Not applicable.
Not applicable.
Apparatus, systems and methods are described herein for providing certain properties in transmit waveforms for use by a companion receiver in determining direction of approach relative to a transmitting source.
An electronic animal containment system is described with direction-of-approach determination, or direction-sensitive capabilities. The direction-sensitive animal containment system generally contains a transmitter unit connected to a wire loop bounding a containment area and a receiver unit carried by the animal. The transmit unit provides certain properties in transmit waveforms for use by a companion receiver in determining direction of approach relative to the wire loop bounding the containment area.
Multiple embodiments of an electronic animal containment system provide varying methods for generating the required current in the wire loop. Under one embodiment, a containment signal generator may convert an uneven duty cycle square wave into an asymmetric triangle wave. Under another embodiment, a containment signal generator includes a discrete triangle wave generator allowing the adjustment of the rising and falling slopes. Under this embodiment, the discrete triangle wave generator directly drives the output current drivers and provides two amplitude levels for the triangle waveform.
Under either embodiment, the circuit parameters, Ltotal and Rtotal determine the generating signal required to produce the desired current by the equation:
A companion receiver is responsive to:
Vreceive(t)=KRx*dβ/dt (2)
where
dβ/dt is the rate of change of the magnetic flux density; dβ/dt is dependent upon dI(t)/dt
KRx=−n*A*uc-Rx
n=number of turns in the receive core
A=area of the receive core (m2)
uc-Rx=geometry dependent relative permeability of the receive core
Under one embodiment of an electronic animal containment system, a containment signal generator produces an uneven duty cycle square wave. A long wire load (or perimeter boundary wire) connected to the transmitter may result in an asymmetric triangle current flowing through the wire. This is true when the load is predominantly inductive under an embodiment, hence:
Under this specific condition, an uneven duty cycle square wave will produce the desired asymmetry in the wire current.
Under another embodiment, a containment signal generator includes a discrete triangle wave generator allowing the adjustment of the rising and falling slopes. The discrete triangle wave generator directly drives the output current drivers and provides two amplitude levels for the triangle waveform. However, the desired asymmetry is produced only when the load is predominantly resistive under an embodiment, hence:
Vgenerator(t)=Rtotal*Idesired(t) (5)
Idesired(t)=Vgenerator(t)/Rtotal (6)
Under this specific condition a discrete triangle wave generator with adjustable rising and falling slopes produce the desired asymmetry.
Magnetic Field Relationships Between the Transmitter and Receiver
System Model
Vout(t)=(Rseries+RLoop+Rsense)*IL(t)+LLoop*dIL(t)/dt. (7)
204 presented to the receive components. Vsensor(t) 206 is the voltage rendered by the receive R-L-C circuit. The receive components include inductor Ls 208 and resistor Rs 210 in series. The receive components are in parallel with resistor RL 212 and capacitor CRES 214 which are in series with each other. The parallel circuit components are also in series with capacitor C 216. Points 220 and 222 represent respective inputs for Z Amplifier 230, Y Amplifier 240, and X Amplifier 250. VZReceive(t) 260 represents the output voltage of the Z Amplifier. VYReceive(t) 270 represents the output voltage of the Y Amplifier. VXReceive(t) 280 represents the output voltage of the X Amplifier. Typically, the inductors, Ls, associated with each amplifier circuit (X, Y, and Z) are oriented orthogonal to one another. Note that for the sake of simplicity, the systems and methods described below refer to a single amplifier of a receiver. VRx sensor(t) indicates the amplifier input voltage under an embodiment. VReceive(t) represents amplifier output voltage.
Magnetic Field Relationships
The time varying flux density at point x is specifically given by
dβ/dt=dIL(t)/dt*(u0/2πx) (8)
The time varying flux density at point x along the coil axis is specifically given by
dβ/dt=dI(t)/dt*nL*u0*rL2/(2(rL2+x2)3/2) (9)
The time varying flux density at point x along the coil axis is specifically given by
dβ/dt=dIL(t)/dt*uc-Tx*nL*u0rL2/(2(rL2+x2)3/2) (10)
Receiver Output Voltage
Receive sensor output voltage results from proximity to a time varying magnetic flux density.
Note that N is a geometry dependent demagnetizing factor, and ur is the relative permeability of the receive core. A small N results in uc-Rx that approaches ur.
This particular receiver sensor output voltage, VRx Sensor(t) is given by:
As shown above, the sensor output is proportional to dβ(t)/dt. However, dβ(t)/dt is dependent on the source of the time varying magnetic field (i.e. long wire, air coil, ferrite coil, etc.)
For a long wire:
For multi-turn air core loop:
dβ/dt=dI(t)/dt*nL*u0rL2(rL2+x2)3/2) (15)
dβ/dt=dI(t)/dt*(KTx-coil air) (16)
where,
nL=number of turns
rL=radius of the mult-turn transmit coil loop
KTx-coil air=nL*u0*rL2/(2(rL2+x2)3/2)
For a multi-turn ferrite core loop:
dβ/dt=dIL(t)/dt*uc-Tx*nL*u0*rL2/(2(rL2+x2)3/2) (17)
dβ/dt=dIL(t)/dt*KTx-coil ferrite (18)
where
uC-Tx=geometry dependent relative permeability of the transmit core
KTx-coil ferrite=uc-Tx*nL*u0*rL2/(2(rL2+x2)3/2) (20)
The receive sensor plus amplifier output voltage, VReceive(t), can be generalized as
VReceive(t)=Gainamp(FC)*VRx Sensor(t)=Gainamp(FC)*KRx*dβ/dt (21)
VReceive(t)=Gainamp(FC)*dIL(t)/dt*KRx*(KTx(#)) (22)
where,
The desired transmit current contains an asymmetry in dIL(t)/dt that permits a receiver to determine direction of approach. The dIL(t)/dt asymmetry is observed as a difference between the positive and negative time duration and/or a difference in the positive and negative peak values at the output of the receiver sensor and amplifier chain.
System, Method, and Apparatus for Constructing Voltage Excitation Waveform
Discrete Time Function
Under one embodiment, a discrete time function, IL(nΔt) is created which describes the desired load current asymmetry. Under an embodiment, the desired asymmetry is a triangle current waveform with different positive and negative slopes.
OOK (On Off Keying) or amplitude modulation (amplitude shift keying) is used to modulate (or impart data onto) the discrete time function IL(nΔt) as further described below. The modulation function is referred to as modulation(nΔt) and resolves to either one or zero under an embodiment.
Rotating phasor values, expressed as Φ(nΔt)=ωnΔt (modulo 2π), are used to generate the discrete time function IL(nΔt) as further described below.
The discrete time function IL(nΔt) comprises a desired asymmetry of 30%. Symmetry test thresholds for Φ(nΔt) are as follows:
s1=0.942478 radians
s2=5.340708 radians
Using these test thresholds, the region of positive slope comprises 30% of 2π radians.
The desired positive slope m1 of IL(nΔt) comprises change in amplitude/change in Φ(nΔt). The desired positive slope of IL(nΔt) is m1=2/(2*s1). The desired negative slope m2 of IL(nΔt) comprises change in amplitude/change in Φ(nΔt). The desired negative slope of IL(nΔt) is m2=−2/(2π−2*s1).
The discrete time function, IL(nΔt) is given by the following logic:
Practical limitations of the DFT algorithm permit showing only the first three harmonics. In practice, the harmonics continue indefinitely.
Approximate Current Using First and Second Harmonics
The desired current may then be approximated using only the first and second harmonics.
AIL(nΔt)=sin(ωnΔt)+0.3060*sin(2ωnΔt) (24)
where,
f=20,000 Hz
ω=2πf
The sample rate, 1/Δt, is left to the discretion of the system designer but should be high enough (i.e. =>8× the fundamental frequency) to achieve the desired precision. The sampling rate used in this example is 160,000 Hz, i.e. 8*f. With only two terms, the operations required to realize the approximation are easy to perform in a low cost commercial microprocessor using either batch or real time processing algorithms.
Iterative, Adaptive, Feedback Control Algorithm
Derive an Estimate of the Loop Inductance (LLoop) and Loop Resistance (RLoop)
Under one embodiment, an estimate of the loop inductance (LLoop) and loop resistance (RLoop) are derived. Reference is made to the transmit circuit shown in
For a long wire circuit employed under the embodiment described herein, the Rseries is in the range of 90-180 ohms and Rsense is 30 ohms.
Averaging multiple measurements yields a good approximation of RLoop under an embodiment. The transmit loop time constant may be used to approximate the value of LLoop. The transmit loop time constant may be expressed as TC=L/R. In one time constant TC=L/R), VC(t) reaches 63.2% of its final value. Under an embodiment, the elapsed time, Δt1, is recorded when VC(t) reaches 63.2% of its final value. In two time constants, VC(t) reaches 86.5% of its final value. Under an embodiment, the elapsed time, Δt2, is recorded when VC(t) reaches 86.5% of its final value. LLoop is calculated as follows:
LLoop=RCircuit*Δt1 (27)
LLoop=RCircuit*Δt2/2 (28)
where Rcircuit=Rseries Rsense RLoop. Averaging multiple measurements yields a good approximation of LLoop.
The measurement interval can be long (as compared to the interval between data transmissions) and left to the discretion of the system designer. In general, changes in the loop parameters (other than an open circuit) do not occur suddenly. Open circuits can be detected by observing VC(t) during all other active periods.
Scale the Approximation AIL(nΔt) and Calculate First Iteration of VGen(nΔt).
A working animal containment system requires a minimum receive signal at a distance x from the transmit loop. Under an embodiment, the necessary amplitude of the two carrier approximation, AIL(nΔt) is calculated.
VReceive-required=Gainsensor+amp(FC,2FC)*VSensor-required (29)
VReceive-required=Gainsensor+amp(FC,2FC)*ΔIL/Δt_required*KRx*KTx(#) (30)
ΔIL/Δt_required=VReceive-required/(Gainsensor+amp(FC,2FC)*KRxKTx(#)) (31)
where,
VReceive-required˜18.6 mVRMS
Gainsensor+amp (FC, 2FC)˜2550
n˜950
A˜1.164e—5 square meters
u(c-Rx)˜5.523
The sensor plus amplifier needs to be responsive from FC to 2FC. A relatively flat response is ideal, but other response characteristics (gain and phase) may be compensated for by digital signal processing in the receiver's microprocessor.
Under an embodiment, solve for the load current scaling factor, KI:
ΔIL/Δt_required=KI*ΔAIL/Δt_peak (32)
KI=ΔIL/Δt_required/(ΔAIL/Δt_peak). (33)
The resulting loop current is therefore, AIL(nΔt)=KI*(sin(ωnΔt)+0.3060*sin(2ωnΔt)). Under an embodiment, VGen(nΔt) is calculated using Kirchhoff s law, i.e. by
VGen(nΔt)=KI*(Rcircuit*AIL(nΔt)+LLoop*ΔAIL(nΔt)/Δt)). (34)
Under one embodiment the first iteration of the signal generator voltage waveform, VGen(nΔt), may be employed as the generator signal for system operation. One may stop here if there is high confidence the estimated loop parameters adequately reflect the circuit operating conditions for achieving the desired amplitude and asymmetry.
Observe VC(nΔt) for the Desired Characteristics in the Transmit Loop Current AIL(nΔt)
Under an embodiment, one may observe VC(nΔt) for the desired characteristics in the transmit loop current AIL(nΔt).
Under one embodiment, an adaptive feedback algorithm seeks a solution to satisfy both the minimum receive signal, VReceive(nΔt), and the desired receive asymmetry. In this illustrative example, the desired receive asymmetry will be the ratio of the aggregate positive and aggregate negative peaks of VReceive(nΔt).
The two frequency transmit current, ΔIL(nΔt), can be derived from the observed VC(nΔt) and RSense.
AIL(nΔt)=VC(nΔt)/RSense (35)
ΔAIL(nΔt)/Δt=[ΔAIL(nΔt)−ΔAIL(nΔ(t−1))]/Δt. (36)
The illustrative example that follows is for a long wire (approximately 2500 ft. of 16AWG wire, at an operating frequency of 25000 Hz), where:
Δβ/Δt=ΔAIL(nΔt)/Δt*(u0/2πx) (37)
where, x=3 meters.
The receive sensor plus amplifier output voltage, VReceive(t), can be generalized as
First, the load parameters are estimated by the previously described analysis of VC(nΔt) when applying a step waveform.
RLOOP and RCIRCUIT values are then estimated as follows.
RLoop estimate=17.568Ω
LLoop estimate=0.001382 H
Rcircuit=RSeries+RSense+RLoop estimate=195.393
LCircuit=LLoop estimate=0.001382 H
Under one embodiment, an iterative examination of VGEN(nΔt) begins with feedback algorithm goals as follows.
VRx-RMS
Rx Asymmetry Ratio(ratio of the aggregate negative to positive signal peaks)=1.692+/−8.55%
The signal generator transmit provides the initial VGen-0(NΔt) signal to a transmit circuit comprising starting point circuit parameters of an iterative adaptive feedback algorithm. The starting point circuit parameters, Z(0), under an embodiment are:
RCircuit=195.393Ω
LLoop=0.001382 H
The feedback detection algorithm (see
VRx-RMS estimate=8.571
Rx Asymmetry estimate=1.519
The receive signal RMS is not within the acceptable range under an embodiment. When the RMS is not within limits, a scalar gain adjustment is needed. The feedback algorithm will scale the circuit impedance vector accordingly. The scalar gain adjustment is described as follows:
Scalar gain adjustment:
Z=ωL+R
Z(n)=Z(n−1)*VRx-RMS goal/VRx-RMS estimate
for this example:
RCircuit(1)=195.393Ω*7.619/8.571=173.690Ω
LLoop(1)=0.001382 H*7.619/8.571=0.0012285 H=0.001229 H
Under an embodiment, the previously iterated circuit parameters are now:
Rcircuit=173.6901Ω
LLoop=0.001229 H
The VGen-1(nΔt) signal is then applied to the transmit circuit, where VGen-1(nΔt)=KI*(Rcircuit*AIL(nΔt)+LLoop*ΔAIL(nΔt)/Δt)).
The feedback detection algorithm produces the following receive model output results for VGen-1(nΔt):
VRx-RMS estimate=7.546
Rx Asymmetry estimate=1.532
The receive signal asymmetry is not within the acceptable range under an embodiment. When no gain adjustment is required and the asymmetry is not within limits, an impedance vector rotation is needed. The first rotation in an iteration sequence is assumed to be positive. The feedback algorithm will rotate the circuit impedance vector accordingly.
The Z(1) impedance vector has an angle of 48.01 degrees. There is no correlation between the asymmetry error and the proper rotation direction. Our first rotation is assumed to be positive and we rotate one-sixth (⅙) of the degrees between our current angle and 90 degrees. Hence we rotate Z(1) by 7 degrees. The new impedance vector shall have the same magnitude but at an angle of 55.01 degrees.
R(2)=Z(1) Magnitude*cosine(55.01 degrees)
ωL(2)=Z(1) Magnitude*sine(55.01 degrees)
therefore;
L(2)=ωL(2)/ω.
Note that there is nothing sacred about rotating ⅙ of the degrees between the current angle and the hard boundary (0 or 90 degrees). It is a compromise between the number of iterations required to achieve a suitable end result, and the precision of the end result.
Under an embodiment, the previously iterated circuit parameters are now:
Rcircuit=148.884Ω
LLoop=0.001354 H
The VGen-2(nΔt) signal is then applied to the transmit circuit, where VGen-2(nΔt)=KI*(Rcircuit*AIL(nΔt)+LLoop*ΔAIL(nΔt)/Δt)).
The feedback detection algorithm produces the following receive model output results for VGen-2(nΔt):
VRx-RMS estimate=7.546
Rx Asymmetry estimate=1.532
The receive signal asymmetry is not within the acceptable range under an embodiment. When no gain adjustment is required and the asymmetry is not within limits, an impedance vector rotation is needed. Positive rotation did not improve the asymmetry. Therefore, a negative rotation is used. The feedback algorithm will rotate the circuit impedance vector accordingly.
The Z(2) impedance vector has an angle of 55.01 degrees. Our first rotation was assumed to be positive. It did not improve the asymmetry result, therefore we must rotate in the negative direction. Rotate one-sixth (⅙) of the degrees between our current angle and 0 degrees. Hence we rotate Z(2) by 9.71 degrees. The new impedance vector shall have the same magnitude but at an angle of 45.84 degrees.
R(3)=Z(2) Magnitude*cosine(45.84 degrees)
ωL(3)=Z(2) Magnitude*sine(45.84 degrees)
therefore;
L(3)=ωL(3)/ω.
Under an embodiment, the previously iterated circuit parameters are now:
Rcircuit=180.872Ω
LLoop=0.001186 H
The VGen-3 (nΔt) signal is then applied to the transmit circuit, where VGen-3 (nΔt)=KI*(Rcircuit*AIL(nΔt)+LLoop*ΔAIL(nΔt)/Δt)).
The feedback detection algorithm produces the following receive model output results for VGen-3(nΔt):
VRx-RMS estimate=7.7092
Rx Asymmetry estimate=1.582
The receive signal RMS and asymmetry are within acceptable ranges. The adaptive feedback algorithm is complete under an embodiment. The correct circuit parameters for normal operation are:
Rcircuit=180.872Ω
LLoop=0.001186 H
Also notice that the circuit impedance vector for the 3rd and final iteration is neither predominantly inductive or resistive. Therefore, the required VGen-3(nΔt) is neither an “uneven duty cycle square wave” nor a “triangle wave with adjustable slopes”.
A method is described herein that comprises describing a load current with a discrete time function. The method includes using a first frequency and a second frequency to provide an approximation of the described load current, wherein a transform applied to the discrete time function identifies the first frequency and the second frequency. The method includes estimating a loop inductance and a loop resistance of a wire loop by exciting a transmit circuit with a voltage reference step waveform, wherein the transmit circuit includes the wire loop. The method includes scaling the approximated load current to a level sufficient to generate a minimum receive voltage signal in a receiver at a first distance between the wire loop and the receiver. The method includes generating a first voltage signal using the scaled load current, the estimated loop inductance, and the estimated loop resistance. The method includes exciting the transmit circuit with the first voltage signal.
The estimating the loop inductance and the loop resistance includes under an embodiment monitoring the transmit circuit's current in response to the voltage reference step waveform.
The monitoring the transmit circuit's current includes under an embodiment capturing current amplitude as a function of time in response to the voltage reference step waveform.
The transform comprises a Discrete Fourier Transform under an embodiment.
The first frequency comprises a first harmonic frequency of the described load current under an embodiment.
The second frequency comprises a second harmonic frequency of the described load current under an embodiment.
The method comprises under an embodiment generating a first carrier component of the approximated load current using the first harmonic frequency, wherein the first carrier component has a weight of one.
The method comprises under an embodiment generating a second carrier component of the approximated load current using the second harmonic frequency, wherein an amplitude of the second carrier component is weighted relative to an amplitude of the first carrier component.
The transform applied to the discrete time function used to describe the load current identifies under an embodiment the relative weight of the second carrier component.
The providing the approximation of the described load current includes summing the first carrier component and the second carrier component under an embodiment.
The approximated load current comprises a discrete time function under an embodiment.
The first voltage signal comprises a discrete time function under an embodiment.
An input to the discrete time function used to describe the load current comprises a rotating phasor under an embodiment.
The phasor value periodically rotates between 0 and 2π radians under an embodiment.
The discrete time function used to describe the load current has a first slope when the phasor value is within a first range under an embodiment.
The first slope is positive under an embodiment.
The discrete time function used to describe the load current has a second slope when the phasor value is within a second range under an embodiment.
The second slope is negative under an embodiment.
The first range comprises approximately thirty percent of 2π radians under an embodiment.
The absolute value of the first slope is greater than the absolute value of the second slope under an embodiment.
The method comprises under an embodiment reading a voltage signal at a location in the transmit circuit, wherein the voltage signal is representative of a corresponding transmit current in the transmit circuit.
The method comprises under an embodiment processing the voltage signal to estimate the receive voltage signal.
The estimating includes under an embodiment determining a root mean square (RMS) of the estimated receive voltage signal.
The estimating includes under an embodiment determining an asymmetry of the estimated receive voltage signal.
The asymmetry comprises under an embodiment a ratio of the aggregate positive and aggregate negative peaks of the estimated receive voltage signal.
The method comprises establishing a target RMS value under an embodiment.
A target RMS range comprises under an embodiment the target RMS value plus or minus a percentage.
The method of an embodiment comprises establishing a target asymmetry value.
A target asymmetry range comprises under an embodiment the target asymmetry value plus or minus a percentage.
The method under an embodiment comprises iteratively adjusting an impedance vector of the transmit circuit until the RMS and the asymmetry of estimated receive voltage signal fall within the corresponding target RMS and asymmetry ranges, wherein the impedance vector initially comprises the loop resistance and the loop inductance.
The adjusting comprises under an embodiment scaling the impedance vector when the RMS falls outside the target RMS range.
The adjusting comprises under an embodiment rotating a phase angle of the impedance vector when the asymmetry falls outside the target asymmetry range.
The rotating the phase angle comprising under an embodiment a negative rotation.
The rotating the phase angle comprises under an embodiment a positive rotation.
The described load current comprises an asymmetry under an embodiment.
The receiver exploits under an embodiment the asymmetry to determine the receiver's direction of approach to the wire loop carrying the described load current.
Computer networks suitable for use with the embodiments described herein include local area networks (LAN), wide area networks (WAN), Internet, or other connection services and network variations such as the world wide web, the public internet, a private internet, a private computer network, a public network, a mobile network, a cellular network, a value-added network, and the like. Computing devices coupled or connected to the network may be any microprocessor controlled device that permits access to the network, including terminal devices, such as personal computers, workstations, servers, mini computers, main-frame computers, laptop computers, mobile computers, palm top computers, hand held computers, mobile phones, TV set-top boxes, or combinations thereof. The computer network may include one or more LANs, WANs, Internets, and computers. The computers may serve as servers, clients, or a combination thereof.
The apparatus, systems and methods for generating voltage excitation waveforms can be a component of a single system, multiple systems, and/or geographically separate systems. The apparatus, systems and methods for generating voltage excitation waveforms can also be a subcomponent or subsystem of a single system, multiple systems, and/or geographically separate systems. The components of the apparatus, systems and methods for generating voltage excitation waveforms can be coupled to one or more other components (not shown) of a host system or a system coupled to the host system.
One or more components of the apparatus, systems and methods for generating voltage excitation waveforms and/or a corresponding interface, system or application to which the apparatus, systems and methods for generating voltage excitation waveforms is coupled or connected includes and/or runs under and/or in association with a processing system. The processing system includes any collection of processor-based devices or computing devices operating together, or components of processing systems or devices, as is known in the art. For example, the processing system can include one or more of a portable computer, portable communication device operating in a communication network, and/or a network server. The portable computer can be any of a number and/or combination of devices selected from among personal computers, personal digital assistants, portable computing devices, and portable communication devices, but is not so limited. The processing system can include components within a larger computer system.
The processing system of an embodiment includes at least one processor and at least one memory device or subsystem. The processing system can also include or be coupled to at least one database. The term “processor” as generally used herein refers to any logic processing unit, such as one or more central processing units (CPUs), digital signal processors (DSPs), application-specific integrated circuits (ASIC), etc. The processor and memory can be monolithically integrated onto a single chip, distributed among a number of chips or components, and/or provided by some combination of algorithms. The methods described herein can be implemented in one or more of software algorithm(s), programs, firmware, hardware, components, circuitry, in any combination.
The components of any system that include the apparatus, systems and methods for generating voltage excitation waveforms can be located together or in separate locations. Communication paths couple the components and include any medium for communicating or transferring files among the components. The communication paths include wireless connections, wired connections, and hybrid wireless/wired connections. The communication paths also include couplings or connections to networks including local area networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), proprietary networks, interoffice or backend networks, and the Internet. Furthermore, the communication paths include removable fixed mediums like floppy disks, hard disk drives, and CD-ROM disks, as well as flash RAM, Universal Serial Bus (USB) connections, RS-232 connections, telephone lines, buses, and electronic mail messages.
Aspects of the apparatus, systems and methods for generating voltage excitation waveforms and corresponding systems and methods described herein may be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs). Some other possibilities for implementing aspects of the apparatus, systems and methods for generating voltage excitation waveforms and corresponding systems and methods include: microcontrollers with memory (such as electronically erasable programmable read only memory (EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the apparatus, systems and methods for generating voltage excitation waveforms and corresponding systems and methods may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. Of course the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.
It should be noted that any system, method, and/or other components disclosed herein may be described using computer aided design tools and expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.). When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of the above described components may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
The above description of embodiments of the apparatus, systems and methods for generating voltage excitation waveforms is not intended to be exhaustive or to limit the systems and methods to the precise forms disclosed. While specific embodiments of, and examples for, the apparatus, systems and methods for generating voltage excitation waveforms and corresponding systems and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems and methods, as those skilled in the relevant art will recognize. The teachings of the apparatus, systems and methods for generating voltage excitation waveforms and corresponding systems and methods provided herein can be applied to other systems and methods, not only for the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the apparatus, systems and methods for generating voltage excitation waveforms and corresponding systems and methods in light of the above detailed description.
This application is a continuation application of U.S. application Ser. No. 15/210,498, filed Jul. 14, 2016.
Number | Name | Date | Kind |
---|---|---|---|
2741224 | Putnam | Apr 1956 | A |
3182211 | Maratuech et al. | May 1965 | A |
3184730 | Irish | May 1965 | A |
3500373 | Arthur | Mar 1970 | A |
3735757 | MacFarland | May 1973 | A |
4426884 | Polchaninoff | Jan 1984 | A |
4783646 | Matsuzaki | Nov 1988 | A |
4794402 | Gonda et al. | Dec 1988 | A |
4802482 | Gonda et al. | Feb 1989 | A |
4947795 | Farkas | Aug 1990 | A |
4969418 | Jones | Nov 1990 | A |
5054428 | Farkus | Oct 1991 | A |
5159580 | Andersen et al. | Oct 1992 | A |
5161485 | McDade | Nov 1992 | A |
5182032 | Dickie et al. | Jan 1993 | A |
5207178 | McDade et al. | May 1993 | A |
5207179 | Arthur et al. | May 1993 | A |
5526006 | Akahane et al. | Jun 1996 | A |
5559498 | Westrick et al. | Sep 1996 | A |
5576972 | Harrison | Nov 1996 | A |
5586521 | Kelley | Dec 1996 | A |
5601054 | So | Feb 1997 | A |
5642690 | Calabrese et al. | Jul 1997 | A |
5794569 | Titus et al. | Aug 1998 | A |
5815077 | Christiansen | Sep 1998 | A |
5844489 | Yarnall, Jr. et al. | Dec 1998 | A |
5857433 | Files | Jan 1999 | A |
5870029 | Otto et al. | Feb 1999 | A |
5872516 | Bonge, Jr. | Feb 1999 | A |
5886669 | Kita | Mar 1999 | A |
5923254 | Brune | Jul 1999 | A |
5927233 | Mainini et al. | Jul 1999 | A |
5933079 | Frink | Aug 1999 | A |
5934225 | Williams | Aug 1999 | A |
5949350 | Girard et al. | Sep 1999 | A |
5957983 | Tominaga | Sep 1999 | A |
5982291 | Williams et al. | Nov 1999 | A |
6016100 | Boyd et al. | Jan 2000 | A |
6019066 | Taylor | Feb 2000 | A |
6028531 | Wanderlich | Feb 2000 | A |
6047664 | Lyerly | Apr 2000 | A |
6067018 | Skelton et al. | May 2000 | A |
6075443 | Schepps et al. | Jun 2000 | A |
6166643 | Janning et al. | Dec 2000 | A |
6170439 | Duncan et al. | Jan 2001 | B1 |
6184790 | Gerig | Feb 2001 | B1 |
6196990 | Zicherman | Mar 2001 | B1 |
6204762 | Dering et al. | Mar 2001 | B1 |
6215314 | Frankewich, Jr. | Apr 2001 | B1 |
6230031 | Barber | May 2001 | B1 |
6230661 | Yarnall, Jr. et al. | May 2001 | B1 |
6232880 | Anderson et al. | May 2001 | B1 |
6271757 | Touchton et al. | Aug 2001 | B1 |
6327999 | Gerig | Dec 2001 | B1 |
6353390 | Beri et al. | Mar 2002 | B1 |
6360697 | Williams | Mar 2002 | B1 |
6360698 | Stapelfeld et al. | Mar 2002 | B1 |
6404338 | Koslar | Jun 2002 | B1 |
6415742 | Lee et al. | Jul 2002 | B1 |
6426464 | Spellman et al. | Jul 2002 | B1 |
6427079 | Schneider et al. | Jul 2002 | B1 |
6431121 | Mainini et al. | Aug 2002 | B1 |
6431122 | Westrick et al. | Aug 2002 | B1 |
6441778 | Durst et al. | Aug 2002 | B1 |
6459378 | Gerig | Oct 2002 | B2 |
6487992 | Hollis | Dec 2002 | B1 |
6561137 | Oakman | May 2003 | B2 |
6581546 | Dalland et al. | Jun 2003 | B1 |
6588376 | Groh | Jul 2003 | B1 |
6598563 | Kim et al. | Jul 2003 | B2 |
6600422 | Barry et al. | Jul 2003 | B2 |
6637376 | Lee et al. | Oct 2003 | B2 |
6657544 | Barry et al. | Dec 2003 | B2 |
6668760 | Groh et al. | Dec 2003 | B2 |
6700492 | Touchton et al. | Mar 2004 | B2 |
6747555 | Fellenstein et al. | Jun 2004 | B2 |
6799537 | Liao | Oct 2004 | B1 |
6807720 | Brune et al. | Oct 2004 | B2 |
6820025 | Bachmann et al. | Nov 2004 | B2 |
6825768 | Stapelfeld et al. | Nov 2004 | B2 |
6830012 | Swan | Dec 2004 | B1 |
6833790 | Mejia et al. | Dec 2004 | B2 |
6874447 | Kobett | Apr 2005 | B1 |
6888502 | Beigel et al. | May 2005 | B2 |
6901883 | Gillis et al. | Jun 2005 | B2 |
6903682 | Maddox | Jun 2005 | B1 |
6907844 | Crist et al. | Jun 2005 | B1 |
6907883 | Lin | Jun 2005 | B2 |
6921089 | Groh et al. | Jul 2005 | B2 |
6923146 | Korbitz et al. | Aug 2005 | B2 |
6928958 | Crist et al. | Aug 2005 | B2 |
6937647 | Boyd et al. | Aug 2005 | B1 |
6956483 | Schmitt et al. | Oct 2005 | B2 |
6970090 | Sciarra | Nov 2005 | B1 |
7061385 | Fong et al. | Jun 2006 | B2 |
7079024 | Alarcon et al. | Jul 2006 | B2 |
7114466 | Mayer | Oct 2006 | B1 |
7142167 | Rochelle et al. | Nov 2006 | B2 |
7164354 | Panzer | Jan 2007 | B1 |
7173535 | Bach et al. | Feb 2007 | B2 |
7198009 | Crist et al. | Apr 2007 | B2 |
7222589 | Lee, IV et al. | May 2007 | B2 |
7249572 | Goetzl et al. | Jul 2007 | B2 |
7252051 | Napolez et al. | Aug 2007 | B2 |
7259718 | Patterson et al. | Aug 2007 | B2 |
7267081 | Steinbacher | Sep 2007 | B2 |
7275502 | Boyd et al. | Oct 2007 | B2 |
7296540 | Boyd | Nov 2007 | B2 |
7319397 | Chung et al. | Jan 2008 | B2 |
7328671 | Kates | Feb 2008 | B2 |
7339474 | Easley et al. | Mar 2008 | B2 |
7382328 | Lee, IV et al. | Jun 2008 | B2 |
7394390 | Gerig | Jul 2008 | B2 |
7395966 | Braiman | Jul 2008 | B2 |
7404379 | Nottingham et al. | Jul 2008 | B2 |
7411492 | Greenberg et al. | Aug 2008 | B2 |
7426906 | Nottingham et al. | Sep 2008 | B2 |
7434541 | Kates | Oct 2008 | B2 |
7443298 | Cole et al. | Oct 2008 | B2 |
7477155 | Bach et al. | Jan 2009 | B2 |
7503285 | Mainini et al. | Mar 2009 | B2 |
7518275 | Suzuki et al. | Apr 2009 | B2 |
7518522 | So et al. | Apr 2009 | B2 |
7538679 | Shanks | May 2009 | B2 |
7546817 | Moore | Jun 2009 | B2 |
7552699 | Moore | Jun 2009 | B2 |
7562640 | Lalor | Jul 2009 | B2 |
7565885 | Moore | Jul 2009 | B2 |
7574979 | Nottingham et al. | Aug 2009 | B2 |
7583931 | Eu et al. | Sep 2009 | B2 |
7602302 | Hokuf et al. | Oct 2009 | B2 |
7612668 | Harvey | Nov 2009 | B2 |
7616124 | Paessel et al. | Nov 2009 | B2 |
7656291 | Rochelle et al. | Feb 2010 | B2 |
7667599 | Mainini et al. | Feb 2010 | B2 |
7667607 | Gerig et al. | Feb 2010 | B2 |
7680645 | Li et al. | Mar 2010 | B2 |
7705736 | Kedziora | Apr 2010 | B1 |
7710263 | Boyd | May 2010 | B2 |
7760137 | Martucci et al. | Jul 2010 | B2 |
7779788 | Moore | Aug 2010 | B2 |
7786876 | Troxler et al. | Aug 2010 | B2 |
7804724 | Way | Sep 2010 | B2 |
7814865 | Tracy et al. | Oct 2010 | B2 |
7828221 | Kwon | Nov 2010 | B2 |
7830257 | Hassell | Nov 2010 | B2 |
7834769 | Hinkle et al. | Nov 2010 | B2 |
7841301 | Mainini et al. | Nov 2010 | B2 |
7856947 | Giunta | Dec 2010 | B2 |
7864057 | Milnes et al. | Jan 2011 | B2 |
7868912 | Venetianer et al. | Jan 2011 | B2 |
7900585 | Lee et al. | Mar 2011 | B2 |
7918190 | Belcher et al. | Apr 2011 | B2 |
7944359 | Fong et al. | May 2011 | B2 |
7946252 | Lee, IV et al. | May 2011 | B2 |
7978078 | Copeland et al. | Jul 2011 | B2 |
7996983 | Lee et al. | Aug 2011 | B2 |
8011327 | Mainini et al. | Sep 2011 | B2 |
8047161 | Moore et al. | Nov 2011 | B2 |
8049630 | Chao et al. | Nov 2011 | B2 |
8065978 | Duncan et al. | Nov 2011 | B2 |
8069823 | Mainini et al. | Dec 2011 | B2 |
8098164 | Gerig et al. | Jan 2012 | B2 |
8159355 | Gerig et al. | Apr 2012 | B2 |
8185345 | Mainini | May 2012 | B2 |
8232909 | Kroeger et al. | Jul 2012 | B2 |
8240085 | Hill | Aug 2012 | B2 |
8269504 | Gerig | Sep 2012 | B2 |
8274396 | Gurley et al. | Sep 2012 | B2 |
8297233 | Rich et al. | Oct 2012 | B2 |
8342134 | Lee et al. | Jan 2013 | B2 |
8342135 | Peinetti et al. | Jan 2013 | B2 |
8430064 | Groh et al. | Apr 2013 | B2 |
8436735 | Mainini et al. | May 2013 | B2 |
8447510 | Fitzpatrick et al. | May 2013 | B2 |
8451130 | Mainini | May 2013 | B2 |
8456296 | Piltonen et al. | Jun 2013 | B2 |
8483262 | Mainini et al. | Jul 2013 | B2 |
8714113 | Lee, IV et al. | May 2014 | B2 |
8715824 | Rawlings et al. | May 2014 | B2 |
8736499 | Goetzl et al. | May 2014 | B2 |
8779925 | Rich et al. | Jul 2014 | B2 |
8803692 | Goetzl et al. | Aug 2014 | B2 |
8807089 | Brown et al. | Aug 2014 | B2 |
8823513 | Jameson et al. | Sep 2014 | B2 |
8854215 | Ellis et al. | Oct 2014 | B1 |
8866605 | Gibson | Oct 2014 | B2 |
8908034 | Bordonaro | Dec 2014 | B2 |
8917172 | Charych | Dec 2014 | B2 |
8947240 | Mainini | Feb 2015 | B2 |
8967085 | Gillis et al. | Mar 2015 | B2 |
9035773 | Petersen et al. | May 2015 | B2 |
9125380 | Deutsch | Sep 2015 | B2 |
9131660 | Womble | Sep 2015 | B2 |
9186091 | Mainini et al. | Nov 2015 | B2 |
9204251 | Mendelson et al. | Dec 2015 | B1 |
9307745 | Mainini | Apr 2016 | B2 |
9861076 | Rochelle et al. | Jan 2018 | B2 |
20020010390 | Guice et al. | Jan 2002 | A1 |
20020015094 | Kuwano et al. | Feb 2002 | A1 |
20020036569 | Martin | Mar 2002 | A1 |
20020092481 | Spooner | Jul 2002 | A1 |
20020103610 | Bachmann et al. | Aug 2002 | A1 |
20020196151 | Troxler | Dec 2002 | A1 |
20030034887 | Crabtree et al. | Feb 2003 | A1 |
20030035051 | Cho et al. | Feb 2003 | A1 |
20030116099 | Kim et al. | Jun 2003 | A1 |
20030169207 | Beigel et al. | Sep 2003 | A1 |
20030179140 | Patterson et al. | Sep 2003 | A1 |
20030218539 | Hight | Nov 2003 | A1 |
20040108939 | Giunta | Jun 2004 | A1 |
20040162875 | Brown | Aug 2004 | A1 |
20050000469 | Giunta et al. | Jan 2005 | A1 |
20050007251 | Crabtree et al. | Jan 2005 | A1 |
20050020279 | Markhovsky et al. | Jan 2005 | A1 |
20050035865 | Brennan et al. | Feb 2005 | A1 |
20050059909 | Burgess | Mar 2005 | A1 |
20050066912 | Korbitz et al. | Mar 2005 | A1 |
20050081797 | Laitinen et al. | Apr 2005 | A1 |
20050139169 | So et al. | Jun 2005 | A1 |
20050145196 | Crist et al. | Jul 2005 | A1 |
20050145198 | Crist et al. | Jul 2005 | A1 |
20050145200 | Napolez et al. | Jul 2005 | A1 |
20050172912 | Crist et al. | Aug 2005 | A1 |
20050217606 | Lee et al. | Oct 2005 | A1 |
20050231353 | Dipoala et al. | Oct 2005 | A1 |
20050235924 | Lee, IV et al. | Oct 2005 | A1 |
20050258715 | Schlabach et al. | Nov 2005 | A1 |
20050263106 | Steinbacher | Dec 2005 | A1 |
20050280546 | Ganley | Dec 2005 | A1 |
20050288007 | Benco et al. | Dec 2005 | A1 |
20060000015 | Duncan | Jan 2006 | A1 |
20060011145 | Kates et al. | Jan 2006 | A1 |
20060027185 | Troxler et al. | Feb 2006 | A1 |
20060092676 | Liptak et al. | May 2006 | A1 |
20060102101 | Kim | May 2006 | A1 |
20060112901 | Gomez | Jun 2006 | A1 |
20060191491 | Nottingham et al. | Aug 2006 | A1 |
20060196445 | Kates | Sep 2006 | A1 |
20060197672 | Talamas, Jr. et al. | Sep 2006 | A1 |
20060202818 | Greenberg et al. | Sep 2006 | A1 |
20070011339 | Brown | Jan 2007 | A1 |
20070103296 | Paessel et al. | May 2007 | A1 |
20070204803 | Ramsay | Sep 2007 | A1 |
20070204804 | Swanson et al. | Sep 2007 | A1 |
20070249470 | Niva et al. | Oct 2007 | A1 |
20070266959 | Brooks et al. | Nov 2007 | A1 |
20080004539 | Ross | Jan 2008 | A1 |
20080017133 | Moore | Jan 2008 | A1 |
20080036610 | Hokuf et al. | Feb 2008 | A1 |
20080055154 | Martucci et al. | Mar 2008 | A1 |
20080055155 | Hensley et al. | Mar 2008 | A1 |
20080058670 | Mainini et al. | Mar 2008 | A1 |
20080061978 | Huang | Mar 2008 | A1 |
20080061990 | Milnes et al. | Mar 2008 | A1 |
20080119757 | Winter | May 2008 | A1 |
20080129457 | Ritter et al. | Jun 2008 | A1 |
20080141949 | Taylor | Jun 2008 | A1 |
20080143516 | Mock et al. | Jun 2008 | A1 |
20080156277 | Mainini et al. | Jul 2008 | A1 |
20080163827 | Goetzl | Jul 2008 | A1 |
20080163829 | Lee et al. | Jul 2008 | A1 |
20080168949 | Belcher et al. | Jul 2008 | A1 |
20080168950 | Moore et al. | Jul 2008 | A1 |
20080186167 | Ramachandra | Aug 2008 | A1 |
20080186197 | Rochelle et al. | Aug 2008 | A1 |
20080204322 | Oswald et al. | Aug 2008 | A1 |
20080236514 | Johnson et al. | Oct 2008 | A1 |
20080252527 | Garcia | Oct 2008 | A1 |
20080272908 | Boyd | Nov 2008 | A1 |
20090000566 | Kim | Jan 2009 | A1 |
20090002188 | Greenberg | Jan 2009 | A1 |
20090012355 | Lin | Jan 2009 | A1 |
20090020002 | Williams et al. | Jan 2009 | A1 |
20090025651 | Lalor | Jan 2009 | A1 |
20090031966 | Kates | Feb 2009 | A1 |
20090082830 | Folkerts et al. | Mar 2009 | A1 |
20090102668 | Thompson et al. | Apr 2009 | A1 |
20090224909 | Derrick et al. | Sep 2009 | A1 |
20090239586 | Boeve et al. | Sep 2009 | A1 |
20090289785 | Leonard | Nov 2009 | A1 |
20090289844 | Palsgrove et al. | Nov 2009 | A1 |
20100008011 | Ogram | Jan 2010 | A1 |
20100033339 | Gurley et al. | Feb 2010 | A1 |
20100047119 | Cressy | Feb 2010 | A1 |
20100049364 | Landry et al. | Feb 2010 | A1 |
20100107985 | O'Hare | May 2010 | A1 |
20100139576 | Kim et al. | Jun 2010 | A1 |
20100154721 | Gerig et al. | Jun 2010 | A1 |
20100231391 | Dror et al. | Sep 2010 | A1 |
20100238022 | Au et al. | Sep 2010 | A1 |
20100315241 | Jow | Dec 2010 | A1 |
20110140967 | Lopez et al. | Jun 2011 | A1 |
20120000431 | Khoshkish et al. | Jan 2012 | A1 |
20120006282 | Kates | Jan 2012 | A1 |
20120037088 | Altenhofen | Feb 2012 | A1 |
20120078139 | Aldridge | Mar 2012 | A1 |
20120132151 | Touchton et al. | May 2012 | A1 |
20120165012 | Fischer et al. | Jun 2012 | A1 |
20120188370 | Bordonaro | Jul 2012 | A1 |
20120236688 | Spencer et al. | Sep 2012 | A1 |
20120312250 | Jesurum | Dec 2012 | A1 |
20130099920 | Song et al. | Apr 2013 | A1 |
20130099922 | Lohbihler | Apr 2013 | A1 |
20130141237 | Goetzl et al. | Jun 2013 | A1 |
20130157564 | Curtis et al. | Jun 2013 | A1 |
20130169441 | Wilson | Jul 2013 | A1 |
20130321159 | Schofield et al. | Dec 2013 | A1 |
20140020635 | Sayers et al. | Jan 2014 | A1 |
20140053788 | Riddell | Feb 2014 | A1 |
20140062695 | Rosen et al. | Mar 2014 | A1 |
20140069350 | Riddell | Mar 2014 | A1 |
20140073939 | Rodriguez-Llorente et al. | Mar 2014 | A1 |
20140120943 | Shima | May 2014 | A1 |
20140123912 | Menkes et al. | May 2014 | A1 |
20140132608 | Mund et al. | May 2014 | A1 |
20140174376 | Touchton et al. | Jun 2014 | A1 |
20140228649 | Rayner et al. | Aug 2014 | A1 |
20140253389 | Beauregard | Sep 2014 | A1 |
20140261235 | Rich et al. | Sep 2014 | A1 |
20140267299 | Couse | Sep 2014 | A1 |
20140275824 | Couse et al. | Sep 2014 | A1 |
20140320347 | Rochelle et al. | Oct 2014 | A1 |
20150040840 | Muetzel et al. | Feb 2015 | A1 |
20150053144 | Bianchi et al. | Feb 2015 | A1 |
20150075446 | Hu | Mar 2015 | A1 |
20150080013 | Venkatraman et al. | Mar 2015 | A1 |
20150107531 | Golden | Apr 2015 | A1 |
20150149111 | Kelly et al. | May 2015 | A1 |
20150163412 | Holley et al. | Jun 2015 | A1 |
20150172872 | Alsehly et al. | Jun 2015 | A1 |
20150173327 | Gerig et al. | Jun 2015 | A1 |
20150199490 | Iancu et al. | Jul 2015 | A1 |
20150223013 | Park et al. | Aug 2015 | A1 |
20150289111 | Ozkan et al. | Oct 2015 | A1 |
20150350848 | Eramian | Dec 2015 | A1 |
20160015005 | Brown, Jr. et al. | Jan 2016 | A1 |
20160021506 | Bonge, Jr. | Jan 2016 | A1 |
20160021850 | Stapelfeld et al. | Jan 2016 | A1 |
20160044444 | Rattner et al. | Feb 2016 | A1 |
20160094419 | Peacock et al. | Mar 2016 | A1 |
20160102879 | Guest et al. | Apr 2016 | A1 |
20160150362 | Shaprio et al. | May 2016 | A1 |
20160174099 | Goldfain | Jun 2016 | A1 |
20160178392 | Goldfain | Jun 2016 | A1 |
20160187454 | Orman et al. | Jun 2016 | A1 |
20160253987 | Chattell | Sep 2016 | A1 |
20160363664 | Mindell et al. | Dec 2016 | A1 |
20170323630 | Stickney et al. | Nov 2017 | A1 |
20180027772 | Gordon et al. | Feb 2018 | A1 |
20180094451 | Peter et al. | Apr 2018 | A1 |
20180234134 | Tang et al. | Aug 2018 | A1 |
20180235182 | Bocknek | Aug 2018 | A1 |
20180315262 | Love et al. | Nov 2018 | A1 |
20190013003 | Baughman et al. | Jan 2019 | A1 |
20190165832 | Khanduri et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
101112181 | Jan 2008 | CN |
101937015 | Jan 2011 | CN |
101112181 | Nov 2012 | CN |
102793568 | Dec 2014 | CN |
H0974774 | Mar 1997 | JP |
20130128704 | Nov 2013 | KR |
WO-02060240 | Feb 2003 | WO |
WO-2006000015 | Jan 2006 | WO |
WO-2008085812 | Jul 2008 | WO |
WO-2008140992 | Nov 2008 | WO |
WO-2009105243 | Aug 2009 | WO |
WO-2009106896 | Sep 2009 | WO |
WO-2011055004 | May 2011 | WO |
WO-2011136816 | Nov 2011 | WO |
WO-2012122607 | Sep 2012 | WO |
WO-2015015047 | Feb 2015 | WO |
WO-2016204799 | Dec 2016 | WO |
Entry |
---|
Extended European Search Report for Application No. EP17180645, dated May 9, 2018, 7 pages. |
Baba A.I., et al., “Calibrating Time of Flight in Two Way Ranging,” IEEE Xplore Digital Library, Dec. 2011, pp. 393-397. |
Extended European Search Report for European Application No. 11784149.4 dated Nov. 17, 2017, 7 pages. |
Extended European Search Report for European Application No. 15735439.0 dated Oct. 18, 2017, 9 pages. |
Extended European Search Report for European Application No. 15895839.7 dated Oct. 9, 2018, 5 pages. |
Extended European Search Report for European Application No. 17162289.7 dated Aug. 31, 2017, 7 pages. |
High Tech Products, Inc: “Human Contain Model X-10 Rechargeable Muti-function Electronic Dog Fence Ultra-system”, Internet citation, Retrieved from the Internet: URL:http://web.archive.org/web/20120112221915/http://hightechpet.com/user_Manuals/HC%20X-10_Press.pdf retrieved on Apr. 10, 2017], Apr. 28, 2012, pp. 1-32, XP008184171. |
International Preliminary Report for Patentability Chapter II for International Application No. PCT/US2014/024875 dated Mar. 12, 2015, 17 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/043653 dated Dec. 19, 2017, 14 pages. |
International Search Report and Written Opinion for Application No. PCT/US2018/013737 dated Mar. 7, 2018, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2018/013738 dated Mar. 20, 2018, 6 pages. |
International Search Report and Written Opinion for Application No. PCT/US2018/013740 dated Mar. 20, 2018, 6 pages. |
International Search Report and Written Opinion for Application No. PCT/US2018/019887 dated May 8, 2018, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2014/024875 dated Jun. 27, 2014, 12 pages. |
International Search Report for International Application No. PCT/US2014/020344 dated Jun. 5, 2014, 2 pages. |
International Search Report for International Application No. PCT/US2014/066650 dated Feb. 19, 2015, 3 pages (Outgoing). |
International Search Report for International Application No. PCT/US2015/010864, Form PCT/ISA/210 dated Apr. 13, 2015, 2 pages. |
International Search Report for International Application No. PCT/US2015/043653, Form PCT/ISA/210 dated Oct. 23, 2015, 2 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2015/043653, Form PCT/ISA/220 dated Oct. 23, 2015, 1 page. |
Notification of Transmittal of the International Search Report and Written Opinion for the International Application No. PCT/US2014/066650 dated Feb. 19, 2015, 1 page. |
Welch et al., “An Introduction to the Kalman Filter,” Department of Computer Science, Jul. 24, 2006, pp. 1-16. |
Written Opinion for International Application No. PCT/US2014/066650 dated Feb. 19, 2015, 15 pages(outgoing). |
Written Opinion for International Application No. PCT/US2015/043653, Form PCT/ISA/237 dated Oct. 23, 2015, 13 pages. |
Written Opinion of the International Application No. PCT/US2015/010864, Form PCT/ISA/237 dated Apr. 13, 2015, 6 pages. |
Eileen—How to Protect Your Dog From Loud and Scary Sounds (Year: 2013). |
Number | Date | Country | |
---|---|---|---|
20190204860 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15210498 | Jul 2016 | US |
Child | 16295231 | US |