 145 continues to rotate, the second end 150 of the elongated packer arm 146 may retract to a position that will allow a subsequent card to move past the packer arm device and into position for insertion into a compartment 127 of the carousel 120. In some embodiments of the present invention, the subsequently described control system 220 may cause the packer arm 146 to retract while the carousel 120 is rotating and to extend when the carousel 120 is stationary.
The packer arm motor 142, which is used to selectively move the packer arm 146, also may be operatively controlled by a control system 220, which is described in further detail below.
Referring again to
In some embodiments of the present invention, the previously described card infeed system 240 (
The path that is traveled by a card as it moves from the card infeed tray 12 to a compartment 127 of the carousel 120 is substantially straight and substantially horizontal. In this configuration, the distance traveled by the cards along the path is the shortest distance between the cards in the card infeed tray 12 and the compartment 127 of the carousel 120. The length of this path traveled by the cards may be minimized to minimize the length of the card-handling device 10, and to maximize the speed by which cards may be delivered from the card infeed tray 12 to the carousel 120.
When the card-handling device 10 is mounted on a gaming table such that the flange 30 is substantially flush with the upper gaming surface of the table, approximately the lower half of the carousel 120 may be located beneath the table surface. As a result, the card-handling device 10 may have a relatively low profile on the table.
With continued reference to
The carousel drive system may include, for example, a carousel drive motor 126 that is mounted to the frame 21, as shown in
In additional embodiments of the present invention, the carousel drive system may include any means for driving rotation of the carousel 120 including, for example, gears, sprockets, chains, belts, etc.
The carousel drive motor 126, which is used to selectively drive rotation of the carousel 120, also may be operatively controlled by a control system 220, which is described in further detail below.
Referring again to
Referring to
The swing arm drive motor 166, which is used to selectively move the swing arm 160, also may be operatively controlled by the control system 220 subsequently described herein.
Referring to
As shown in
In the embodiment described above, the path each card travels as the card moves from a selected compartment 127 of the carousel 120 into the card output tray 14 (i.e., the card output path) is substantially horizontal and above the path each card travels as the card moves from the card infeed tray 12 to a selected compartment 127 of the carousel 120 (i.e., the card infeed path). In additional embodiments of the present invention, the card infeed path may be positioned vertically above the card output path. This vertical stacking or layering of the card infeed path and the card output path allows both the card infeed tray 12 and the card output tray 12 to be positioned on the same side of the card-handling device 10 (relative to the carousel 120 or other card storage device). In yet additional embodiments, the card infeed path and the card output path may be disposed in substantially the same plane and laterally side by side one another.
Referring to
By way of example and not limitation, the card recognition system may include a two-dimensional image sensor comprising, for example, a camera device that includes a complementary metal oxide semiconductor (CMOS) image sensor or a charge-coupled device (CCD) image sensor. For example, the card recognition system may include a video camera imaging system as described (or substantially similar to that described) in U.S. patent application Ser. No. 10/623,223, filed Jul. 17, 2003 (which was published Apr. 8, 2004 as U.S. Patent Publication No. US2004/0067789A1), the disclosures of each of which are incorporated herein in their entirety by this reference. As described therein, one suitable card recognition system comprises the camera sold under the trademark “DRAGONFLY®” and available from Point Grey Research Inc. of Vancouver, British Columbia, Canada. The DRAGONFLY® camera includes a 6-pin IEEE-1394 interface, and an asynchronous trigger. This camera can be used to acquire images using multiple frame rates, to acquire 640×480 or 1024×724 24-bit true color images, or to acquire 8-bit gray scale images. Furthermore, the DRAGONFLY® camera is typically provided with image acquisition software and exhibits plug-and-play capability. Such a commercially available camera may be combined with commercially available symbol recognition software, which may be executed using an external computer (not shown). Such commercially available image recognition software may be “trained” to identify conventional playing card symbols and to classify and report each acquired image pattern as a specific card suit and rank. The graphics used to identify rank and suit of each card are not identical or standard and may vary between decks of cards. Once an image recognition software program for identifying rank and suit has been developed, the software program may be configured to allow the software program to be trained for each particular deck of cards to be handled by the card-handling device 10 to enable the software program to accurately identify rank and suit of the particular cards used. Such training of the software program may be done at the casino table or by a security team before the card-handling device 10 is placed on a table.
As yet another example, the sensor 210 may include a one-dimensional image sensor such as a line scanning system or device that includes a contact image sensor (CIS), as disclosed in U.S. patent application Ser. No. 11/152,475, filed Jun. 13, 2005, now U.S. Pat. No. 7,769,232, issued Aug. 3, 2010, and U.S. patent application Ser. No. 11/417,894, filed May 3, 2006, now U.S. Pat. No. 7,593,544, issued Sep. 22, 2009, the disclosures of each of which are incorporated herein in their entirety by this reference. Such line scanning systems may operate in conjunction with additional card position sensors. Sensors that may be used to identify a card position at the time a line scan is performed by the line scanning system are commercially available. Such line scanning systems may be small enough to be entirely incorporated into the card-handling device 10 without requiring used of an external computer for executing an image recognition software program.
The sensor signals may be processed by a separate hardware element (not shown) such as a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC) using the methodology described in U.S. Patent Publication US 2005/0242500 A1, now U.S. Pat. No. 7,769,232, issued, Aug. 3, 2010, the content of which is incorporated by reference herein. Alternatively, the sensor signals may be processed by a processor 222 (
In some applications, the cards to be handled by the card-handling device 10 may be standard unmarked conventional cards, and the sensor 210 may be configured to sense and identify only a conventional rank and suit of each card. In additional applications, the cards to be handled by the card-handling device 10 may be marked with ultraviolet (UV), infrared (IR), near infrared (near-IR), or visible wavelength inks or may have embedded radio frequency identification (RFID) tags, magnetic coding, bar codes, embedded electronic devices, or any other marking means, and the sensor 210 may be configured to detect at least one such marking in addition to, or instead of, identifying a rank and suit of each card. The card recognition system also may be configured to sense, detect, and identify cards that have been physically damaged (e.g., due to wear) and/or cards that have been marked in any way that facilitates cheating. The card recognition system may be configured to sense and identify cards that include one or more of cuts, abrasions, bends, dirt, debris, and/or to verify that each card exhibits an expected, predefined color, thickness, reflectivity, mass, or other identifying characteristic or feature.
The card recognition system may be configured to communicate electrically with the subsequently described control system. In addition, multiple sensors 210 may be useful for redundancy, better overall image fidelity, or simply for advantageous placement of the type of sensor. For example, a 2-dimensional sensor may be more practical in a position where it may read the card in a stationary position. On the other hand, the CIS module may be more practical in a position where it reads the card while it is in motion to enable the line scans at various positions along the rank and suit designators on the card.
The card-handling device 10 may further include a control system 220. The control system may configured to receive input signals from a user, to receive input signals from one or more of the various sensors described herein, and/or for selectively controlling one or more of the various previously described active components of the card-handling device 10.
As shown in
The authorization element input device 226 may be integrated as a part of the control system 220 or it may be configured as a stand-alone device in communication with the control system 220 across a wired or wireless communication medium.
The one or more output devices 228 may include a graphical display 230 (i.e., a screen or monitor), a printer, one or more light-emitting diodes (LEDs), a device for emitting an audible signal, etc. In some embodiments of the present invention, the input devices 226 and the output devices 228 may be integrated into a single unitary structure, such as, for example, with the display 230 configured as a touch screen display 230.
The touch screen display 230 may be located below the gaming table surface when the card-handling device 10 is mounted to a gaming table in the manner previously described herein. The display 230 may be used to output information to a dealer or other user regarding information such as the identity of the cards that have been dealt into each hand, which may allow the dealer to assess whether the cards shown or played by that player are different (indicating that the cards have been changed or swapped) without alerting the player. For example, if a deviation between a dealt hand and a displayed or played hand were to occur, indicating a confirmed case of card switching, the dealer would be able to notify security without the player's knowledge, which may allow the cheating player to be apprehended. By providing or locating the display 230 below the surface of the table and/or facing away from the players at the table, the display 230 may be concealed to the players, and important information may be conveyed to and from casino personnel without the knowledge of the players. Touch screen controls on the display 230 also may provide a larger number of input options for the user, as compared to more standard push button controls. The display 230 may be capable of displaying alphanumeric information, graphical information, animation, video feed, and the like.
As another input option, the touch screen may be used to present login information for an authorized user. Such information may include a user identification, a password, or a combination thereof. As a non-limiting example, the touch screen may prompt a user to enter a user identification and a password. As another non-limiting example, the presentation and acceptance of login information may be used in combination with the authorization element input device 226 such that the user identification is received from the magnetic card or other authorization element and the password is entered by the authorized user. In this combination, the database of authorized users may be checked to determine that the entered password corresponds with the user identification on the magnetic strip.
As another non-limiting example, the control system 220 may be configured with a factory default password. After entry of the factory default password, custom password information may be entered, such as, for example, to create authorized user passwords. In some embodiments, the default password may only allow access to operations for entering the custom passwords. In these embodiments, entry of a custom password may be required to access hand information.
As shown in
The control system 220 may be configured to communicate across any wired or wireless communication medium 380 to a network 440. By way of example, and not limitation, communication media may include serial data links, parallel data links, Ethernet, a Wide Area Network (WAN), a Local Area Network (LAN), BLUETOOTH®, Wi-Fi, WiMax, and other suitable communications links. In some embodiments, communication on the communication medium may be implemented with a substantially stand-alone hardware element (not shown). In other embodiments, the communication may be accomplished with a combination of hardware and firmware/software.
The network 440 also may be used to collect and/or process data from other data collection devices on a gaming table such as, for example, radio frequency identification (RFID) wager amount sensors, object sensors, chip tray inventory sensors, and the like, as is explained more fully below in the description of
The processors 222 may be implemented as microcontrollers including memory for storage of data and firmware/software for execution thereon. The processors 222 also may be implemented as microprocessors with separate memory 224 for storage of the data and firmware/software. In addition, the processors 222 may incorporate an ASIC, Field-Programmable Gate Array (FPGA), multiple Programmable Logic Devices (PLD), and combinations thereof.
In some embodiments, the processors 222 may be configured as two separate processors configured to perform different functions. A first processor may be configured for operating and controlling the functions of the shuffler, including operation of electrical devices such as motors, controlling the images displayed on the display 230, processing signals received from all internal sensors such as optical object presence sensors, motion sensors and the like. Thus, during operation, the first processor 222 may determine the random order in which cards are loaded into the compartments of the card-handling device 10.
The first processor may also control the display 230 including touch screen controls and may be configured as a further user interface for programming the processors to display additional game names and to dispense cards according to user inputted data.
A second processor (not shown) may be used to interpret information received from the card recognition system 246 to determine rank, suit, other card information, or combinations thereof. The first processor and the second processor may communicate with each other and collaborate so that the identity of each card and the compartment in which it is placed are associated.
Of course, those of ordinary skill in the art will recognize that with multiple processors 222, the task load may be allocated differently depending on performance characteristics and features of each of the processors 222. For example, a microcontroller may include features well suited for controlling and interfacing with external devices and a microprocessor may be well suited for performing signal processing functions such as image recognition.
In operation of embodiments of the present invention, the dealer will “deal” the hands from the card output tray to each player, such as in a preset order or by player position. Thus, embodiments of the present invention can track the cards from the shuffler to the player to determine the contents of each player's hand. In other words, through data manipulation, information relating to the content of each hand the shuffler dispenses is formed and is retrievable. The information collected from the card-handling device may be time stamped and stored accordingly. Moreover, this information may be stored internally on the card-handling device or on an external computer to provide a recall feature for any hand during a number of completed rounds of play. In some embodiments, a large database outside the shuffler may be maintained so that more history of hands dealt can be stored and later retrieved or analyzed.
As shown in
The control system 220 of the card-handling device 10 may be configured under control of a computer program to enable a dealer or other user of the card-handling device 10 to perform any one of a number of functions or operations on a deck of cards using the card-handling device 10. The display 230 (or other input device) of the card-handling device 10 may include a menu that allows the dealer or other user to select what functions or operations the card-handling device 10 is to perform on a deck of cards placed in the card infeed tray 12. The functions or operations may include one or more of shuffling operations, sorting operations, and dealing operations, and recall of card information from various hands, rounds, or combinations thereof, as will be explained more fully below.
By way of example and not limitation, one function or operation that may be performed by the card-handling device 10 is a shuffling operation that includes a deck shuffle with the entire shuffled deck output to the card output tray 14. In other words, the control system 220 of the card-handling device 10 may be configured under control of a program to cause the card-handling device 10 to randomly shuffle an entire deck of cards placed in the card infeed tray 12, and to dispense the entire deck of shuffled cards into the card output tray 14.
By way of example and not limitation, the card-handling device 10 may be used to shuffle cards placed in the card infeed tray 12, the control system 220 of the card-handling device 10 may be configured to read or sense one or more identifying characteristics or features of each card as the card is carried past the card recognition system 246, as previously described herein, and to randomly rotate the carousel 120 while inserting the cards to insert cards sequentially into the next compartment 127 of the carousel 120. After all the cards have been randomly placed into compartments 127 of the carousel 120, the control system 220 may cause the carousel 120 to spin or rotate in a step-wise motion as the card output system 242 ejects cards out from the compartments 127 of the carousel 120 either randomly or sequentially. In other words, the cards may be placed in a randomized or shuffled sequence as they are placed into the carousel 120. In this manner, the cards or groups of cards may be provided in the card output tray 14 in a random, shuffled sequence.
Yet another function or operation that may be performed by the card-handling device 10 is a dealing operation that includes a sequential output of randomly generated playing hands (or other subsets of cards) to the card output tray 14, each hand or subset of cards comprising a predetermined number of cards. In other words, the control system 220 of the card-handling device 10 may be configured under control of a program to cause the card-handling device 10 to dispense a first randomly generated playing hand or subset into the card output tray 14. A second randomly generated playing hand may be output to the card output tray 14 after the control system 220 receives a signal from the sensor 200 indicating that the first randomly generated playing hand has been removed from the card output tray 14. This process may continue until a selected number of randomly generated playing hands has been dispensed and removed from the card output tray 14. If the game being played requires other sets of playing cards, such as, for example, a set of flop cards, dealer cards, common cards, extra player cards, etc., such sets of cards also may be generated and dispensed into the card output tray 14 in the sequential manner described above to prevent the sets of cards from being mixed with other playing hands or sets of cards. After the last playing hand or set is delivered, any cards from the deck or decks that remain in compartments 127 of the carousel 120 may be automatically unloaded to the card output tray 14, or the remaining cards may be unloaded to the card output tray 14 upon receiving an input signal from the dealer or other user (for example, an input signal generated by touching a predefined button on the touchpad display 230).
In some embodiments of the present invention, the control system 220 (
The display 230 may include a touch screen or other user controls that may be used to program the control system 220 of the card-handling device 10. For example, the card-handling device 10 may be programmed to sequentially deliver a specified number of hands each comprising a specified number of players. Furthermore, the card-handling device 10 may be programmed to deliver a specified number of cards to a dealer, a specified number of flop cards, a bonus hand, common cards, or any other card or cards used in the play of a casino card game. The touch screen or other user controls of the display 230 also may be used to input a name of a game for which the card-handling device has been programmed, so that the name of the programmed game appears on the display 230 in a menu of user selectable games. By employing a control system 220 that is programmable by an end user as described herein, the need for factory programming or re-programming of the card-handling device 10 every time a new casino card game is developed may be eliminated, which may save time, eliminate the need for re-submission of software to various gaming agencies for approval before implementation in a casino, and eliminate the need for upgrading software in the field.
By way of example and not limitation, the card-handling device 10 may be programmed by an end user to deliver cards in a pattern or sequence corresponding to the game of THREE CARD POKER®, which requires that the players and dealer each receive three cards. If a new game that utilizes three player cards (each) and three dealer cards were to be developed in the future, an end user would be able to input information including the new game name into the card-handling device 10 and the card-handling device 10 would be configured for playing such a game without requiring a software change.
As shown in
In one embodiment with a touch screen display 230, the card-handling and analysis system 250 may be configured such that the user may touch a region near a specific player position 425 and the display 230 may display card information 230A for the hand at that specific player position 425. Alternatively, each of the player positions 425 may display the card information of the hand at each player position 425.
As a non-limiting example, the content of the graphic may include the name of the game, player positions, dealer position, and even game rules. A user may touch a specific player position that is displayed on the touch screen to reveal the hand to which this position was dealt. The display may also show the result of the game, and the associated payouts, for example, a flush on a “Three Card Poker” table may pay 5 to 1.
As another non-limiting example, the touch screen display content may include navigation buttons such as “past rounds,” “current round,” played hands,” “unused hands,” “back,” “forward,” and “exit.” The Played hands button may be used to display the hands that were actually dealt and bet upon in the current or a previous round. Similarly, the unused hands button may be used to display hands that may have been processed by the shuffler but never used in a round of play.
As non-limiting examples, the back button and forward button may be used to navigate among unused hands or played hands. Similarly, the back button and forward button may be used to navigate among previously played rounds that are stored in a database of rounds.
The overhead imaging equipment and other hardware and/or software is used to extract game information from a live gaming table. Data from the overhead imaging equipment may be processed to extract game play information. Non-limiting examples of game play information include but are not limited to: player position occupied, wager placed at a given player position, movement of a card or group of cards from a shuffler (or card-reading shoe) to a player position, movement of a card or cards to a common card area, movement of a card or cards to a dealer card area, movement of a card or cards to a bonus card area, placement of a side wager, withdrawal of a wager, rolling of a dice, spinning of a wheel, moving of cards from one area to another area on the table, the collection of cards at the conclusion of a round of play, dealer hand signals, the payment of payouts and the taking of lost wagers, etc.
U.S. patent application Ser. No. 11/558,810, filed Nov. 10, 2006, and titled “Casino Table Game Monitoring System,” describes comprehensive card game monitoring systems, including suitable hardware and software for performing the overhead imaging function. Data such as the card composition (for games dealt—face up) and wager information from such a system is collected and used in combination with the hand composition information derived from the card-reading system of shufflers of the present invention to form data records of historical hand composition for a given player position. The content of this application is incorporated by reference in its entirety.
Card composition data from the overhead imaging system may be compared to the card composition information collected in the shuffler to determine if illegal card swapping has occurred. The data from the overhead imaging system can also be used to associate the hand with a particular player position on the table. Additionally, data from the overhead system may be used to verify a hand composition prior to making a large payout.
The combined data may be stored in memory associated with a processor within the card shuffler or transmitted via a hardwire, wireless or network connection to an external database. In one example of the invention, a finite number of hands (i.e., 8-10) per player position is stored in the internal memory of the shuffler and can be displayed on the display associated with the shuffler. Any information that is not stored in the shuffler memory may be instead stored in the external database of an external computer and may be displayed on a display associated with the external computer. In some embodiments, the information stored in the external database may be recalled and displayed using the user inputs of the shuffler, allowing the previously stored information to be displayed on the shuffler display.
A layout of a blackjack table 405 is shown as a non-limiting example of another possible casino table game to which embodiments of the present invention may be applied. The layout illustrates one contemplated, suitable arrangement of elements of the integrated monitoring system 400 in accordance with an embodiment of the invention. The integrated monitoring system 400 may include many components for determining various forms of information about the game being played at the table 405, the players playing the game, wager amounts and payouts, and the dealer responsible for the game. As is described below in more detail, the information may be captured, processed, and acted upon (e.g., generation of alerts) in substantially real time.
In system 400, the table 405 is used for blackjack and is equipped with the card-handling and analysis system 250 (
The system 400 may also include overhead cameras 420 (also referred to as image units) connected to a ceiling of the casino, mounted on a pole to the table, or in the vicinity of the table 405. These cameras 420 process the images received by the cameras 420 respectively and communicate with the table manager 450 over the communication media and the local table network 440.
The table manager 450 processes, and may transmit, images of items viewed by the cameras 420 in substantially near real time. Dealt card values, wagers, and other table activity can be imaged and determined using the cameras 420 in cooperation with the table manager 450. The table manager 450 may be implemented as a general-purpose computer system, a server, or other processor system as is generally known in the art. The table manager 450 will contain computer implemented processing that may be stored on a computer-readable medium of the general-purpose computer system. As such, the processing and functions of the table manager 450 may be stored as a computer program on a computer-readable medium, or downloaded from the server (not shown) over the communication network 460.
As can been seen from
As with the control system 220 (
Operation 506 indicates that the card information from the card recognition system may be analyzed to determine card features, such as, for example, rank and suit, and the card information is stored in the control system.
Decision 510 determines whether another card should be processed for the current round. If so, control returns to operation 504 to process the next card. If after loading and the proper number of cards are present for the current round, control continues on to operation 511. The loop controlled by decision 510 may be used, as a non-limiting example, to process each card in a standard 52 card deck to verify that the deck is complete. This may be done by comparing the rank and suit of each card with a library of stored information. If a card is missing from the deck, the rank and suit of that card may be displayed and the shuffle may be aborted.
In other words, as each card is processed by the device, a processor (or process) associated with controlling the card-handling device can track where each card that is handled ends up in the carousel 120 (
At this point, some embodiments may maintain the process of identifying which card went where in the carousel separate from the process of identifying the card information for each card. As a non-limiting example, suppose the cards are numbered sequentially with a card number as they are delivered to the carousel. The first process may track the random distribution of cards. For example, the first process could track that card 1 is delivered to compartment 8, card 2 is delivered to compartment 3, card 3 is delivered to compartment 1, and so on. The second process may track that card 1 is a two of diamonds, card 2 is a king of clubs, card 3 is a five of hearts and so on. With this tracking, as a security feature, the overall process 500 may not know complete information about what each hand contains. Rather, one process may know that a hand contains cards 3, 8, and 51. The other process may know the specific rank and suit of each card in the sequence of card numbers.
After completion of verification of the deck and recording of card information for each sequential card, control passes to operation 511.
In operation 511 the card information for each sequential card may be associated with the hand information of which card numbers are in which compartments of the carousel. In other words, as a non-limiting example, the information that compartment four contains cards 3, 8 and 51 is combined with the information that card 3 is a queen of hearts, card 8 is a ten of clubs, and card 51 is a nine of spades.
Some embodiments may perform this operation of associating the hand information with the card information as late as possible in the round to prevent cheating where the information may be known before the hands are actually dealt to the players. Thus, the association may be made at different point in execution of playing the round, such as, for example, after the hands are complete in the carousel, as a hand as it is removed from the card-handling device, as a hand is placed in a player position, or after all hands have been dealt.
In other embodiments of the invention, instead of associating the card information of all cards with all the card numbers, the association process may only be performed for the card information associated with cards that are dealt into compartments forming hands. The rank/suit information of the unused cards (i.e., the cards that go into discard compartments) may not be matched up.
In still other embodiments, the card information may be associated directly with the compartment number rather than keeping track of the card information and hand information separate. Either way, after all cards have been distributed, the hand compositions are known by the processor. As a matter of design choice, this information is not viewable to the end user until after the cards have been distributed into the delivery tray.
Optional operation 512 indicates that the hand positions may be identified for the hands before, after, or when they are dealt from the card-handling device. If the embodiment is configured with an object recognition device, the hand position may be determined based on active player positions as is described above with reference to
Operation 514 indicates that all card information and player position information may be stored for the entire round after the round is complete. As a non-limiting example, such information may include, the type of game, player position, card rank and suit of each card in each player position's hand, size of bet at each player position, and anticipated payout based on the rules.
Decision 516 indicates whether a query is made for history information. This history information may include card information and player position information for the current round or for past, completed rounds. If display of history information is desired, operation 518 displays the desired information. Otherwise, control transfers to decision 520. The display information may include a display of all hands for the current round or only hands at active player positions. Furthermore, the display may be configured to display a single player's current hand or past hands.
In some embodiments, the display may display the card information by presenting some type of graphical representation or symbol for the card information such as rank and suit. In other embodiments, all or part of a stored image of the card may be displayed rather than just the rank and suit symbols. For example, a graphic image of a one-eyed Jack of diamonds can be displayed rather than a “J” and a diamond symbol. In a preferred embodiment, only a portion of the graphic image is displayed (e.g., 25% of the card face).
In addition, the shuffler or an external game controller in communication with the shuffler processor may be programmed with the game rules such that the shuffler can display the game result information or send data to an external display. In a preferred format, the game rules are programmed into the shuffler processor such that the winning hand can be identified on the shuffler display. Even if an external processor determines a game result, the data can be transmitted back to the shuffler so that the game outcome can be displayed on the shuffler display and so that the display can indicate to the dealer who should be paid and the correct payment amount.
Decision 520 indicates whether another round is desired; if so, control transfers back to operation 502, otherwise, control transfers to operation 522. Optional operation 522 indicates that the history information gathered and stored in the control system 220 (
Optional operation 524 indicates that additional processing on the history may be performed. Additional processing may include, as non-limiting examples, review of the history in an attempt to find dealer errors, cheating, and statistical review of the history to find betting patterns or to verify randomness of the game. Furthermore, this additional processing may be performed on an external computer, the table manager 450 (
In another embodiment, historical hand composition information is stored on table manager 450 (e.g., controller) and is displayed on either a separate monitor 451 or on the shuffler display 230.
In some embodiments, a shuffler may be configured to deliver no more hands or other card combinations (such as dealer hands, community cards, bonus hands, bonus cards, etc.) than is necessary to administer the game. For games that do not require the dealer to deal hands to all table positions (regardless of whether there is an active player), the shuffler may receive a signal from the wager sensors (or other sensor denoting an active player position) and limits the hand output to only what is necessary to administer the game. As a non-limiting example, if there are only two players, the shuffler will sense that state and deliver only two hands.
Although the embodiments of the invention may have been described with reference to particular card games, it should be appreciated that they may be applicable to any other casino communal or non-communal card games.
While the embodiments of the invention have been described in detail in connection with preferred embodiments known at the time, the invention is not limited to the disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions, or equivalent arrangements not heretofore described, but which are commensurate with the scope of the invention. Accordingly, the invention is not limited by the foregoing description or drawings, but is only limited by the scope of the appended claims, including equivalents thereof.
The present application is a continuation of U.S. patent application Ser. No. 14/330,964, filed Jul. 14, 2014, now U.S. Pat. No. 9,259,640, issued Feb. 16, 2016, which, in turn, is a continuation of U.S. patent application Ser. No. 13/311,166, filed Dec. 5, 2011, now U.S. Pat. No. 8,777,710, issued Jul. 15, 2014, which, in turn, is a continuation of U.S. patent application Ser. No. 11/810,864, filed Jun. 6, 2007, now U.S. Pat. No. 8,070,574, issued Dec. 6, 2011. The present application is also related to U.S. patent application Ser. No. 11/598,259, titled “CARD HANDLING DEVICES AND METHODS OF USING THE SAME,” now U.S. Pat. No. 7,766,332, issued Aug. 3, 2010, and U.S. patent application Ser. No. 11/481,407, titled “CARD SHIMMER WITH ADJACENT CARD INFEED AND CARD OUTPUT COMPARTMENTS,” now U.S. Pat. No. 8,342,525, issued Jan. 1, 2013, the disclosure of each of which is hereby incorporated by reference in its entirety herein. This application is also related to U.S. patent application Ser. No. 12/848,631, filed Aug. 2, 2010, now U.S. Pat. No. 8,141,875, issued Mar. 27, 2012, U.S. patent application Ser. No. 13/422,167, filed Mar. 16, 2012, now U.S. Pat. No. 8,931,779, issued Jan. 13, 2015, and U.S. patent application Ser. No. 13/431,757, filed Mar. 27, 2012. This application is also related to U.S. patent application Ser. No. 13/714,211, filed Dec. 13, 2012, now U.S. Pat. No. 8,702,101, issued Apr. 22, 2014.
Number | Name | Date | Kind |
---|---|---|---|
130281 | Coughlin | Aug 1872 | A |
205030 | Ash | Jun 1878 | A |
609730 | Booth | Aug 1898 | A |
673154 | Bellows | Apr 1901 | A |
793489 | Williams | Jun 1905 | A |
892389 | Bellows | Jul 1908 | A |
1014219 | Hall | Jan 1912 | A |
1043109 | Hurm | Nov 1912 | A |
1157898 | Perret | Oct 1915 | A |
1556856 | Lipps | Oct 1925 | A |
1757553 | Tauschek | May 1930 | A |
1850114 | McCaddin | Mar 1932 | A |
1885276 | McKay | Nov 1932 | A |
1889729 | Hammond | Nov 1932 | A |
1955926 | Matthaey | Apr 1934 | A |
1992085 | McKay | Feb 1935 | A |
1998690 | Hartridge et al. | Apr 1935 | A |
2001220 | Smith | May 1935 | A |
2001918 | Nevius | May 1935 | A |
2016030 | Rose | Oct 1935 | A |
2043343 | Warner | Jun 1936 | A |
2060096 | McCoy | Nov 1936 | A |
2065824 | Plass | Dec 1936 | A |
2159958 | Sachs | May 1939 | A |
2185474 | Nott | Jan 1940 | A |
2254484 | Hutchins | Sep 1941 | A |
D132360 | Gardner | May 1942 | S |
2328153 | Laing | Aug 1943 | A |
2328879 | Isaacson | Sep 1943 | A |
2364413 | Wittel | Dec 1944 | A |
2525305 | Eugene | Oct 1950 | A |
2543522 | Cohen | Feb 1951 | A |
2588582 | Sivertson | Mar 1952 | A |
2659607 | Skillman et al. | Nov 1953 | A |
2661215 | Stevens | Dec 1953 | A |
2676020 | Ogden | Apr 1954 | A |
2692777 | Miller | Oct 1954 | A |
2701720 | Ogden | Feb 1955 | A |
2705638 | Newcomb | Apr 1955 | A |
2711319 | Morgan et al. | Jun 1955 | A |
2714510 | Oppenlander et al. | Aug 1955 | A |
2717782 | Droll | Sep 1955 | A |
2727747 | Semisch, Jr. | Dec 1955 | A |
2731271 | Brown | Jan 1956 | A |
2747877 | Howard | May 1956 | A |
2755090 | Aldrich | Jul 1956 | A |
2757005 | Nothaft | Jul 1956 | A |
2760779 | Ogden et al. | Aug 1956 | A |
2770459 | Wilson et al. | Nov 1956 | A |
2778643 | Williams | Jan 1957 | A |
2778644 | Stephenson | Jan 1957 | A |
2782040 | Matter | Feb 1957 | A |
2790641 | Adams | Apr 1957 | A |
2793863 | Liebelt | May 1957 | A |
2815214 | Hall | Dec 1957 | A |
2821399 | Heinoo | Jan 1958 | A |
2914215 | Neidig | Nov 1959 | A |
2937739 | Levy | May 1960 | A |
2950005 | MacDonald | Aug 1960 | A |
RE24986 | Stephenson | Jan 1961 | E |
3067885 | Kohler | Dec 1962 | A |
3107096 | Osborn | Oct 1963 | A |
3124674 | Edwards et al. | Mar 1964 | A |
3131935 | Gronneberg | May 1964 | A |
3147978 | Sjostrand | Sep 1964 | A |
3222071 | Lang | Dec 1965 | A |
3235741 | Plaisance | Feb 1966 | A |
3288308 | Gingher | Nov 1966 | A |
3305237 | Granius | Feb 1967 | A |
3312473 | Friedman et al. | Apr 1967 | A |
3452509 | Hauer | Jul 1969 | A |
3530968 | Palmer | Sep 1970 | A |
3588116 | Miura | Jun 1971 | A |
3589730 | Slay | Jun 1971 | A |
3595388 | Castaldi | Jul 1971 | A |
3597076 | Hubbard | Aug 1971 | A |
3618933 | Roggenstein | Nov 1971 | A |
3627331 | Lyon, Jr. | Dec 1971 | A |
3666270 | Mazur | May 1972 | A |
3680853 | Houghton | Aug 1972 | A |
3690670 | Cassady et al. | Sep 1972 | A |
3704938 | Fanselow | Dec 1972 | A |
3716238 | Porter | Feb 1973 | A |
3751041 | Seifert | Aug 1973 | A |
3761079 | Azure | Sep 1973 | A |
3810627 | Levy | May 1974 | A |
3861261 | Maxey | Jan 1975 | A |
3897954 | Erickson et al. | Aug 1975 | A |
3899178 | Watanabe et al. | Aug 1975 | A |
3909002 | Levy | Sep 1975 | A |
3929339 | Mattioli | Dec 1975 | A |
3944077 | Green | Mar 1976 | A |
3944230 | Fineman | Mar 1976 | A |
3949219 | Crouse | Apr 1976 | A |
3968364 | Miller | Jul 1976 | A |
4023705 | Reiner et al. | May 1977 | A |
4033590 | Pic | Jul 1977 | A |
4072930 | Lucero et al. | Feb 1978 | A |
4088265 | Garczynski et al. | May 1978 | A |
4151410 | McMillan et al. | Apr 1979 | A |
4159581 | Lichtenberg | Jul 1979 | A |
4162649 | Thornton | Jul 1979 | A |
4166615 | Noguchi et al. | Sep 1979 | A |
4232861 | Maul | Nov 1980 | A |
4280690 | Hill | Jul 1981 | A |
4283709 | Lucero et al. | Aug 1981 | A |
4310160 | Willette | Jan 1982 | A |
4339134 | Macheel | Jul 1982 | A |
4339798 | Hedges et al. | Jul 1982 | A |
4361393 | Noto | Nov 1982 | A |
4368972 | Naramore | Jan 1983 | A |
4369972 | Parker | Jan 1983 | A |
4374309 | Walton | Feb 1983 | A |
4377285 | Kadlic | Mar 1983 | A |
4385827 | Naramore | May 1983 | A |
4388994 | Suda et al. | Jun 1983 | A |
4397469 | Carter | Aug 1983 | A |
4421312 | Delgado et al. | Dec 1983 | A |
4421501 | Scheffer | Dec 1983 | A |
D274069 | Fromm | May 1984 | S |
4467424 | Hedges et al. | Aug 1984 | A |
4494197 | Troy et al. | Jan 1985 | A |
4497488 | Plevyak et al. | Feb 1985 | A |
4512580 | Matviak | Apr 1985 | A |
4513969 | Samsel | Apr 1985 | A |
4515367 | Howard | May 1985 | A |
4531187 | Uhland et al. | Jul 1985 | A |
4534562 | Cuff et al. | Aug 1985 | A |
4549738 | Greitzer | Oct 1985 | A |
4566782 | Britt et al. | Jan 1986 | A |
4575367 | Karmel | Mar 1986 | A |
4586712 | Lorber et al. | May 1986 | A |
4659082 | Greenberg | Apr 1987 | A |
4662637 | Pfeiffer et al. | May 1987 | A |
4662816 | Fabrig | May 1987 | A |
4667959 | Pfeiffer et al. | May 1987 | A |
4741524 | Bromage | May 1988 | A |
4750743 | Nicoletti | Jun 1988 | A |
4755941 | Bacchi | Jul 1988 | A |
4759448 | Kawabata | Jul 1988 | A |
4770412 | Wolfe | Sep 1988 | A |
4770421 | Hoffman | Sep 1988 | A |
4807884 | Breeding | Feb 1989 | A |
4822050 | Normand et al. | Apr 1989 | A |
4832342 | Plevyak | May 1989 | A |
4858000 | Lu | Aug 1989 | A |
4861041 | Jones et al. | Aug 1989 | A |
4876000 | Mikhail | Oct 1989 | A |
4900009 | Kitahara et al. | Feb 1990 | A |
4904830 | Rizzuto | Feb 1990 | A |
4921109 | Hasuo et al. | May 1990 | A |
4926327 | Sidley | May 1990 | A |
4948134 | Suttle et al. | Aug 1990 | A |
4951950 | Normand et al. | Aug 1990 | A |
4969648 | Hollinger et al. | Nov 1990 | A |
4993587 | Abe | Feb 1991 | A |
4995615 | Cheng et al. | Feb 1991 | A |
5000453 | Stevens et al. | Mar 1991 | A |
5039102 | Miller et al. | Aug 1991 | A |
5067713 | Soules et al. | Nov 1991 | A |
5078405 | Jones et al. | Jan 1992 | A |
5081487 | Hoyer et al. | Jan 1992 | A |
5096197 | Embury | Mar 1992 | A |
5102293 | Schneider | Apr 1992 | A |
5118114 | Tucci et al. | Jun 1992 | A |
5121192 | Kazui | Jun 1992 | A |
5121921 | Friedman | Jun 1992 | A |
5146346 | Knoll | Sep 1992 | A |
5154429 | LeVasseur et al. | Oct 1992 | A |
5179517 | Sarbin et al. | Jan 1993 | A |
5197094 | Tillery et al. | Mar 1993 | A |
5199710 | Lamle | Apr 1993 | A |
5209476 | Eiba et al. | May 1993 | A |
5224712 | Laughlin et al. | Jul 1993 | A |
5240140 | Huen | Aug 1993 | A |
5248142 | Breeding et al. | Sep 1993 | A |
5257179 | DeMar et al. | Oct 1993 | A |
5259907 | Soules et al. | Nov 1993 | A |
5261667 | Breeding | Nov 1993 | A |
5267248 | Reyner | Nov 1993 | A |
5275411 | Breeding | Jan 1994 | A |
5276312 | McCarthy | Jan 1994 | A |
5283422 | Storch et al. | Feb 1994 | A |
5288081 | Breeding et al. | Feb 1994 | A |
5299089 | Lwee et al. | Mar 1994 | A |
5303921 | Breeding | Apr 1994 | A |
5344146 | Lee | Sep 1994 | A |
5356145 | Verschoor | Oct 1994 | A |
5362053 | Miller et al. | Nov 1994 | A |
5374061 | Albrecht et al. | Dec 1994 | A |
5377973 | Jones et al. | Jan 1995 | A |
5382024 | Blaha | Jan 1995 | A |
5382025 | Sklansky et al. | Jan 1995 | A |
5390910 | Mandel et al. | Feb 1995 | A |
5397128 | Hesse et al. | Mar 1995 | A |
5397133 | Penzias et al. | Mar 1995 | A |
5416308 | Hood et al. | May 1995 | A |
5431399 | Kelley et al. | Jul 1995 | A |
5431407 | Hofberg et al. | Jul 1995 | A |
5437462 | Breeding et al. | Aug 1995 | A |
5445377 | Steinbach | Aug 1995 | A |
5470079 | LeStrange et al. | Nov 1995 | A |
D365853 | Zadro | Jan 1996 | S |
5489101 | Moody et al. | Feb 1996 | A |
5515477 | Sutherland | May 1996 | A |
5524888 | Heidel | Jun 1996 | A |
5531448 | Moody et al. | Jul 1996 | A |
5544892 | Breeding et al. | Aug 1996 | A |
5575475 | Steinbach | Nov 1996 | A |
5584483 | Sines et al. | Dec 1996 | A |
5586766 | Forte et al. | Dec 1996 | A |
5586936 | Bennett et al. | Dec 1996 | A |
5605334 | McCrea et al. | Feb 1997 | A |
5613912 | Slater et al. | Mar 1997 | A |
5632483 | Garczynski et al. | May 1997 | A |
5636843 | Roberts et al. | Jun 1997 | A |
5651548 | French et al. | Jul 1997 | A |
5655961 | Acres et al. | Aug 1997 | A |
5669816 | Garczynski et al. | Sep 1997 | A |
5676231 | Legras et al. | Oct 1997 | A |
5676372 | Sines et al. | Oct 1997 | A |
5681039 | Miller et al. | Oct 1997 | A |
5683085 | Johnson et al. | Nov 1997 | A |
5685543 | Garner et al. | Nov 1997 | A |
5690324 | Otomo et al. | Nov 1997 | A |
5692748 | Frisco et al. | Dec 1997 | A |
5695189 | Breeding et al. | Dec 1997 | A |
5701565 | Morgan | Dec 1997 | A |
5707286 | Carlson | Jan 1998 | A |
5707287 | McCrea et al. | Jan 1998 | A |
5711525 | Breeding et al. | Jan 1998 | A |
5718427 | Cranford et al. | Feb 1998 | A |
5719288 | Sens et al. | Feb 1998 | A |
5720484 | Hsu et al. | Feb 1998 | A |
5722893 | Hill et al. | Mar 1998 | A |
5735525 | McCrea et al. | Apr 1998 | A |
5735724 | Udagawa | Apr 1998 | A |
5735742 | French et al. | Apr 1998 | A |
5743798 | Adams et al. | Apr 1998 | A |
5768382 | Schneier et al. | Jun 1998 | A |
5770533 | Franchi et al. | Jun 1998 | A |
5770553 | Kroner et al. | Jun 1998 | A |
5772505 | Garczynski et al. | Jun 1998 | A |
5779546 | Meissner et al. | Jul 1998 | A |
5781647 | Fishbine et al. | Jul 1998 | A |
5785321 | Van Putten et al. | Jul 1998 | A |
5788574 | Ornstein et al. | Aug 1998 | A |
5791988 | Nomi et al. | Aug 1998 | A |
5802560 | Joseph et al. | Sep 1998 | A |
5803808 | Strisower | Sep 1998 | A |
5810355 | Trilli | Sep 1998 | A |
5813326 | Salomon et al. | Sep 1998 | A |
5813912 | Shultz et al. | Sep 1998 | A |
5814796 | Benson et al. | Sep 1998 | A |
5836775 | Hiyama et al. | Nov 1998 | A |
5839730 | Pike | Nov 1998 | A |
5845906 | Wirth et al. | Dec 1998 | A |
5851011 | Lott et al. | Dec 1998 | A |
5867586 | Liang | Feb 1999 | A |
5879233 | Stupero | Mar 1999 | A |
5883804 | Christensen | Mar 1999 | A |
5890717 | Rosewarne et al. | Apr 1999 | A |
5892210 | Levasseur | Apr 1999 | A |
5911626 | McCrea et al. | Jun 1999 | A |
5919090 | Mothwurf | Jul 1999 | A |
5936222 | Korsunsky et al. | Aug 1999 | A |
5941769 | Order | Aug 1999 | A |
5944310 | Johnson et al. | Aug 1999 | A |
D414527 | Tedham | Sep 1999 | S |
5957776 | Hoehne et al. | Sep 1999 | A |
5974150 | Kaish et al. | Oct 1999 | A |
5985305 | Peery et al. | Nov 1999 | A |
5989122 | Roblejo et al. | Nov 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
6015311 | Benjamin et al. | Jan 2000 | A |
6019368 | Sines et al. | Feb 2000 | A |
6019374 | Breeding et al. | Feb 2000 | A |
6039650 | Hill et al. | Mar 2000 | A |
6050569 | Taylor | Apr 2000 | A |
6053695 | Longoria et al. | Apr 2000 | A |
6061449 | Candelore et al. | May 2000 | A |
6068258 | Breeding et al. | May 2000 | A |
6069564 | Hatano et al. | May 2000 | A |
6071190 | Weiss et al. | Jun 2000 | A |
6093103 | McCrea et al. | Jul 2000 | A |
6113101 | Wirth et al. | Sep 2000 | A |
6117012 | McCrea et al. | Sep 2000 | A |
D432588 | Tedham | Oct 2000 | S |
6126166 | Lorson et al. | Oct 2000 | A |
6127447 | Mitry et al. | Oct 2000 | A |
6131817 | Miller | Oct 2000 | A |
6139014 | Breeding et al. | Oct 2000 | A |
6149154 | Grauzer et al. | Nov 2000 | A |
6154131 | Jones et al. | Nov 2000 | A |
6165069 | Sines et al. | Dec 2000 | A |
6165072 | Davis et al. | Dec 2000 | A |
6183362 | Boushy | Feb 2001 | B1 |
6186895 | Oliver | Feb 2001 | B1 |
6196416 | Seagle | Mar 2001 | B1 |
6200218 | Lindsay | Mar 2001 | B1 |
6210274 | Carlson | Apr 2001 | B1 |
6213310 | Wennersten et al. | Apr 2001 | B1 |
6217447 | Lofink et al. | Apr 2001 | B1 |
6234900 | Cumbers | May 2001 | B1 |
6236223 | Brady et al. | May 2001 | B1 |
6250632 | Albrecht | Jun 2001 | B1 |
6254002 | Litman | Jul 2001 | B1 |
6254096 | Grauzer et al. | Jul 2001 | B1 |
6254484 | McCrea, Jr. | Jul 2001 | B1 |
6257981 | Acres et al. | Jul 2001 | B1 |
6267248 | Johnson et al. | Jul 2001 | B1 |
6267648 | Katayama et al. | Jul 2001 | B1 |
6267671 | Hogan | Jul 2001 | B1 |
6270404 | Sines et al. | Aug 2001 | B2 |
6272223 | Carlson | Aug 2001 | B1 |
6293546 | Hessing et al. | Sep 2001 | B1 |
6293864 | Romero | Sep 2001 | B1 |
6299167 | Sines et al. | Oct 2001 | B1 |
6299534 | Breeding et al. | Oct 2001 | B1 |
6299536 | Hill | Oct 2001 | B1 |
6308886 | Benson et al. | Oct 2001 | B1 |
6313871 | Schubert | Nov 2001 | B1 |
6325373 | Breeding et al. | Dec 2001 | B1 |
6334614 | Breeding | Jan 2002 | B1 |
6341778 | Lee | Jan 2002 | B1 |
6342830 | Want et al. | Jan 2002 | B1 |
6346044 | McCrea, Jr. | Feb 2002 | B1 |
6361044 | Block et al. | Mar 2002 | B1 |
6386973 | Yoseloff | May 2002 | B1 |
6402142 | Warren et al. | Jun 2002 | B1 |
6403908 | Stardust et al. | Jun 2002 | B2 |
6443839 | Stockdale et al. | Sep 2002 | B2 |
6446864 | Kim et al. | Sep 2002 | B1 |
6454266 | Breeding et al. | Sep 2002 | B1 |
6460848 | Soltys et al. | Oct 2002 | B1 |
6464584 | Oliver | Oct 2002 | B2 |
6490277 | Tzotzkov | Dec 2002 | B1 |
6508709 | Karmarkar | Jan 2003 | B1 |
6514140 | Storch | Feb 2003 | B1 |
6517435 | Soltys et al. | Feb 2003 | B2 |
6517436 | Soltys et al. | Feb 2003 | B2 |
6520857 | Soltys et al. | Feb 2003 | B2 |
6527271 | Soltys et al. | Mar 2003 | B2 |
6530836 | Soltys et al. | Mar 2003 | B2 |
6530837 | Soltys et al. | Mar 2003 | B2 |
6532297 | Lindquist | Mar 2003 | B1 |
6533276 | Soltys et al. | Mar 2003 | B2 |
6533662 | Soltys et al. | Mar 2003 | B2 |
6561897 | Bourbour et al. | May 2003 | B1 |
6568678 | Breeding et al. | May 2003 | B2 |
6579180 | Soltys et al. | Jun 2003 | B2 |
6579181 | Soltys et al. | Jun 2003 | B2 |
6581747 | Charlier et al. | Jun 2003 | B1 |
6582301 | Hill | Jun 2003 | B2 |
6582302 | Romero | Jun 2003 | B2 |
6585586 | Romero | Jul 2003 | B1 |
6585588 | Hartl | Jul 2003 | B2 |
6585856 | Zwick et al. | Jul 2003 | B2 |
6588750 | Grauzer et al. | Jul 2003 | B1 |
6588751 | Grauzer et al. | Jul 2003 | B1 |
6595857 | Soltys et al. | Jul 2003 | B2 |
6609710 | Order | Aug 2003 | B1 |
6612928 | Bradford et al. | Sep 2003 | B1 |
6616535 | Nishizaki et al. | Sep 2003 | B1 |
6619662 | Miller | Sep 2003 | B2 |
6622185 | Johnson | Sep 2003 | B1 |
6626757 | Oliveras | Sep 2003 | B2 |
6629019 | Legge et al. | Sep 2003 | B2 |
6629591 | Griswold et al. | Oct 2003 | B1 |
6629889 | Mothwurf | Oct 2003 | B2 |
6629894 | Purton | Oct 2003 | B1 |
6637622 | Robinson | Oct 2003 | B1 |
6638161 | Soltys et al. | Oct 2003 | B2 |
6645068 | Kelly et al. | Nov 2003 | B1 |
6645077 | Rowe | Nov 2003 | B2 |
6651981 | Grauzer et al. | Nov 2003 | B2 |
6651982 | Grauzer et al. | Nov 2003 | B2 |
6651985 | Sines et al. | Nov 2003 | B2 |
6652379 | Soltys et al. | Nov 2003 | B2 |
6655684 | Grauzer et al. | Dec 2003 | B2 |
6655690 | Oskwarek | Dec 2003 | B1 |
6658135 | Morito et al. | Dec 2003 | B1 |
6659460 | Blaha et al. | Dec 2003 | B2 |
6659461 | Yoseloff et al. | Dec 2003 | B2 |
6659875 | Purton | Dec 2003 | B2 |
6663490 | Soltys et al. | Dec 2003 | B2 |
6666768 | Akers | Dec 2003 | B1 |
6671358 | Seidman et al. | Dec 2003 | B1 |
6676127 | Johnson et al. | Jan 2004 | B2 |
6676517 | Beavers | Jan 2004 | B2 |
6680843 | Farrow et al. | Jan 2004 | B2 |
6685564 | Oliver | Feb 2004 | B2 |
6685567 | Cockerille et al. | Feb 2004 | B2 |
6685568 | Soltys et al. | Feb 2004 | B2 |
6688597 | Jones | Feb 2004 | B2 |
6688979 | Soltys et al. | Feb 2004 | B2 |
6690673 | Jarvis | Feb 2004 | B1 |
6698756 | Baker et al. | Mar 2004 | B1 |
6698759 | Webb et al. | Mar 2004 | B2 |
6702289 | Feola | Mar 2004 | B1 |
6702290 | Buono-Correa et al. | Mar 2004 | B2 |
6709333 | Bradford et al. | Mar 2004 | B1 |
6712696 | Soltys et al. | Mar 2004 | B2 |
6719288 | Hessing et al. | Apr 2004 | B2 |
6719634 | Mishina et al. | Apr 2004 | B2 |
6722974 | Sines et al. | Apr 2004 | B2 |
6726205 | Purton | Apr 2004 | B1 |
6732067 | Powderly | May 2004 | B1 |
6733012 | Bui et al. | May 2004 | B2 |
6733388 | Mothwurf | May 2004 | B2 |
6746333 | Onda et al. | Jun 2004 | B1 |
6747560 | Stevens, III | Jun 2004 | B2 |
6749510 | Giobbi | Jun 2004 | B2 |
6758751 | Soltys et al. | Jul 2004 | B2 |
6758757 | Luciano, Jr. et al. | Jul 2004 | B2 |
6769693 | Huard et al. | Aug 2004 | B2 |
6774782 | Runyon et al. | Aug 2004 | B2 |
6789801 | Snow | Sep 2004 | B2 |
6802510 | Haber | Oct 2004 | B1 |
6804763 | Stockdale et al. | Oct 2004 | B1 |
6808173 | Snow | Oct 2004 | B2 |
6827282 | Silverbrook | Dec 2004 | B2 |
6834251 | Fletcher | Dec 2004 | B1 |
6840517 | Snow | Jan 2005 | B2 |
6842263 | Saeki | Jan 2005 | B1 |
6843725 | Nelson | Jan 2005 | B2 |
6848616 | Tsirline et al. | Feb 2005 | B2 |
6848844 | McCue, Jr. et al. | Feb 2005 | B2 |
6848994 | Knust et al. | Feb 2005 | B1 |
6857961 | Soltys et al. | Feb 2005 | B2 |
6874784 | Promutico | Apr 2005 | B1 |
6874786 | Bruno | Apr 2005 | B2 |
6877657 | Ranard et al. | Apr 2005 | B2 |
6877748 | Patroni | Apr 2005 | B1 |
6886829 | Hessing et al. | May 2005 | B2 |
6889979 | Blaha et al. | May 2005 | B2 |
6893347 | Zilliacus et al. | May 2005 | B1 |
6899628 | Leen et al. | May 2005 | B2 |
6902167 | Webb | Jun 2005 | B2 |
6905121 | Timpano | Jun 2005 | B1 |
6923446 | Snow | Aug 2005 | B2 |
6938900 | Snow | Sep 2005 | B2 |
6941180 | Fischer et al. | Sep 2005 | B1 |
6950948 | Neff | Sep 2005 | B2 |
6955599 | Bourbour et al. | Oct 2005 | B2 |
6957746 | Martin et al. | Oct 2005 | B2 |
6959925 | Baker et al. | Nov 2005 | B1 |
6959935 | Buhl et al. | Nov 2005 | B2 |
6960134 | Hartl et al. | Nov 2005 | B2 |
6964612 | Soltys et al. | Nov 2005 | B2 |
6986514 | Snow | Jan 2006 | B2 |
6988516 | Debaes et al. | Jan 2006 | B2 |
7011309 | Soltys et al. | Mar 2006 | B2 |
7020307 | Hinton et al. | Mar 2006 | B2 |
7028598 | Teshima | Apr 2006 | B2 |
7029009 | Grauzer et al. | Apr 2006 | B2 |
7036818 | Grauzer et al. | May 2006 | B2 |
7046458 | Nakayama | May 2006 | B2 |
7046764 | Kump | May 2006 | B1 |
7048629 | Sines et al. | May 2006 | B2 |
7059602 | Grauzer et al. | Jun 2006 | B2 |
7066464 | Blad et al. | Jun 2006 | B2 |
7068822 | Scott | Jun 2006 | B2 |
7073791 | Grauzer et al. | Jul 2006 | B2 |
D526121 | Nip | Aug 2006 | S |
7084769 | Bauer et al. | Aug 2006 | B2 |
7089420 | Durst et al. | Aug 2006 | B1 |
7106201 | Tuttle | Sep 2006 | B2 |
7113094 | Garber et al. | Sep 2006 | B2 |
7114718 | Grauzer et al. | Oct 2006 | B2 |
7124947 | Storch | Oct 2006 | B2 |
7128652 | Lavoie et al. | Oct 2006 | B1 |
7137627 | Grauzer et al. | Nov 2006 | B2 |
7139108 | Andersen et al. | Nov 2006 | B2 |
7140614 | Snow | Nov 2006 | B2 |
7162035 | Durst et al. | Jan 2007 | B1 |
7165769 | Crenshaw et al. | Jan 2007 | B2 |
7165770 | Snow | Jan 2007 | B2 |
7175522 | Hartl | Feb 2007 | B2 |
7186181 | Rowe | Mar 2007 | B2 |
7201656 | Darder | Apr 2007 | B2 |
7202888 | Tecu et al. | Apr 2007 | B2 |
7203841 | Jackson et al. | Apr 2007 | B2 |
7213812 | Schubert et al. | May 2007 | B2 |
7222852 | Soltys et al. | May 2007 | B2 |
7222855 | Sorge | May 2007 | B2 |
7231812 | Lagare | Jun 2007 | B1 |
7234698 | Grauzer et al. | Jun 2007 | B2 |
7237969 | Bartman | Jul 2007 | B2 |
7243148 | Keir et al. | Jul 2007 | B2 |
7243698 | Siegel | Jul 2007 | B2 |
7246799 | Snow | Jul 2007 | B2 |
7255344 | Grauzer et al. | Aug 2007 | B2 |
7255351 | Yoseloff et al. | Aug 2007 | B2 |
7255642 | Sines et al. | Aug 2007 | B2 |
7257630 | Cole et al. | Aug 2007 | B2 |
7261294 | Grauzer et al. | Aug 2007 | B2 |
7264241 | Schubert et al. | Sep 2007 | B2 |
7264243 | Yoseloff et al. | Sep 2007 | B2 |
7277570 | Armstrong | Oct 2007 | B2 |
7278923 | Grauzer et al. | Oct 2007 | B2 |
7294056 | Lowell et al. | Nov 2007 | B2 |
7297062 | Gatto et al. | Nov 2007 | B2 |
7300056 | Gioia et al. | Nov 2007 | B2 |
7303473 | Rowe | Dec 2007 | B2 |
7309065 | Yoseloff et al. | Dec 2007 | B2 |
7316609 | Dunn et al. | Jan 2008 | B2 |
7316615 | Soltys et al. | Jan 2008 | B2 |
7322576 | Grauzer et al. | Jan 2008 | B2 |
7331579 | Snow | Feb 2008 | B2 |
7334794 | Snow | Feb 2008 | B2 |
7338044 | Grauzer et al. | Mar 2008 | B2 |
7338362 | Gallagher | Mar 2008 | B1 |
7341510 | Bourbour et al. | Mar 2008 | B2 |
7357321 | Yoshida et al. | Apr 2008 | B2 |
7360094 | Neff | Apr 2008 | B2 |
7367561 | Blaha et al. | May 2008 | B2 |
7367563 | Yoseloff et al. | May 2008 | B2 |
7367565 | Chiu | May 2008 | B2 |
7367884 | Breeding et al. | May 2008 | B2 |
7374170 | Grauzer et al. | May 2008 | B2 |
7384044 | Grauzer et al. | Jun 2008 | B2 |
7387300 | Snow | Jun 2008 | B2 |
7389990 | Mourad | Jun 2008 | B2 |
7390256 | Soltys et al. | Jun 2008 | B2 |
7399226 | Mishra | Jul 2008 | B2 |
7407438 | Schubert et al. | Aug 2008 | B2 |
7413191 | Grauzer et al. | Aug 2008 | B2 |
7434805 | Grauzer et al. | Oct 2008 | B2 |
7436957 | Fischer et al. | Oct 2008 | B1 |
7448626 | Fleckenstein | Nov 2008 | B2 |
7458582 | Snow et al. | Dec 2008 | B2 |
7461843 | Baker et al. | Dec 2008 | B1 |
7464932 | Darling | Dec 2008 | B2 |
7464934 | Schwartz | Dec 2008 | B2 |
7472906 | Shai | Jan 2009 | B2 |
7478813 | Hofferber et al. | Jan 2009 | B1 |
7500672 | Ho | Mar 2009 | B2 |
7506874 | Hall | Mar 2009 | B2 |
7510186 | Fleckenstein | Mar 2009 | B2 |
7510190 | Snow et al. | Mar 2009 | B2 |
7510194 | Soltys et al. | Mar 2009 | B2 |
7510478 | Benbrahim et al. | Mar 2009 | B2 |
7513437 | Douglas | Apr 2009 | B2 |
7515718 | Nguyen et al. | Apr 2009 | B2 |
7523935 | Grauzer et al. | Apr 2009 | B2 |
7523936 | Grauzer et al. | Apr 2009 | B2 |
7523937 | Fleckenstein | Apr 2009 | B2 |
7525510 | Beland et al. | Apr 2009 | B2 |
7537216 | Soltys et al. | May 2009 | B2 |
7540497 | Tseng | Jun 2009 | B2 |
7540498 | Crenshaw et al. | Jun 2009 | B2 |
7549643 | Quach | Jun 2009 | B2 |
7554753 | Wakamiya | Jun 2009 | B2 |
7556197 | Yoshida et al. | Jul 2009 | B2 |
7556266 | Blaha et al. | Jul 2009 | B2 |
7575237 | Snow | Aug 2009 | B2 |
7578506 | Lambert | Aug 2009 | B2 |
7584962 | Breeding et al. | Sep 2009 | B2 |
7584963 | Krenn et al. | Sep 2009 | B2 |
7584966 | Snow | Sep 2009 | B2 |
7591728 | Gioia et al. | Sep 2009 | B2 |
7593544 | Downs, III et al. | Sep 2009 | B2 |
7594660 | Baker et al. | Sep 2009 | B2 |
7597623 | Grauzer et al. | Oct 2009 | B2 |
7644923 | Dickinson et al. | Jan 2010 | B1 |
7661676 | Smith et al. | Feb 2010 | B2 |
7666090 | Hettinger | Feb 2010 | B2 |
7669852 | Baker et al. | Mar 2010 | B2 |
7669853 | Jones | Mar 2010 | B2 |
7677565 | Grauzer et al. | Mar 2010 | B2 |
7677566 | Krenn et al. | Mar 2010 | B2 |
7686681 | Soltys et al. | Mar 2010 | B2 |
7699694 | Hill | Apr 2010 | B2 |
7735657 | Johnson | Jun 2010 | B2 |
7740244 | Ho | Jun 2010 | B2 |
7744452 | Cimring et al. | Jun 2010 | B2 |
7753373 | Grauzer et al. | Jul 2010 | B2 |
7753374 | Ho | Jul 2010 | B2 |
7753798 | Soltys et al. | Jul 2010 | B2 |
7758425 | Poh et al. | Jul 2010 | B2 |
7762554 | Ho | Jul 2010 | B2 |
7764836 | Downs, III et al. | Jul 2010 | B2 |
7766332 | Grauzer et al. | Aug 2010 | B2 |
7766333 | Stardust et al. | Aug 2010 | B1 |
7769232 | Downs, III | Aug 2010 | B2 |
7769853 | Nezamzadeh | Aug 2010 | B2 |
7773749 | Durst et al. | Aug 2010 | B1 |
7780529 | Rowe et al. | Aug 2010 | B2 |
7784790 | Grauzer et al. | Aug 2010 | B2 |
7804982 | Howard et al. | Sep 2010 | B2 |
7846020 | Walker et al. | Dec 2010 | B2 |
7867080 | Nicely et al. | Jan 2011 | B2 |
7890365 | Hettinger | Feb 2011 | B2 |
7900923 | Toyama et al. | Mar 2011 | B2 |
7901285 | Tran et al. | Mar 2011 | B2 |
7908169 | Hettinger | Mar 2011 | B2 |
7909689 | Lardie | Mar 2011 | B2 |
7931533 | LeMay et al. | Apr 2011 | B2 |
7933448 | Downs, III | Apr 2011 | B2 |
7946586 | Krenn et al. | May 2011 | B2 |
7967294 | Blaha et al. | Jun 2011 | B2 |
7976023 | Hessing et al. | Jul 2011 | B1 |
7988152 | Sines | Aug 2011 | B2 |
7988554 | LeMay et al. | Aug 2011 | B2 |
7995196 | Fraser | Aug 2011 | B1 |
8002638 | Grauzer et al. | Aug 2011 | B2 |
8011661 | Stasson | Sep 2011 | B2 |
8016663 | Soltys et al. | Sep 2011 | B2 |
8021231 | Walker et al. | Sep 2011 | B2 |
8025294 | Grauzer et al. | Sep 2011 | B2 |
8038521 | Grauzer et al. | Oct 2011 | B2 |
RE42944 | Blaha et al. | Nov 2011 | E |
8057302 | Wells et al. | Nov 2011 | B2 |
8062134 | Kelly et al. | Nov 2011 | B2 |
8070574 | Grauzer et al. | Dec 2011 | B2 |
8092307 | Kelly | Jan 2012 | B2 |
8092309 | Bickley | Jan 2012 | B2 |
8141875 | Grauzer et al. | Mar 2012 | B2 |
8150158 | Downs, III | Apr 2012 | B2 |
8171567 | Fraser et al. | May 2012 | B1 |
8210536 | Blaha et al. | Jul 2012 | B2 |
8221244 | French | Jul 2012 | B2 |
8251293 | Nagata et al. | Aug 2012 | B2 |
8267404 | Grauzer et al. | Sep 2012 | B2 |
8270603 | Durst et al. | Sep 2012 | B1 |
8287347 | Snow et al. | Oct 2012 | B2 |
8287386 | Miller et al. | Oct 2012 | B2 |
8319666 | Weinmann et al. | Nov 2012 | B2 |
8337296 | Grauzer et al. | Dec 2012 | B2 |
8342525 | Scheper et al. | Jan 2013 | B2 |
8342526 | Sampson et al. | Jan 2013 | B1 |
8342529 | Snow | Jan 2013 | B2 |
8353513 | Swanson | Jan 2013 | B2 |
8381918 | Johnson | Feb 2013 | B2 |
8419521 | Grauzer et al. | Apr 2013 | B2 |
8444147 | Grauzer et al. | May 2013 | B2 |
8469360 | Sines | Jun 2013 | B2 |
8480088 | Toyama et al. | Jul 2013 | B2 |
8485527 | Sampson et al. | Jul 2013 | B2 |
8490973 | Yoseloff et al. | Jul 2013 | B2 |
8498444 | Sharma | Jul 2013 | B2 |
8505916 | Grauzer et al. | Aug 2013 | B2 |
8511684 | Grauzer et al. | Aug 2013 | B2 |
8556263 | Grauzer et al. | Oct 2013 | B2 |
8579289 | Rynda et al. | Nov 2013 | B2 |
8616552 | Czyzewski et al. | Dec 2013 | B2 |
8628086 | Krenn et al. | Jan 2014 | B2 |
8651485 | Stasson | Feb 2014 | B2 |
8662500 | Swanson | Mar 2014 | B2 |
8695978 | Ho | Apr 2014 | B1 |
8702100 | Snow et al. | Apr 2014 | B2 |
8702101 | Scheper et al. | Apr 2014 | B2 |
8720891 | Hessing et al. | May 2014 | B2 |
8758111 | Lutnick | Jun 2014 | B2 |
8777710 | Grauzer et al. | Jul 2014 | B2 |
8820745 | Grauzer et al. | Sep 2014 | B2 |
8844930 | Sampson et al. | Sep 2014 | B2 |
8899587 | Grauzer et al. | Dec 2014 | B2 |
8919775 | Wadds et al. | Dec 2014 | B2 |
20010036231 | Easwar et al. | Nov 2001 | A1 |
20010036866 | Stockdale et al. | Nov 2001 | A1 |
20020017481 | Johnson et al. | Feb 2002 | A1 |
20020030425 | Tiramani et al. | Mar 2002 | A1 |
20020045478 | Soltys et al. | Apr 2002 | A1 |
20020045481 | Soltys et al. | Apr 2002 | A1 |
20020063389 | Breeding et al. | May 2002 | A1 |
20020068635 | Hill | Jun 2002 | A1 |
20020070499 | Breeding et al. | Jun 2002 | A1 |
20020094869 | Harkham | Jul 2002 | A1 |
20020107067 | McGlone et al. | Aug 2002 | A1 |
20020107072 | Giobbi | Aug 2002 | A1 |
20020113368 | Hessing et al. | Aug 2002 | A1 |
20020135692 | Fujinawa | Sep 2002 | A1 |
20020142820 | Bartlett | Oct 2002 | A1 |
20020155869 | Soltys et al. | Oct 2002 | A1 |
20020163125 | Grauzer et al. | Nov 2002 | A1 |
20020187821 | Soltys et al. | Dec 2002 | A1 |
20020187830 | Stockdale et al. | Dec 2002 | A1 |
20030003997 | Vuong et al. | Jan 2003 | A1 |
20030007143 | McArthur et al. | Jan 2003 | A1 |
20030042673 | Grauzer et al. | Mar 2003 | A1 |
20030047870 | Blaha et al. | Mar 2003 | A1 |
20030048476 | Yamakawa | Mar 2003 | A1 |
20030052449 | Grauzer et al. | Mar 2003 | A1 |
20030052450 | Grauzer et al. | Mar 2003 | A1 |
20030064798 | Grauzer et al. | Apr 2003 | A1 |
20030067112 | Grauzer et al. | Apr 2003 | A1 |
20030071413 | Blaha et al. | Apr 2003 | A1 |
20030073498 | Grauzer et al. | Apr 2003 | A1 |
20030075865 | Grauzer et al. | Apr 2003 | A1 |
20030075866 | Blaha et al. | Apr 2003 | A1 |
20030087694 | Storch | May 2003 | A1 |
20030090059 | Grauzer et al. | May 2003 | A1 |
20030094756 | Grauzer et al. | May 2003 | A1 |
20030151194 | Hessing et al. | Aug 2003 | A1 |
20030195025 | Hill | Oct 2003 | A1 |
20040015423 | Walker et al. | Jan 2004 | A1 |
20040036214 | Baker et al. | Feb 2004 | A1 |
20040067789 | Grauzer et al. | Apr 2004 | A1 |
20040100026 | Haggard | May 2004 | A1 |
20040108654 | Grauzer et al. | Jun 2004 | A1 |
20040116179 | Nicely et al. | Jun 2004 | A1 |
20040169332 | Grauzer et al. | Sep 2004 | A1 |
20040180722 | Giobbi | Sep 2004 | A1 |
20040224777 | Smith et al. | Nov 2004 | A1 |
20040245720 | Grauzer et al. | Dec 2004 | A1 |
20040259618 | Soltys et al. | Dec 2004 | A1 |
20050012671 | Bisig | Jan 2005 | A1 |
20050023752 | Grauzer et al. | Feb 2005 | A1 |
20050026680 | Gururajan | Feb 2005 | A1 |
20050035548 | Yoseloff et al. | Feb 2005 | A1 |
20050037843 | Wells et al. | Feb 2005 | A1 |
20050040594 | Krenn et al. | Feb 2005 | A1 |
20050051955 | Schubert et al. | Mar 2005 | A1 |
20050051956 | Grauzer et al. | Mar 2005 | A1 |
20050062227 | Grauzer et al. | Mar 2005 | A1 |
20050062228 | Grauzer et al. | Mar 2005 | A1 |
20050062229 | Grauzer et al. | Mar 2005 | A1 |
20050082750 | Grauzer et al. | Apr 2005 | A1 |
20050093231 | Grauzer et al. | May 2005 | A1 |
20050104289 | Grauzer et al. | May 2005 | A1 |
20050104290 | Grauzer et al. | May 2005 | A1 |
20050110210 | Soltys et al. | May 2005 | A1 |
20050113166 | Grauzer et al. | May 2005 | A1 |
20050113171 | Hodgson | May 2005 | A1 |
20050119048 | Soltys et al. | Jun 2005 | A1 |
20050121852 | Soltys et al. | Jun 2005 | A1 |
20050137005 | Soltys et al. | Jun 2005 | A1 |
20050140090 | Breeding et al. | Jun 2005 | A1 |
20050146093 | Grauzer et al. | Jul 2005 | A1 |
20050148391 | Tain | Jul 2005 | A1 |
20050192092 | Breckner et al. | Sep 2005 | A1 |
20050206077 | Grauzer et al. | Sep 2005 | A1 |
20050242500 | Downs | Nov 2005 | A1 |
20050272501 | Tran et al. | Dec 2005 | A1 |
20050288083 | Downs | Dec 2005 | A1 |
20050288086 | Schubert et al. | Dec 2005 | A1 |
20060027970 | Kyrychenko | Feb 2006 | A1 |
20060033269 | Grauzer et al. | Feb 2006 | A1 |
20060033270 | Grauzer et al. | Feb 2006 | A1 |
20060046853 | Black | Mar 2006 | A1 |
20060063577 | Downs et al. | Mar 2006 | A1 |
20060066048 | Krenn et al. | Mar 2006 | A1 |
20060181022 | Grauzer et al. | Aug 2006 | A1 |
20060183540 | Grauzer et al. | Aug 2006 | A1 |
20060189381 | Daniel et al. | Aug 2006 | A1 |
20060199649 | Soltys et al. | Sep 2006 | A1 |
20060205508 | Green | Sep 2006 | A1 |
20060220312 | Baker et al. | Oct 2006 | A1 |
20060220313 | Baker et al. | Oct 2006 | A1 |
20060252521 | Gururajan et al. | Nov 2006 | A1 |
20060252554 | Gururajan et al. | Nov 2006 | A1 |
20060279040 | Downs et al. | Dec 2006 | A1 |
20060281534 | Grauzer et al. | Dec 2006 | A1 |
20070001395 | Gioia et al. | Jan 2007 | A1 |
20070006708 | Laakso | Jan 2007 | A1 |
20070015583 | Tran | Jan 2007 | A1 |
20070018389 | Downs | Jan 2007 | A1 |
20070045959 | Soltys | Mar 2007 | A1 |
20070049368 | Kuhn et al. | Mar 2007 | A1 |
20070057469 | Grauzer et al. | Mar 2007 | A1 |
20070066387 | Matsuno et al. | Mar 2007 | A1 |
20070069462 | Downs et al. | Mar 2007 | A1 |
20070072677 | Lavoie et al. | Mar 2007 | A1 |
20070102879 | Stasson | May 2007 | A1 |
20070111773 | Gururajan et al. | May 2007 | A1 |
20070184905 | Gatto et al. | Aug 2007 | A1 |
20070197294 | Gong | Aug 2007 | A1 |
20070197298 | Rowe | Aug 2007 | A1 |
20070202941 | Miltenberger et al. | Aug 2007 | A1 |
20070222147 | Blaha et al. | Sep 2007 | A1 |
20070225055 | Weisman | Sep 2007 | A1 |
20070233567 | Daly | Oct 2007 | A1 |
20070238506 | Ruckle | Oct 2007 | A1 |
20070259709 | Kelly et al. | Nov 2007 | A1 |
20070267812 | Grauzer et al. | Nov 2007 | A1 |
20070272600 | Johnson | Nov 2007 | A1 |
20070278739 | Swanson | Dec 2007 | A1 |
20070290438 | Grauzer et al. | Dec 2007 | A1 |
20080006997 | Scheper et al. | Jan 2008 | A1 |
20080006998 | Grauzer et al. | Jan 2008 | A1 |
20080022415 | Kuo et al. | Jan 2008 | A1 |
20080032763 | Giobbi | Feb 2008 | A1 |
20080039192 | Laut | Feb 2008 | A1 |
20080039208 | Abrink et al. | Feb 2008 | A1 |
20080096656 | LeMay et al. | Apr 2008 | A1 |
20080111300 | Czyzewski et al. | May 2008 | A1 |
20080113700 | Czyzewski et al. | May 2008 | A1 |
20080113783 | Czyzewski et al. | May 2008 | A1 |
20080136108 | Polay | Jun 2008 | A1 |
20080143048 | Shigeta | Jun 2008 | A1 |
20080176627 | Lardie | Jul 2008 | A1 |
20080217218 | Johnson | Sep 2008 | A1 |
20080234046 | Kinsley | Sep 2008 | A1 |
20080234047 | Nguyen | Sep 2008 | A1 |
20080248875 | Beatty | Oct 2008 | A1 |
20080284096 | Toyama et al. | Nov 2008 | A1 |
20080303210 | Grauzer et al. | Dec 2008 | A1 |
20080315517 | Toyama | Dec 2008 | A1 |
20090026700 | Shigeta | Jan 2009 | A2 |
20090048026 | French | Feb 2009 | A1 |
20090054161 | Schubert et al. | Feb 2009 | A1 |
20090072477 | Tseng | Mar 2009 | A1 |
20090091078 | Grauzer et al. | Apr 2009 | A1 |
20090100409 | Toneguzzo | Apr 2009 | A1 |
20090104963 | Burman et al. | Apr 2009 | A1 |
20090121429 | Walsh | May 2009 | A1 |
20090140492 | Yoseloff et al. | Jun 2009 | A1 |
20090166970 | Rosh | Jul 2009 | A1 |
20090176547 | Katz | Jul 2009 | A1 |
20090179378 | Amaitis et al. | Jul 2009 | A1 |
20090186676 | Amaitis et al. | Jul 2009 | A1 |
20090189346 | Krenn et al. | Jul 2009 | A1 |
20090191933 | French | Jul 2009 | A1 |
20090194988 | Wright et al. | Aug 2009 | A1 |
20090197662 | Wright et al. | Aug 2009 | A1 |
20090224476 | Grauzer et al. | Sep 2009 | A1 |
20090227318 | Wright et al. | Sep 2009 | A1 |
20090227360 | Gioia et al. | Sep 2009 | A1 |
20090250873 | Jones | Oct 2009 | A1 |
20090253478 | Walker et al. | Oct 2009 | A1 |
20090253503 | Krise et al. | Oct 2009 | A1 |
20090267296 | Ho | Oct 2009 | A1 |
20090267297 | Blaha et al. | Oct 2009 | A1 |
20090283969 | Tseng | Nov 2009 | A1 |
20090298577 | Gagner et al. | Dec 2009 | A1 |
20090302535 | Ho | Dec 2009 | A1 |
20090302537 | Ho | Dec 2009 | A1 |
20090312093 | Walker et al. | Dec 2009 | A1 |
20090314188 | Toyama et al. | Dec 2009 | A1 |
20100013152 | Grauzer et al. | Jan 2010 | A1 |
20100038849 | Scheper et al. | Feb 2010 | A1 |
20100048304 | Boesen | Feb 2010 | A1 |
20100069155 | Schwartz et al. | Mar 2010 | A1 |
20100178987 | Pacey | Jul 2010 | A1 |
20100197410 | Leen et al. | Aug 2010 | A1 |
20100234110 | Clarkson | Sep 2010 | A1 |
20100240440 | Szrek et al. | Sep 2010 | A1 |
20100244376 | Johnson | Sep 2010 | A1 |
20100244382 | Snow | Sep 2010 | A1 |
20100252992 | Sines | Oct 2010 | A1 |
20100255899 | Paulsen | Oct 2010 | A1 |
20100276880 | Grauzer et al. | Nov 2010 | A1 |
20100311493 | Miller et al. | Dec 2010 | A1 |
20100311494 | Miller et al. | Dec 2010 | A1 |
20100314830 | Grauzer et al. | Dec 2010 | A1 |
20100320685 | Grauzer et al. | Dec 2010 | A1 |
20110006480 | Grauzer et al. | Jan 2011 | A1 |
20110012303 | Kourgiantakis et al. | Jan 2011 | A1 |
20110024981 | Tseng | Feb 2011 | A1 |
20110052049 | Rajaraman et al. | Mar 2011 | A1 |
20110062662 | Ohta et al. | Mar 2011 | A1 |
20110078096 | Bounds | Mar 2011 | A1 |
20110105208 | Bickley | May 2011 | A1 |
20110109042 | Rynda et al. | May 2011 | A1 |
20110130185 | Walker | Jun 2011 | A1 |
20110130190 | Hamman et al. | Jun 2011 | A1 |
20110159952 | Kerr | Jun 2011 | A1 |
20110159953 | Kerr | Jun 2011 | A1 |
20110165936 | Kerr | Jul 2011 | A1 |
20110172008 | Alderucci | Jul 2011 | A1 |
20110183748 | Wilson et al. | Jul 2011 | A1 |
20110230268 | Williams | Sep 2011 | A1 |
20110269529 | Baerlocher | Nov 2011 | A1 |
20110272881 | Sines | Nov 2011 | A1 |
20110285081 | Stasson | Nov 2011 | A1 |
20110287829 | Clarkson et al. | Nov 2011 | A1 |
20120015724 | Ocko et al. | Jan 2012 | A1 |
20120015725 | Ocko et al. | Jan 2012 | A1 |
20120015743 | Lam et al. | Jan 2012 | A1 |
20120015747 | Ocko et al. | Jan 2012 | A1 |
20120021835 | Keller et al. | Jan 2012 | A1 |
20120034977 | Kammler | Feb 2012 | A1 |
20120062745 | Han et al. | Mar 2012 | A1 |
20120074646 | Grauzer et al. | Mar 2012 | A1 |
20120091656 | Blaha et al. | Apr 2012 | A1 |
20120095982 | Lennington et al. | Apr 2012 | A1 |
20120161393 | Krenn et al. | Jun 2012 | A1 |
20120175841 | Grauzer et al. | Jul 2012 | A1 |
20120181747 | Grauzer et al. | Jul 2012 | A1 |
20120187625 | Downs, III et al. | Jul 2012 | A1 |
20120242782 | Huang | Sep 2012 | A1 |
20120286471 | Grauzer et al. | Nov 2012 | A1 |
20120306152 | Krishnamurty et al. | Dec 2012 | A1 |
20130020761 | Sines et al. | Jan 2013 | A1 |
20130085638 | Weinmann et al. | Apr 2013 | A1 |
20130099448 | Scheper et al. | Apr 2013 | A1 |
20130109455 | Grauzer et al. | May 2013 | A1 |
20130132306 | Kami et al. | May 2013 | A1 |
20130147116 | Stasson | Jun 2013 | A1 |
20130161905 | Grauzer et al. | Jun 2013 | A1 |
20130228972 | Grauzer et al. | Sep 2013 | A1 |
20130300059 | Sampson et al. | Nov 2013 | A1 |
20130337922 | Kuhn et al. | Dec 2013 | A1 |
20140027979 | Stasson et al. | Jan 2014 | A1 |
20140094239 | Grauzer et al. | Apr 2014 | A1 |
20140103606 | Grauzer et al. | Apr 2014 | A1 |
20140138907 | Rynda et al. | May 2014 | A1 |
20140145399 | Krenn et al. | May 2014 | A1 |
20140171170 | Krishnamurty et al. | Jun 2014 | A1 |
20140175724 | Huhtala et al. | Jun 2014 | A1 |
20140183818 | Czyzewski et al. | Jul 2014 | A1 |
20150021242 | Johnson | Jan 2015 | A1 |
20150069699 | Blazevic | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2383667 | Jan 1969 | AU |
5025479 | Mar 1980 | AU |
697805 | Oct 1998 | AU |
757636 | Feb 2003 | AU |
2266555 | Apr 1998 | CA |
2284017 | Sep 1998 | CA |
2612138 | Dec 2006 | CA |
2051521 | Jan 1990 | CN |
2848303 | Dec 2006 | CN |
2855481 | Jan 2007 | CN |
200954370 | Oct 2007 | CN |
00987893 | Dec 2007 | CN |
101099896 | Jan 2008 | CN |
101127131 | Feb 2008 | CN |
201085907 | Jul 2008 | CN |
201139926 | Oct 2008 | CN |
202983149 | Jun 2013 | CN |
24952 | Feb 2013 | CZ |
2757341 | Jun 1978 | DE |
3807127 | Sep 1989 | DE |
777514 | Feb 2000 | EP |
1194888 | Apr 2002 | EP |
1502631 | Feb 2005 | EP |
1713026 | Oct 2006 | EP |
2228106 | Sep 2010 | EP |
1575261 | Aug 2012 | EP |
2375918 | Jul 1978 | FR |
337147 | Oct 1930 | GB |
414014 | Jul 1934 | GB |
672616 | May 1952 | GB |
10063933 | Mar 1998 | JP |
11045321 | Feb 1999 | JP |
2000251031 | Sep 2000 | JP |
2001327647 | Nov 2001 | JP |
2002165916 | Jun 2002 | JP |
2003250950 | Sep 2003 | JP |
2005198668 | Jul 2005 | JP |
2008246061 | Oct 2008 | JP |
M359356 | Jun 2009 | TW |
8700764 | Feb 1987 | WO |
9221413 | Dec 1992 | WO |
9528210 | Oct 1995 | WO |
9607153 | Mar 1996 | WO |
9710577 | Mar 1997 | WO |
9814249 | Apr 1998 | WO |
9840136 | Sep 1998 | WO |
9943404 | Sep 1999 | WO |
9952610 | Oct 1999 | WO |
9952611 | Oct 1999 | WO |
0051076 | Aug 2000 | WO |
0156670 | Aug 2001 | WO |
0205914 | Jan 2002 | WO |
2004067889 | Aug 2004 | WO |
2004112923 | Dec 2004 | WO |
2006031472 | Mar 2006 | WO |
2006039308 | Apr 2006 | WO |
2008005286 | Jan 2008 | WO |
2008006023 | Jan 2008 | WO |
2008091809 | Jul 2008 | WO |
2009137541 | Nov 2009 | WO |
2010001032 | Jan 2010 | WO |
2010052573 | May 2010 | WO |
2010055328 | May 2010 | WO |
2010117446 | Oct 2010 | WO |
2013019677 | Feb 2013 | WO |
Entry |
---|
“ACE, Single Deck Shuffler,” Shuffle Master, Inc., (2005), 2 pages. |
“Automatic casino card shuffle,” Alibaba.com, (last visited Jul. 22, 2014), 2 pages. |
“Error Back propagation,” http://willamette.edu˜gorr/classes/cs449/backprop.html (4 pages), Nov. 13, 2008. |
“I-Deal,” Bally Technologies, Inc., (2014), 2 pages. |
“Shufflers—SHFL entertainment,” Gaming Concepts Group, (2012), 6 pages. |
“TAG Archives: Shuffle Machine,” Gee Wiz Online, (Mar. 25, 2013), 4 pages. |
⅓″ B/W CCD Camera Module EB100 by EverFocus Electronics Corp., Jul. 31, 2001, 3 pgs. |
Australian Examination Report for Australian Application No. 2008202752, dated Sep. 25, 2009, 2 pages. |
Australian Examination Report for Australian Application No. 2010202856, dated Aug. 11, 2011, 2 pages. |
Australian Provisional Patent Application for Australian Patent Application No. PM7441, filed Aug. 15, 1994, Applicants: Rodney G. Johnson et al., Title: Card Handling Apparatus, 13 pages. |
Canadian Office Action for Canadian Application No. 2,461,726, dated Jul. 19, 2010, 3 pages. |
Canadian Office Action for CA 2,580,309 dated Mar. 20, 2012 (6 pages). |
Canadian Office Action for Canadian Application No. 2,461,726, dated Dec. 11, 2013, 3 pages. |
Christos Stergiou and Dimitrios Siganos, “Neural Networks,” http://www.doc.ic.ac.uk/˜nd/surprise—96/journal/vol4/cs11/report.html (13 pages), Dec. 15, 2011. |
Complaint filed in the matter of SHFL entertainment, In. v. DigiDeal Corporation, U.S. District Court, District of Nevada, Civil Action No. CV 2:12-cv-01782-GMC-VCF, Oct. 10, 2012, 62 pages. |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 18 of 23 (color copies from Binder 1). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 19 of 23 (color copies from Binder 3). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 20 of 23 (color copies from Binder 4). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 21 of 23 (color copies from Binder 6). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 22 of 23 (color copies from Binder 8, part 1 of 2). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 23 of 23 (color copies from Binder 8, part 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 1 of 23 (Master Index and Binder 1, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 2 of 23 (Master Index and Binder 1, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 3 of 23 (Binder 2, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 4 of 23 (Binder 2, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 5 of 23 (Binder 3, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 6 of 23 (Binder 6, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 7 of 23 (Binder 4, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 8 of 23 (Binder 4, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 10 of 23 (Binder 6, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 9 of 23 (Binder 5 having no contents; Binder 6, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 11 of 23 (Binder 7, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 12 of 23 (Binder 7, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 13 of 23 (Binder 8, 1 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 14 of 23 (Binder 8, 2 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 15 of 23 (Binder 8, 3 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 16 of 23 (Binder 8, 4 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 17 of 23 (Binder 8, 5 of 5). |
European Examination Report for European Application No. 02 780 410, dated Jan. 25, 2010, 5 pages. |
European Examination Report for European Application No. 02 780 410, dated Aug. 9, 2011, 4 pages. |
European Patent Application Search Report—European Patent Application No. 06772987.1, Dec. 10, 2009, 5 pages. |
European Search Report for European Application No. 12 152 303, dated Apr. 16, 2012, 3 pages. |
Genevieve Orr, CS-449: Neural Networks Willamette University, http://www.willamette.edu/˜gorr/classes/cs449/intro.html (4 pages), Fall 1999. |
https://web.archive.org/web/19991004000323/http://travelwizardtravel.com/majon.htm, Oct. 4, 1999, 2 pages. |
http://www.google.com/search?tbm=pts&q=Card+handling+devicve+with+input+and+outpu . . . Jun. 8, 2012. |
http://www.google.com/search?tbm=pts&q=shuffling+zone+onOopposite+site+of+input+ . . . Jul. 18, 2012. |
http://www.ildado.com/casino—glossary.html, Feb. 1, 2001, p. 1-8. |
Litwiller, Dave, CCD vs. CMOS: Facts and Fiction reprinted from Jan. 2001 Issue of Photonics Spectra, Laurin Publishing Co. Inc. (4 pages). |
Malaysian Patent Application Substantive Examination Adverse Report—Malaysian Patent Application Serial No. PI 20062710, May 9, 2009, 4 pages. |
PCT International Preliminary Examination Report for International Patent Application No. PCT/US02/31105 dated Jul. 28, 2004, 9 pages. |
PCT International Search Report and Written Opinion for International Patent Application No. PCT/US2006/22911, mailed Jun. 1, 2007, 6 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2007/023168, dated Sep. 12, 2008, 8 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2007/022858, dated Mar. 7, 2008, 7 pages. |
PCT International Search Report and Written Opinion for PCT/US07/15036, dated Sep. 23, 2008, 6 pages. |
PCT International Search Report and Written Opinion for PCT/US07/15035, dated Sep. 29, 2008, 6 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/GB2011/051978, dated Jan. 17, 2012, 11 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/IB2013/001756, dated Jan. 10, 2014, 7 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US11/59797, datedMar. 27, 2012, 14 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US13/59665, dated Apr. 25, 2014, 21 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2008/007069, dated Sep. 8, 2008, 10 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2010/001032, dated Jun. 16, 2010, 11 pages. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2013/062391, Dec. 17, 2013, 13 pages. |
PCT International Search Report and Written Opinion, PCT/US12/48706, Oct. 16, 2012, 12 pages. |
PCT International Search Report for International Application No. PCT/US2003/015393, mailed Oct. 6, 2003, 2 pages. |
PCT International Search Report for PCT/US2005/034737 dated Apr. 7, 2006, 1 page. (WO06/039308). |
PCT International Search Report for PCT/US2007/022894, dated Jun. 11, 2008, 3 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US05/31400, dated Sep. 25, 2007, 12 pages. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/022158, Jun. 17, 2015, 13 pages. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/040196, Jan. 15, 2016, 20 pages. |
Philippines Patent Application Formality Examination Report—Philippines Patent Application No. 1-2006-000302, Jun. 13, 2006. |
Press Release for Alliance Gaming Corp., Jul. 26, 2004—Alliance Gaming Announces Control with Galaxy Macau for New MindPlay Baccarat Table Technology, 2 pages, http://biz.yahoo.com/prnews. |
Scarne's Encyclopedia of Games by John Scame, 1973, “Super Contract Bridge”, p. 153. |
Service Manual/User Manual for Single Deck Shufflers: BG1, BG2 and BG3 by Shuffle Master © 1997, 151 page. |
SHFL Entertainment, Inc. Docket No. 60, Opening Claim Construction Brief, filed in Nevada District Court Case No. 2:12-cv-01782 with exhibits, Aug. 8, 2013, p. 1-125. |
Shuffle Master Gaming, Service Manual, ACETM Single Deck Card Shuffler, (1998), 63 pages. |
Shuffle Master Gaming, Service Manual, Let It Ride Bonus® With Universal Keypad, 112 pages, © 2000 Shuffle Master, Inc. |
Shuffle Master's Reply Memorandum in Support of Shuffle Master's Motion for Preliminary Injunction for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Nov. 29, 2004. |
Singapore Patent Application Examination Report—Singapore Patent Application No. SE 2008 01914 A, Jun. 18, 2008, 9 pages. |
Statement of Relevance of Cited References, Submitted as Part of a Third-Party Submission Under 37 CFR 1.290 on Dec. 7, 2012 (12 pages). |
Tbm=pts&hl=en Google Search for card handling device with storage area, card removing system pivoting arm and processor . . . ; http://www.google.com/?tbm=pts&hl=en; Jul. 28, 2012, 2 pages. |
Tracking the Tables, by Jack Bularsky, Casino Journal, May 2004, vol. 17, No. 5, pp. 44-47. |
United States Court of Appeals for the Federal Circuit Decision Decided Dec. 27, 2005 for Preliminary Injuction for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL. |
VendingData Corporation's Answer and Counterclaim Jury Trial Demanded for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Oct. 25, 2004. |
VendingData Corporation's Opposition to Shuffle Master Inc.'s Motion for Preliminary Injection for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Nov. 12, 2004. |
VendingData Corporation's Responses to Shuffle Master, Inc.'s First set of interrogatories for Shuffler Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Mar. 14, 2005. |
Number | Date | Country | |
---|---|---|---|
20160184695 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14330964 | Jul 2014 | US |
Child | 15043241 | US | |
Parent | 13311166 | Dec 2011 | US |
Child | 14330964 | US | |
Parent | 11810864 | Jun 2007 | US |
Child | 13311166 | US |