1. Technical Field
The present disclosure relates to heat sink assemblies and associated retrofit methods for various air cooled mechanisms, including, but not limited to adjustable speed magnetic drive systems, fixed gap magnetic couplings, and magnetic couplings and drives that include speed trimming, torque limiting, and delayed start features.
2. Description of the Related Art
Adjustable speed magnetic drive systems operate by transmitting torque from a motor to a load across an air gap. There is no mechanical connection between the driving and driven sides of the equipment. Torque is created by the interaction of powerful rare-earth magnets on one side of the drive with induced magnetic fields on the other side. By varying the air gap spacing, the amount of torque transmitted can be controlled, thus permitting speed control.
Conventionally, adjustable speed drives of this type consist of three sets of components. A magnet rotor assembly, containing rare-earth magnets, is attached to the load. A conductor rotor assembly is attached to the motor. The conductor rotor assembly includes a rotor made of a conductive material, such as aluminum, copper, or brass. Actuation components control the air gap spacing between the magnet rotors and the conductor rotors. Relative rotation of the conductor and magnet rotor assemblies induces a powerful magnetic coupling across the air gap. Varying the air gap spacing between the magnet rotors and the conductor rotors results in controlled output speed. The output speed is adjustable, controllable, and repeatable.
The principle of magnetic induction requires relative motion between the magnets and the conductors. This means that the output speed is always less than the input speed. The difference in speed is known as slip. Typically, slip during operation at a full rating motor speed is between 1% and 3%.
The relative motion of the magnets in relation to the conductor rotor causes eddy currents to be induced in the conductor material. The eddy currents in turn create their own magnetic fields. It is the interaction of the permanent magnet fields with the induced eddy current magnetic fields that allow torque to be transferred from the magnet rotor to the conductor rotor. The electrical eddy currents in the conductor material create electrical heating in the conductor material.
Conventionally, fins are arranged on an external surface of the conductor rotors to aid in the removal of heat during operation of the drive unit.
It has been observed that the inclusion of heat sink assemblies on the conductor rotors of an adjustable speed drive generate an unacceptable amount of noise during operation. It has been further observed that by disrupting the edge geometry on fins of the heat sinks, sound levels can be reduced to acceptable ranges for both low and high speed operation of the adjustable speed drive without compromising the heat transfer benefits of the heat sinks.
A heat sink element for a device operable by relative rotation of a conductor rotor assembly and a magnet rotor assembly includes a base portion and a plurality of fins. The base portion includes a mounting face that is sized and dimensioned to be coupled to the conductor rotor assembly, and an opposing convective heat transfer face. The plurality of fins extend from the convective heat transfer face of the base portion. Adjacent fins are separated by a channel that extends along a longitudinal direction of the fins. The fins include at least one surface disruption on a top surface thereof. The surface disruption can be a notch. The surface disruption can be a triangle. The surface disruption can be a scalloped surface. The surface disruption can be a continuous curve.
An rotary unit includes a magnet rotor assembly and a conductor rotor assembly positioned relative to the magnet rotor assembly such that there is an air gap between the magnet rotor assembly and the conductor rotor assembly, and such that relative rotation of the conductor and magnet rotor assemblies induces a magnetic coupling across the air gap. A heat sink assembly is coupled to the conductor assembly. The heat sink assembly includes a plurality of fins. Adjacent fins are separated by a channel that extends along a longitudinal direction of the fins. The fins include at least one surface disruption on a top surface thereof. The heat sink assembly can include a plurality of heat sink elements that are arranged on an external surface of the conductor rotor assembly, each heat sink element including the plurality of groupings of fins. On at least one of the heat sink assemblies, the surface disruption can be a notch. On the at least one of the heat sink assemblies, the surface disruption can be a triangle. On the at least one of the heat sink assemblies, the surface disruption can be a scalloped surface. On the at least one of the heat sink assemblies, the surface disruption can be a continuous curve.
A method of reducing noise generated by a rotary member that is operable by relative rotation of a conductor rotor assembly and a magnet rotor assembly includes removing a first heat sink element from the conductor rotor assembly, the first heat sink element including a first plurality of fins that extend in a substantially radial direction relative to an axis of rotation of the conductor rotor assembly; and then coupling a second heat sink element to the conductor rotor assembly in place of the first heat sink element, the second heat sink element including a second plurality of fins that extend in a substantially radial direction relative to the axis of rotation of the conductor rotor assembly, the exposed surface area of the second plurality of fins including a surface disruption profile. The surface disruption profile can include a plurality of notches. The surface disruption profile can include a plurality of triangles. The surface disruption profile can include scalloping. The surface disruption profile can include a continuous curve.
In the drawings, identical reference numbers identify similar elements or acts.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its broadest sense, that is as meaning “and/or” unless the content clearly dictates otherwise.
The Abstract of the Disclosure provided herein is for convenience only and does not interpret the scope or meaning of the embodiments.
As noted above, it has been recognized that heat sinks on adjustable speed drives can create an undesirably loud whistling noise above a threshold rotational speed of the adjustable speed drive. As shown in Table 1, below, it has been determined that it is possible to reduce sound levels to acceptable ranges for high speed operation while still maintaining the heat transfer benefits of the heat sinks by disrupting the edge geometry on fins of the heat sinks.
As shown in table 1, an adjustable speed drive operated at 1800 RPM, a relatively high speed, with a conventional heat sink, such as the heat sink illustrated in
As is described in U.S. Provisional Patent Application No. 61/770,003, titled “Apparatus, Systems And Methods For Reducing Noise Generated By Rotating Couplings,” the entire contents of which are incorporated herein by reference, it has been further observed that: (1) by reducing the fin height on the heat sinks, sound levels can be reduced to acceptable ranges for lower speed operation of the adjustable speed drive; and (2) including slots across the fins and heat sink elements also has a favorable effect on sound level reduction, including at high speeds of operation.
Noise reduction due to the inclusion of slots is reflected in Table 1. For example, a full-height heat sink that includes five full-height slots showed a noise level of 97.0 dB(A) at 1 meter and 92.2 dB(A) at 3 meters when running an adjustable speed drive at 1800 RPM without a noise reduction enclosure. A noise reduction in more than 10 dB(A) represents a significant drop in noise generation.
However, unexpectedly, this slotted heat sink configuration resulted in an increase in the amount of noise generated when a noise reduction enclosure was added to the adjustable speed drive—99.9 dB(A) at 1 meter and 96.2 dB(A) at 3 meters. With the noise reduction enclosure in place, the noise level not only increase, but a whistle associated with a resonance frequency was audible.
It was observed that the deficiencies in the slotted configuration can be overcome by disrupting the edge geometry on fins of the heat sinks without generating full-height slots. For example, as shown in Table 1, above, a notched heat sink showed a noise level of 96.6 dB(A) at 1 meter and 91.8 dB(A) at 3 meters when running an adjustable speed drive at 1800 RPM without a noise reduction enclosure. When the adjustable speed drive is run with an noise reduction enclosure, the noise level even went down further to 90.6 dB(A) at 1 meter and 86.6 dB(A) at 3 meters. As such, the notched heat sink configuration results in reductions in noise generation both with and without a noise reduction enclosure.
Notably, the notched heat sink demonstrated similar heat dissipation performance when compared to the standard, non-modified heat sink. As such, there is no heat penalty to altering the heat sink in a manner that reduces the noise creation.
It is further noted that, in some examples, the disruptions can be offset from each other on adjacent fins, such that the disruptions are discontinuous with respect to each other when viewed in a circumferential direction of the heat sink member.
In addition to new installations, noise improvements can be achieved by replacing existing heat transfer elements with any of the improved heat transfer elements described herein. For example, full height heat transfer elements can be replaced with half-height heat transfer elements for low-speed applications. For higher speed applications, full height heat transfer elements can be replaced with slotted heat transfer elements, having the appropriate height necessary for the desired heat transfer.
Although specific reference is made to adjustable speed magnetic drive systems the heat sinks of the present disclosure can also be used in combination with other air cooled mechanisms, including, but not limited to, fixed gap magnetic couplings and magnetic couplings and drives that include speed trimming, torque limiting, and delayed start features.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | |
---|---|---|---|
61820606 | May 2013 | US |