The present disclosure relates to controlling flow communication with a subterranean formation using a flow control member.
Because wellbore operations, such as opening and closing of downhole valve, are conducted downhole, it is difficult to determine, with certainty, whether the wellbore operation has been successfully completed. As well, ingress of solid debris can interfere with the manipulation of such downhole valves.
In one aspect, there is provided a flow control apparatus comprising a confirmation profile that is establishable, in response to completion of a wellbore operation that has changed a condition of the flow control apparatus, for releasably retaining an indicator tool that is being displaced within the wellbore via a workstring.
In another aspect, there is provided a system comprising an indicator tool that is deployable into a wellbore via a workstring and a flow control apparatus including a confirmation profile that is establishable, in response to completion of a wellbore operation that has changed a condition of the flow control apparatus, for releasably retaining the indicator tool that is being displaced relative to the wellbore via the workstring.
In another aspect, there is provided a downhole process comprising: within a wellbore, performing a downhole wellbore operation with effect that a confirmation profile is established upon completion of the downhole wellbore operation, and confirming the completion of the downhole wellbore operation by locating an indicator tool within the confirmation profile and detecting the locating.
In another aspect, there is provided a flow control apparatus, comprising: a housing including one or more ports and a stop; a housing passage extending through the housing; a flow control member, displaceable relative to the one or more ports, for controlling flow communication between the housing passage and the one or more ports; and including an engager for engaging the stop; and a housing space; wherein: the stop is disposed within the housing space; the one or more ports, the stop, and the engager are co-operatively configured such that, while the engager is engaged to the stop, closing of the one or more ports is being effected by the flow control member; and the housing and the flow control member are co-operatively configured such that ingress of material, from the housing passage and into the housing space, is prevented or substantially prevented.
In another aspect, there is provided a flow control apparatus, comprising: a housing including one or more ports and a stop; a housing passage extending through the housing; a flow control member, displaceable relative to the one or more ports, for controlling flow communication between the housing passage and the one or more ports; and including an engager for engaging the stop; and a housing space extending between a first sealing member and a second sealing member; wherein: the stop is disposed within the housing space; and the one or more ports, the stop, and the engager are co-operatively configured such that, while the engager is engaged to the stop, closing of the one or more ports is effected by the flow control member.
In another aspect, there is provided a flow control apparatus, comprising; a housing including one or more ports and a stop; a housing passage extending through the housing; a flow control member, displaceable relative to the one or more ports, for controlling flow communication between the housing passage and the one or more ports; and including an engager for engaging the stop; and a housing space; wherein: the stop is disposed within the housing space; the one or more ports, the stop, and the engager are co-operatively configured such that, while the engager is engaged to the stop, closing of the one or more ports is being effected by the flow control member; the housing and the flow control member are co-operatively configured such that ingress of material, from the housing passage and into the housing space, is prevented or substantially prevented; the housing space includes a first subspace and a second subspace; a housing space passage is defined between the stop and the flow control member for effecting flow communication between the first and second subspaces; and the total volume of the first subspace is at least five (5)% of the total volume of the housing space.
In yet a further aspect, there is provided a flow control apparatus, comprising: a housing including one or more ports and a stop; a housing passage extending through the housing; a flow control member, displaceable relative to the one or more ports, for controlling flow communication between the housing passage and the one or more ports; and including an engager for engaging the stop; and a housing space extending between a first sealing member and a second sealing member; wherein: the stop is disposed within the housing space; the one or more ports, the stop, and the engager are co-operatively configured such that, while the engager is engaged to the stop, closing of the one or more ports is being effected by the flow control member; the housing space includes a first subspace and a second subspace; a housing space passage is defined between the stop and the flow control member for effecting flow communication between the first and second subspaces; and the total volume of the first subspace is at least five (5)% of the total volume of the housing space.
The preferred embodiments will now be described with the following accompanying drawings, in which:
Referring to
In some embodiments, for example, the conducting (such as, for example, by flowing) material to a subterranean formation 100 via a wellbore 102 is for effecting selective stimulation of a hydrocarbon material-containing reservoir. The stimulation is effected by supplying treatment material to the hydrocarbon material-containing reservoir. In some embodiments, for example, the treatment material is a liquid including water. In some embodiments, for example, the liquid includes water and chemical additives. In other embodiments, for example, the treatment material is a slurry including water, proppant, and chemical additives. Exemplary chemical additives include acids, sodium chloride, polyacrylamide, ethylene glycol, borate salts, sodium and potassium carbonates, glutaraldehyde, guar gum and other water soluble gels, citric acid, and isopropanol. In some embodiments, for example, the treatment material is supplied to effect hydraulic fracturing of the reservoir. In some embodiments, for example, the treatment material includes water, and is supplied to effect waterflooding of the reservoir.
In some embodiments, for example, the conducting (such as, for example, by flowing) material from a subterranean formation 100 via a wellbore 102 is for effecting production of hydrocarbon material from the hydrocarbon material-containing reservoir. In some of these embodiments, for example, the hydrocarbon material-containing reservoir, whose hydrocarbon material is being produced by the conducting via the wellbore 102, has been, prior to the producing, stimulated by the supplying of treatment material to the hydrocarbon material-containing reservoir.
In some embodiments, for example, the conducting to the subterranean formation 100 from the wellbore 102, or from the subterranean formation 100 to the wellbore 102, is effected via one or more flow communication stations that are disposed at the interface between the subterranean formation 100 and the wellbore 102. In some embodiments, for example, the flow communication stations are integrated within a wellbore string 116 that is deployed within the wellbore 102. Integration may be effected, for example, by way of threading or welding.
The wellbore string 116 includes one or more of pipe, casing, and liner, and may also include various forms of tubular segments, such as the flow communication stations 115 described herein. The wellbore string 116 defines a wellbore string passage 119. In some embodiments, for example, the flow communication stations 115 are integratable within the wellbore string 116 by a threaded connection.
Successive flow communication stations 115 may be spaced from each other along the wellbore string 116 such that each one of the flow communication stations 115, independently, is positioned adjacent a zone or interval of the subterranean formation 100 for effecting flow communication between the wellbore 102 and the zone (or interval).
For effecting the flow communication, the flow communication station 115 includes a flow control apparatus 115A. Referring to
The flow control apparatus 115A includes a flow control member 114 for controlling the conducting of material by the flow control apparatus 115A via the one or more ports 118. The flow control member 114 is displaceable, relative to the one or more ports 118, for effecting opening of the one or more ports 118. In some embodiments, for example, the flow control member 114 is also displaceable, relative to the one or more ports 118, for effecting closing of the one or more ports 118. In this respect, the flow control member 114 is displaceable such that the flow control member 114 is positionable between open and closed positions. The open position of the flow control member 114 corresponds to an open condition of the one or more ports 118. The closed position of the flow control member 114 corresponds to a closed condition of the one or more ports 118.
In some embodiments, for example, the flow control member 114 is displaceble mechanically, such as, for example, with a shifting tool 204. Suitable shifting tools 202 include those described in U.S. Patent Publication No. 2016/0251929A1. In some embodiments, for example, the flow control member 114 is displaceable hydraulically, such as, for example, by communicating pressurized fluid via the wellbore to urge the displacement of the flow control member 14. In some embodiments, for example, the flow control member 114 is integrated within a flow control apparatus which includes a trigger for effecting displacement of the flow control member 114 hydraulically in response to receiving of a signal transmitted from the surface 10.
In some embodiments, for example, in the closed position, the one or more ports 118 are covered by the flow control member 114, and the displacement of the flow control member 114 to the open position effects at least a partial uncovering of the one or more ports 118 such that the 118 becomes disposed in the open condition. In some embodiments, for example, in the closed position, the flow control member 114 is disposed, relative to the one or more ports 118, such that first and second sealed interfaces 131, 132 are disposed between the wellbore string 116 and the subterranean formation 100, and the disposition of the sealed interfaces 131, 132 is such that the conduction of material between the wellbore string 116 and the subterranean formation 100, via the flow communication station 115 is prevented, or substantially prevented, and displacement of the flow control member 114 to the open position effects flow communication, via the one or more ports 118, between the wellbore string 116 and the subterranean formation 100, such that the conducting of material between the wellbore string 116 and the subterranean formation 100, via the flow communication station, is enabled. In some embodiments, for example, the sealed interfaces 131, 132 are established by sealing engagement between the flow control member 114 and the wellbore string 116. In some embodiments, for example, the flow control member 114 includes a sleeve. The sleeve is slideably disposed within the wellbore string passage 119.
In some embodiments, for example, the flow control apparatus 115A includes a housing 120. In some embodiments, for example, the housing 120 includes an upper sub 120A and a lower sub 120B. The housing 120 includes one or more sealing surfaces 122A, 122B configured for sealing engagement with a flow control member 114. In some embodiments, for example, the sealing engagement defines the sealed interfaces 131, 132 described above. In this respect, sealing surfaces 122A, 122B are defined on an internal surface of the housing 120 for sealing engagement with the flow control member 114. In some embodiments, for example, each one of the sealing surfaces 122A, 122B is defined by a respective sealing member. In some embodiments, for example, each one of the sealing members, independently, includes an o-ring. In some embodiments, for example, the o-ring is housed within a recess formed within the upper sub 120A. In some embodiments, for example, the sealing member includes a molded sealing member (i.e. a sealing member that is fitted within, and/or bonded to, a groove formed within the sub that receives the sealing member). In some embodiments, for example, the port 118 extends through the housing 120, and is disposed between the sealing surfaces 122A, 122B.
The flow control member 114 co-operates with the sealing members 122A, 122B to effect opening and closing of the port 118. When the port 118 is disposed in the closed condition, the flow control member 114 is sealingly engaged to both of the sealing members 122A, 122B, thereby preventing, or substantially preventing, treatment material, being supplied through the wellbore string passage 119 from being injected into the subterranean formation 100 via the port 118. While the port 118 is disposed in the open condition, the flow control member 114 is spaced apart or retracted from at least one of the sealing members thereby providing a passage for treatment material, being supplied through the wellbore string passage 119, to be injected into the subterranean formation 100 via the port 118.
A resilient retainer member 126 extends from the housing 120 (and, in the illustrated embodiments, specifically, the lower sub 120B), and is configured to releasably retain the flow control member 114 and thereby resist a displacement of the flow control member 114. In some embodiments, for example, the resisting is a resisting of displacement of the flow control member 114 from the closed position to the open position. In some embodiments, for example, the resisting is a resisting of displacement of the flow control member 114 from the open position to the closed position. In some embodiments, for example, the resisting is a resisting of displacement of the flow control member 114 between the closed position and the open position.
In the illustrated embodiment, the resisting includes a resisting of displacement of the flow control member 114 between the closed position and the open position. In this respect, in some of these embodiments, for example, the resilient retainer member 126 includes at least one finger 128, and each one of the at least one finger includes a pairs of tabs 128A, 128B. The tab 128A is configured to releasably retain the flow control member 114 in the closed position. The tab 128B is configured to releasably retain the flow control member 114 in the open position. The flow control member 114 includes a recess configured to receive each one of the tabs 128A, 128B, independently, for effecting the releasable retention.
In some embodiments, for example, the resilient retainer member 126 is in the form of a collet.
The flow control member 114 and the resilient retainer member 126 are co-operatively configured such that releasable retention of the flow control member 114 by the resilient retainer member 126 is effected while the flow control member 114 is disposed in the open position and also while the flow control member 114 is disposed in the closed position. In this respect, while the flow control member 114 is disposed in the closed position, the resilient retainer member 126 is releasably retaining the flow control member 114 such that resistance is being effected to displacement of the flow control member 114 from the closed position to the open position. Also in this respect, while the flow control member 114 is disposed in the open position, the resilient retainer member 126 is releasably retaining the flow control member 114 such that resistance is being effected to displacement of the flow control member 114 from the open position to the closed position.
In some embodiments, for example, the releasable retention of the flow control member 114 by the resilient retainer member 126 is such that the resilient retainer member 126 is displaceable relative to the flow control member 114, in response to application of the opening force to the flow control member 114, such that the flow control member 114 becomes released from the releasable retention by the resilient retainer member 126 and becomes displaceable relative to the port 118. In some embodiments, for example, such displacement includes deflection of the resilient retainer member 126. In some embodiments, for example, when the flow control member 114 is disposed in the closed position, the deflection includes a deflection of the finger tab 128A from the recess of the flow control member 114, and when the flow control member 114 is disposed in the open position, the deflection includes a deflection of the finger tab 128B from the recess of the flow control member 114.
In some embodiments, for example in order to effect the displacement of the flow control member 114 from the closed position to the open position, the opening force is sufficient to effect displacement of the tab 128A from (or out of) the recess of the flow control member 114. In this respect, the tab 128A is sufficiently resilient such that application of the opening force effects the displacement of the tab 128A from the recess, such as by the deflection of the tab 128A. Once the finger tab 128A has become displaced out of the recess, continued application of force to the flow control member 114 (such as, in the illustrated embodiment, in a downhole direction) effects displacement of the flow control member 114 from the closed position to the open position. In order to effect the displacement of the flow control member 114 from the open position to the closed position, the closing force is sufficient to effect displacement of the tab 128B from (or out of) the recess of the flow control member 114, such as by deflection of the tab 128B. In this respect, the tab 128B is sufficiently resilient such that application of the closing force effects the displacement of the tab 128B from the recess. Once the tab 128B has become displaced out of the recess, continued application of force to the flow control member 114 (such as, in the illustrated embodiment, in an uphole direction) effects displacement of the flow control member 114 from the open position to the closed position.
Each one of the opening force and the closing force may be, independently, applied to the flow control member 114 mechanically, hydraulically, or a combination thereof. In some embodiments, for example, the applied force is a mechanical force, and such force is applied by a shifting tool 204 of a workstring. In some embodiments, for example, the applied force is hydraulic, and is applied by a pressurized fluid.
In some embodiments, for example, while the flow control apparatus 115A is being deployed downhole with the wellbore string 116, the flow control member 114 is retained in the closed position, and is restricted from displacement relative to the port 118 such that opening of the port 118 is effected, by one or more frangible members 148 (such as, for example, shear pins). The one or more frangible members 148 are provided to retain the flow control member 114 relative to the wellbore string 116 (including while the wellbore string is being installed downhole) so that the passage 119 is maintained fluidically isolated from the formation 100 until it is desired to treat the formation 100 with treatment material. To effect the initial displacement of the flow control member 114 from the closed position to the open position, sufficient force must first be applied to the one or more shear pins such that the one or more frangible members 148 become sheared, resulting in the flow control member 114 becoming moveable relative to the port 118. In some operational implementations, the force that effects the shearing is applied by a workstring.
Internal stop shoulders 136, 137 are defined within the housing 112 to limit the displaceability of the flow control member 114. The stop shoulder 136 limits uphole displacement of the flow control member 114, and the stop shoulder 137 limits downhole displacement of the flow control member 114. In some embodiments, for example, both of the stop shoulders 136, 138 are disposed either: (i) downhole of the one or more ports 118 (as illustrated), or (ii) uphole of the one or more ports 118, for reducing space requirements. The flow control member 114 includes an engagement shoulder 114A for engaging the stop shoulder 136 to thereby limit uphole displacement of the flow control member 114. The engagement of the engagement shoulder 114A to the stop shoulder 136 establishes the closed position of the flow control member 114. In this respect, the stop shoulder 136, the flow control member 114, and the one or more ports 118 are co-operatively configured such that while the flow control member 114 is engaged to the stop shoulder 136, the flow control member 114 is disposed in the closed position relative to the one or more ports 118.
The flow control member 114 is co-operatively configured with the housing 120 to define a housing space 130 between the housing 120 and the flow control member 114. In some of these embodiments, for example, the housing space 130 is disposed between the second sealed interface 132 and a third sealed interface 134, the sealed interfaces 132, 134 being defined between the flow control member 114 and the housing 120. The sealed interface 132 is defined by the sealing engagement of the sealing member 122B and the flow control member 114. The sealed interface 134 is defined by the sealing engagement between a third sealing member 135 and the flow control member 114, the third sealing member 135 being housed within the lower sub 120B. The sealed interfaces 132, 134 are maintained throughout the range of travel of the flow control member 114, including the displacement between the open and closed positions. In this respect, in some embodiments, for example, the second and third sealed interface 132, 134 are provided for preventing, or substantially preventing, ingress of material (such as, for example, solid debris, such as, for example, cement) into the housing space 130 from the passage 119. Such ingress of material could otherwise interfere with the displaceability of the flow control member 114, such as, for example, the displacement of the flow control member 114 from the open position to the closed position (for effecting closing of the one or more ports 118), by accumulating between the stop shoulder 136 and the engagement shoulder 114A of the flow control member 114.
In some embodiments, for example, viscous liquid material is disposed within the housing space 130. In some embodiments, for example, the housing space 130 is filled, or substantially filled, with the viscous liquid material. In some embodiments, for example, the viscous liquid material has a viscosity of at least 100 mm2/s at 40 degrees Celsius. In some embodiments, for example, the viscous liquid material includes an encapsulated cement retardant. In some embodiments, for example, the viscous liquid material includes grease. In some embodiments, for example, the viscous liquid material is supplied to the housing space 130 via a fill port 144. In some embodiments, for example, the housing 120 further includes a vent port 150 (see
Referring to
The flow control apparatus 115A also includes a confirmation profile 138. In some embodiments, for example, the confirmation profile 138 is defined within the inner surface 140 of the housing 120.
Referring to
In some embodiments, for example, after the wellbore operation, upon the indicator tool 202 becoming releasably retained within the confirmation profile 138, resistance is sensed in response to upward pulling on the workstring 200. In this respect, the releasable retaining of the indicator tool 202 by the confirmation profile 138 is confirmed when resistance is sensed in response to upward pulling on the workstring 200. Also in this respect, the releasable retention is such that opposition to relative displacement between the indicator tool 202 and the confirmation profile 138, along the axis of the wellbore 102, is effected.
In some embodiments, for example, prior to completion of the wellbore operation, communication between the indicator tool 202 and the confirmation profile 138 is blocked, such that releasable retention of the indicator tool 202 by the confirmation profile 138 (such as, for example, upon alignment of the indicator tool 202 with the confirmation profile 138) is prevented. In some of these embodiments, for example, the blocking is effected by disposition of the moveable member between the confirmation profile 138 and the indicator tool 202, such that while the indicator tool 202 is aligned with the confirmation profile 138 (such as, for example, while the indicator tool 202 is being running in hole with the workstring 200), the indicator tool 202 is prevented from becoming releasably retained by the confirmation profile 138. In some embodiments, for example, the moveable member is the flow control member 114. In this respect, the wellbore operation includes displacement of the flow control member from the closed position to the open position, and the displacement is with additional effect that interference to the releasable retention of the indicator tool 202 by the confirmation profile 138 has been defeated, such that there is an absence to interference to the releasable retention of the indicator tool 202 by the confirmation profile 138. While the flow control member 114 is disposed in the closed position, communication between the indicator tool 202 and the confirmation profile 138 is blocked, such that releasable retention of the indicator tool 202 by the confirmation profile 138 (such as, for example, upon alignment of the indicator tool 202 with the confirmation profile 138 as the workstring 200 is being run in hole) is prevented by the flow control member 114. While the flow control member 114 is disposed in the open position, the indicator tool 202 is receivable by the confirmation profile 138. In this respect, in some embodiments, for example, the establishing of the confirmation profile 138 includes defeating the interference to the releasable retention of the indicator tool 202 by the confirmation profile 138. Also, in this respect, in some embodiments, for example, the establishing of the confirmation profile 138 includes uncovering of the confirmation profile 138.
In some embodiments, for example, the confirmation profile 138 is recessed into the internal surface 140 of the housing 120, and the indicator tool 202 is biased outwardly relative to the workstring 200, and upon alignment of the indicator tool 202 with the confirmation profile 138 while the flow control member 114 is disposed in the open position, the outward biasing is such that the indicator tool 202 becomes disposed within the confirmation profile 138 such that the indicator tool 202 becomes releasably retained by the confirmation profile 138. In this respect, the defeating of the blocking to the releasable retention of the indicator tool 202 by the confirmation profile 138 includes defeating of the interference to a displacement of the indicator tool 202, owing to the outward biasing of the indicator tool 200, such displacement resulting in the indicator tool 202 becoming disposed within the confirmation profile 138 such that the indicator tool 202 becomes releasably retained by the confirmation profile 138.
In some embodiments, for example, the indicator tool 202 includes a collet, and the collet includes an engagement feature for becoming releasably retained by the confirmation profile 138.
In some embodiments, for example, the collet includes one or more collet springs (such as beam springs) that are separated by slots. In some contexts, the collet springs may be referred to as collet fingers. In some embodiments, for example, the engagement feature is disposed on one or more of the collet springs. In some embodiments, for example, the engagement feature is defined as a protuberance on the collet spring.
In some embodiments, for example, the collet springs are configured for a limited amount of radial compression in response to a radially compressive force. In some embodiments, for example, the collet springs are configured for a limited amount of radial expansion in response to a radially expansive force. Such compression and expansion enable the collet springs to pass by a restriction in the wellbore 102 while returning to its original shape.
In this respect, in some embodiments, for example, the collet includes a resilient member (such as one or more collet springs) that exerts a biasing force for biasing the engagement feature outwardly relative to the workstring 200 such that, while the engagement feature is disposed in alignment with the confirmation profile 138, the biasing force is urging the engagement feature into the releasable retention by the confirmation profile 138.
In some embodiments, for example, the indicator tool 202 is also provided for effecting desired positioning of the workstring 200 relative to the flow control member 114. A shifting tool 204, also coupled to the workstring 200, is positionable, relative to the flow control member 114, to a position such that, upon actuation, the shifting tool 204 becomes disposed in gripping engagement with the flow control member and, in response to application of an opening force while the shifting tool 204 is disposed in gripping engagement with the flow control member 114, effects opening of the port 118 of the flow control apparatus 115A by effecting displacement of the flow control member 114 from the closed position to the open position.
In this respect, the flow control apparatus 115A further includes a locate profile 142, and the locate profile 142 is recessed into the internal surface 140 of the housing 120, and the outward biasing of the indicator tool 202 is such that, upon alignment with the locate profile 142, the indicator tool 202 becomes disposed within the locate profile 142 such that the indicator tool 202 becomes releasably retained by the locate profile 142, and the shifting tool 204 is co-operatively positioned relative to the indicator tool 202 (for example, the shifting tool is disposed in alignment with the flow control member 114) for becoming disposed in gripping engagement with the flow control member 114.
Referring to
In some embodiments, for example, while the flow control member 114 is disposed in the open position, and it is desired to re-close the one or more ports 118 with the flow control member with the shifting tool 204, it is desirable to avoid releasable retention of the indicator tool 202 within the locate profile 142 as the workstring 200 is manipulated to engage the shifting tool 204 to the flow control member 114 with a view to displacing the flow control member 114, relative to the one or more ports 118, with the shifting tool 204. Otherwise, additional force must be applied to the workstring, to overcome the releasable retention of the indicator tool 202 within the locate profile 142, prior to effecting the displacement of the flow control member 114 relative to the one or more ports 118. In this respect, referring to
In some embodiments, for example, the indicator tool 202 is any one of the embodiments of the locator tools described in International Application No. PCT/CA2016/000278, which document corresponds to US Published Application No. 2017/0183929 which is hereby incorporated by reference.
Referring to
In some embodiments, for example, the indicator tool 202 and the shifting tool 204 are co-operatively configured such that, while the indicator tool 202 is being releasably retained by the locate profile 142, the shifting tool 204 is positioned for becoming disposed in gripping engagement with the reinforced portion 114X.
In some embodiments, for example, while the workstring 200 is being displaced through and relative to the wellbore 102, once the indicator tool 202 has become aligned with the locator profile 142, and, in response to the alignment (such as, for example, due to a biasing force), becomes releasably retained within the locate profile 142 (see
After the locating of the workstring 200, and after the displacement of the flow control member from the closed position to the open position, and after the shifting tool 204 becomes retracted relative to the flow control member 114, the workstring 200 is pulled uphole such that the indicator tool 202 is urged to retract from the locate profile 142. In this respect, co-operatively, the locate profile 142 is shaped (for example, tapered inwardly towards the central longitudinal axis of the wellbore, such as, for example, at its uphole end) so as to encourage the retraction of the indicator tool 202 from the locate profile 142 in response to an uphole pulling force. Continued pulling up on the workstring 200 effects uphole displacement of the indicator tool 202 such that the indicator tool 202 becomes aligned with the confirmation profile 138, with effect that the indicator tool 202 becomes outwardly displaced relative to the workstring 200, owing to the outward bias of the indicator tool 202, such that the indicator tool 202 becomes releasably retained by the confirmation profile 138 (see
In some embodiments, for example, the indicator tool 202 is configured such that inadvertent disposition of the indicator tool 202 within a recess of the flow control apparatus 115A, other than the confirmation profile 138, is avoided. In this respect, the housing 120, flow control member 114 and the indicator tool 202 are co-operatively configured such that, while the flow control member 114 is disposed in the open position, displacement of the indicator tool 202 (such as, for example, in the uphole direction) from the locate profile 142 to the confirmation profile 138 is sufficiently unimpeded such that there is an absence of sensing of resistance to the displacement. In some embodiments, for example, the co-operative configuration is such that there is an absence of a recess sufficiently sized and is available for receiving displacement of the indicator tool 202 in response to the outward biasing of the indicator tool 202 relative to the workstring 200.
In the above description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the present disclosure. Although certain dimensions and materials are described for implementing the disclosed example embodiments, other suitable dimensions and/or materials may be used within the scope of this disclosure. All such modifications and variations, including all suitable current and future changes in technology, are believed to be within the sphere and scope of the present disclosure. All references mentioned are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3080924 | Baker | Mar 1963 | A |
3115188 | Cochran et al. | Dec 1963 | A |
3130788 | Cochran et al. | Apr 1964 | A |
3457994 | Stachowiak | Jul 1969 | A |
3638723 | Carroll | Feb 1972 | A |
4284154 | England | Aug 1981 | A |
4671354 | Henderson et al. | Jun 1987 | A |
4702313 | Greenlee et al. | Oct 1987 | A |
4749044 | Skipper et al. | Jun 1988 | A |
4862961 | Neff | Sep 1989 | A |
4949788 | Szarka et al. | Aug 1990 | A |
4971146 | Terrell | Nov 1990 | A |
5156207 | Haugen et al. | Oct 1992 | A |
5263683 | Wong | Nov 1993 | A |
5366019 | Brooks | Nov 1994 | A |
5513703 | Mills et al. | May 1996 | A |
5687795 | Patel et al. | Nov 1997 | A |
5829531 | Hebert et al. | Nov 1998 | A |
6827148 | Shaw et al. | Dec 2004 | B2 |
7284606 | Coronado | Oct 2007 | B2 |
7284608 | Reddy et al. | Oct 2007 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
7748463 | Revheim | Jul 2010 | B2 |
7793716 | Macias et al. | Sep 2010 | B2 |
7870907 | Lembcke et al. | Jan 2011 | B2 |
7971646 | Murray et al. | Jul 2011 | B2 |
8074713 | Ramos et al. | Dec 2011 | B2 |
8127847 | Richard et al. | Mar 2012 | B2 |
8171994 | Murray et al. | May 2012 | B2 |
8225869 | Beard et al. | Jul 2012 | B2 |
8267172 | Surjaatmadja et al. | Sep 2012 | B2 |
8291982 | Murray et al. | Oct 2012 | B2 |
8312925 | Trummer | Nov 2012 | B2 |
8490702 | Stromquist et al. | Jul 2013 | B2 |
8567501 | Zimmerman et al. | Oct 2013 | B2 |
8607860 | Avant | Dec 2013 | B2 |
8794331 | Getzlaf et al. | Aug 2014 | B2 |
9217316 | Ehtesham et al. | Dec 2015 | B2 |
9982512 | Getzlaf et al. | May 2018 | B2 |
10030479 | Johnson et al. | Jul 2018 | B2 |
10151162 | Getzlaf et al. | Dec 2018 | B2 |
10161207 | Ravensbergen et al. | Dec 2018 | B2 |
20020070028 | Garcia et al. | Jun 2002 | A1 |
20030019634 | Henderson et al. | Jan 2003 | A1 |
20040149452 | Pendleton | Aug 2004 | A1 |
20060081380 | Hoffman et al. | Apr 2006 | A1 |
20060225878 | Coronado | Oct 2006 | A1 |
20080257558 | Darnell et al. | Oct 2008 | A1 |
20080154184 | Johnson et al. | Dec 2008 | A1 |
20090044944 | Murray et al. | Feb 2009 | A1 |
20090078413 | Tubel et al. | Mar 2009 | A1 |
20110042107 | Chambers et al. | Feb 2011 | A1 |
20110048706 | Clem et al. | Mar 2011 | A1 |
20110174491 | Ravensbergen et al. | Jul 2011 | A1 |
20110203809 | Knobloch et al. | Aug 2011 | A1 |
20120067583 | Zimmerman et al. | Mar 2012 | A1 |
20120090847 | Getzlaf | Apr 2012 | A1 |
20120097398 | Ravensbergen et al. | Apr 2012 | A1 |
20120279709 | Bain et al. | Nov 2012 | A1 |
20123025500 | Moen | Dec 2012 | |
20130080188 | Rosenfeld | Mar 2013 | A1 |
20130133891 | Getzlaf et al. | May 2013 | A1 |
20130161027 | Inglis et al. | Jun 2013 | A1 |
20130168099 | Themig | Jul 2013 | A1 |
20130319687 | Huh et al. | Dec 2013 | A1 |
20130333883 | Ehtesham | Dec 2013 | A1 |
20140014347 | Adam et al. | Jan 2014 | A1 |
20140014360 | Wilson | Jan 2014 | A1 |
20140048271 | Coon | Feb 2014 | A1 |
20150075788 | O'Brien | Mar 2015 | A1 |
20150075815 | O'Brien | Mar 2015 | A1 |
20150152725 | Thomas et al. | Jun 2015 | A1 |
20160047189 | Macleod et al. | Feb 2016 | A1 |
20160090803 | Getzlaf et al. | Mar 2016 | A1 |
20170183929 | Werries | Jun 2017 | A1 |
20180245430 | Getzlaf et al. | Aug 2018 | A1 |
20190003285 | Johnson et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2859813 | Feb 2016 | CA |
2958702 | Feb 2016 | CA |
3034357 | Feb 2016 | CA |
2906468 | Mar 2016 | CA |
2916199 | Jun 2016 | CA |
2916422 | Jun 2016 | CA |
2960690 | May 2017 | CA |
2965068 | Oct 2017 | CA |
2916168 | Apr 2019 | CA |
0810348 | Dec 1997 | EP |
2295715 | Mar 2011 | EP |
3237724 | Nov 2017 | EP |
3374592 | Sep 2018 | EP |
2439399 | Dec 2007 | GB |
WO200102697 | Jan 2001 | WO |
WO2007084006 | Jul 2007 | WO |
WO2012149637 | Nov 2012 | WO |
WO2012149638 | Nov 2012 | WO |
WO2016026024 | Feb 2016 | WO |
WO2016101061 | Jun 2016 | WO |
WO2017079823 | May 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20170306722 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62326306 | Apr 2016 | US |