Media presentation devices, such as a television, a monitor, or another display device, may be configured to present visual media content to a user. The media content may be received from a media device. The media presentation device may be configured to be placed on top of a horizontally oriented surface, such as a media stand, cabinet, shelf, or the like. Alternatively, the media presentation device may be configured to mount to a vertically oriented surface, such as a wall or the like. However, the media device is typically configured to rest on a horizontally oriented surface. Accordingly, it may be difficult to locate the media device in proximity to the media presentation device.
The media device may be configured to receive operating instructions from a user via a remote control. The remote control communicates user instructions to the media device using an infrared (IR) signal. An IR signal detector of the media device is configured to receive the IR signals. The IR signal detector may only detect the IR signals from the remote control so long as the remote control is within a line of sight detection range of the IR signal detector. This line of sight detection range generally lies along a horizontal plane extending outward into a space where the user is likely to be sitting while viewing the presented media content
Conserving space in a media room may be of interest to the user. For example, if the media presentation device is hung on a wall, it may be desirable to the user to also hang the media device from the same wall, and even behind the media presentation device itself. However, the media device is not configured to be oriented vertically, such as when mounted on the wall behind the media presentation device. If the media device is vertically oriented, the IR detector will not be oriented in a manner so as to receive the IR signals from the remote control. That is, the line of sight detection range of the IR signal detector will not correspond to locations where the user will likely be when viewing the presented media content on their media presentation device.
Accordingly, there is a need in the arts to enable detection of IR signals emitted from a remote control by a media device that is configured to be positioned in a plurality of different orientations.
Systems and methods of detecting infrared (IR) signals emitted from a remote control are disclosed. An exemplary embodiment comprises a media device configured to receive media content; at least one IR detector residing in the media device, and is configured to receive a portion of IR signals emitted from a remote control; and a cover lens disposed in a portion of an enclosure of the media device. The cover lens has a first cover lens portion configured to receive the IR signals emitted from the remote control and is configured to transmit a first portion of the received IR signal to the IR detector when the media device is horizontally oriented, and has a second cover lens portion configured to receive the IR signal emitted from the remote control and is configured to transmit a second portion of the received IR signal to the IR detector when the media device is vertically oriented.
Preferred and alternative embodiments are described in detail below with reference to the following drawings:
In
In
The IR detector system 100 comprises an exemplary two-way cover lens 114 embodiment that is configured to pass incident IR light to a suitable IR detector (not shown). The exemplary two-way cover lens 114 comprises a first cover lens portion 116 and a second cover lens portion 118 disposed on or in an enclosure 120 of the media device 102. The first cover lens portion 116 is generally parallel to and flush with a first surface 122 of the enclosure 120 of the media device 102. The second cover lens portion 118 is generally parallel to and flush with a second surface 124 of the enclosure 120 the media device 102. Accordingly, the first cover lens portion 116 and the second cover lens portion 118 are generally oriented perpendicular to each other.
As illustrated in
As illustrated in
In
As illustrated in
In an exemplary embodiment, the two-way cover lens 114 embodiment is located along an edge 130 defined by the joining of the first surface 122 and the second surface 124. In this exemplary embodiment, the first surface 122 is configured to receive the first cover lens portion 116 and the second surface 124 is configured to receive the second cover lens portion 118. In the various embodiments, the two-way cover lens 114 may be located at any position along the edge 130 of the media device 102.
The exemplary two-way cover lens 114 may be of any suitable size so as to facilitate reception of the incident IR signal 126a/126b that is transmitted from the remote control 104. The exemplary two-way cover lens 114 may be made of any suitable material that has a suitable transmittance characteristic such that a sufficient amount of the incident IR signal 126a/126b passes through the two-way cover lens 114 so as to be detectable by an IR detector (not shown) located within the media device 102.
In this exemplary configuration, the detector surface 304 of the exemplary IR detector 302 is oriented so as to be able to receive a portion 306 of the incident IR signal 126a that is transmitted from the remote control 104 when the media device 102 is horizontally oriented. For example, the IR signal 126a is incident on the first cover lens portion 116 at the location 308. Based on the transmittance characteristics of the first cover lens portion 116, the IR signal portion 306 is incident on the detector surface 304 of the IR detector 302. Information encoded into the incident IR signal portion 306 may then be determined by other components (not shown) of the horizontally oriented media device 102.
In some situations, the media device 102 may be vertically oriented such that the second cover lens portion 118 is oriented so as to receive the incident IR signal 126b that is transmitted from the remote control 104, such as illustrated in
The signal conditioning lens 402 may be comprised of any suitable material and may employ any suitable structure. For example, the signal conditioning lens 402 may be made of a glass or plastic material of a suitable shape so as to refract the incident IR signal towards the detector surface 304. In another embodiment, the signal conditioning lens 402 may comprise one or more wave guides or other fiber optic elements that are configured to transmit the incident IR signal towards the detector surface 304. Further, the signal conditioning lens 402 may be configured to perform other types of desirable signal conditioning to the incident IR signal, such as, but not limited to, filtering, polarizing, phase shifting, or the like.
In this exemplary embodiment, the first cover lens portion 116 and the second cover lens portion 118 may be separate structure that are separated from each other by portions of the enclosure 120 of the media device 102. Accordingly, apertures disposed in the enclosure 120 of the media device 102 may be located so that a single IR detector 302 may be used to detect incident IR signal 126a, 126b transmitted from the remote control 104 when the media device 102 is either horizontally oriented or vertically oriented. In an alternative embodiment, two IR detectors 302 may be used to separately detect the incident IR signals 126a, 126b transmitted from the remote control 104. Alternatively, or additionally, the signal conditioning lens 402a, 402b may be employed to direct the IR signals to the detector surface 304.
For example, the second surface 124 of the media device 102 may have a rectangular shape, wherein the vertically oriented surface 606 of the enclosure 120 is the narrower side of the media device 102. To conserve shelf space or the like, the user of the media device 102 may horizontally orient the media device 102 so that the third cover lens portion 604 is oriented in an outward direction along the horizontal plane 128 that generally extends outward into a space where the user is likely to be located while viewing the presented media content.
In this exemplary embodiment, the first cover lens portion 116, the second cover lens portion 118, and the third cover lens portion 604 are fabricated as a unitary body cover lens located at a corner of the media device 102. In other embodiments, one or more of the first cover lens portion 116, the second cover lens portion 118, and the third cover lens portion 604 are separate portions.
In an alternative embodiment, three IR detectors 302 may be used. Alternatively, or additionally, a plurality of signal conditioning lens 402 may be employed to direct the IR signals to the detector surface(s) 304.
It should be emphasized that the above-described embodiments of the IR detector system 100 are merely possible examples of implementations of the invention. Many variations and modifications may be made to the above-described embodiments. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5296739 | Heilbronner et al. | Mar 1994 | A |
5911582 | Redford et al. | Jun 1999 | A |
5921757 | Tsutsui et al. | Jul 1999 | A |
6128194 | Francis | Oct 2000 | A |
6201246 | Potekev et al. | Mar 2001 | B1 |
6212074 | Gonsalves et al. | Apr 2001 | B1 |
6219236 | Hirano et al. | Apr 2001 | B1 |
6577504 | Lofland et al. | Jun 2003 | B1 |
6665187 | Alcoe et al. | Dec 2003 | B1 |
6818276 | Bourdelais et al. | Nov 2004 | B2 |
6946856 | Tellkamp | Sep 2005 | B1 |
6982877 | Vinson et al. | Jan 2006 | B2 |
7034999 | Casler | Apr 2006 | B1 |
7236368 | Maxwell et al. | Jun 2007 | B2 |
7310233 | Bell | Dec 2007 | B2 |
7312534 | delos Santos et al. | Dec 2007 | B2 |
7345885 | Boudreaux et al. | Mar 2008 | B2 |
7550825 | Santos et al. | Jun 2009 | B2 |
7629400 | Hyman | Dec 2009 | B2 |
7742299 | Sauciuc et al. | Jun 2010 | B2 |
20010028342 | Notagashira | Oct 2001 | A1 |
20050008832 | Santos et al. | Jan 2005 | A1 |
20050266295 | Takai | Dec 2005 | A1 |
20070278683 | Santos et al. | Dec 2007 | A1 |
20080049110 | Arbouzov | Feb 2008 | A1 |
20080135216 | Zhang et al. | Jun 2008 | A1 |
20080175603 | Son et al. | Jul 2008 | A1 |
20100261386 | Blum et al. | Oct 2010 | A1 |
20110202183 | Hardman | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
02085837 | Mar 1990 | JP |
WO 03107427 | Dec 2003 | WO |
WO 2009058149 | May 2009 | WO |
Entry |
---|
Stephens et al., Matthew, “Passive, Low-Profile Heat Transferring System,” U.S. Appl. No. 13/051,930, filed Mar. 18, 2011. |
Burton et al., David Robert, “Media Content Device Chassis with Internal Extension Members,” U.S. Appl. No. 13/052,685, filed Mar. 21, 2011. |
Burton et al., David Robert, “Media Device Having a Piezoelectric Fan,” U.S. Appl. No. 13/074,964, filed Mar. 29, 2011. |
Burton et al., David Robert, “Media Content Device with Customized Panel,” U.S. Appl. No. 13/074,971, filed Mar. 29, 2011. |
Burton et al., David Robert, “Apparatus, Systems and Methods for Power Line Carrier Data Communication to DC Powered Electronic Device,” U.S. Appl. No. 13/074,736, filed Mar. 29, 2011. |
Burton et al., David Robert, “Apparatus, Systems and Methods for Securely Storing Media Content Events on a Flash Memory Device,” U.S. Appl. No. 13/053,492, filed Mar. 22, 2011. |
Burton et al., David Robert, “Apparatus, Systems and Methods for Control of Inappropriate Media Content Events,” U.S. Appl. No. 13/053,487, filed Mar. 22, 2011. |
PiezoFans, LLC—Piezo Fans and Piezoelectric Technology, “Advanced Micro-Cooling Systems” Product Description, http://piezofans.com/, download date Mar. 4, 2011, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20120219297 A1 | Aug 2012 | US |