All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
This application relates generally to the fixation or fusion of bone.
Many types of hardware are available both for the fixation of bones that are fractured and for the fixation of bones that are to fused (arthrodesed).
For example, the human hip girdle (see
The SI-Joint functions in the transmission of forces from the spine to the lower extremities, and vice-versa. The SI-Joint has been described as a pain generator for up to 22% of lower back pain.
To relieve pain generated from the SI Joint, sacroiliac joint fusion is typically indicated as surgical treatment, e.g., for degenerative sacroiliitis, inflammatory sacroiliitis, iatrogenic instability of the sacroiliac joint, osteitis condensans ilii, or traumatic fracture dislocation of the pelvis. Currently, screw and screw with plates are used for sacro-iliac fusion. At the same time the cartilage has to be removed from the “synovial joint” portion of the SI joint. This requires a large incision to approach the damaged, subluxed, dislocated, fractured, or degenerative joint.
The spine (see
The spine is made up of small bones, called vertebrae. The vertebrae protect and support the spinal cord. They also bear the majority of the weight put upon the spine.
Between each vertebra is a soft, gel-like “cushion,” called an intervertebral disc. These flat, round cushions act like shock absorbers by helping absorb pressure and keep the bones from rubbing against each other. The intervertebral disc also binds adjacent vertebrae together. The intervertebral discs are a type of joint in the spine. Intervertebral disc joints can bend and rotate a bit but do not slide as do most body joints.
Each vertebra has two other sets of joints, called facet joints (see
In this way, the spine accommodates the rhythmic motions required by humans to walk, run, swim, and perform other regular movements. The intervertebral discs and facet joints stabilize the segments of the spine while preserving the flexibility needed to turn, look around, and get around.
Degenerative changes in the spine can adversely affect the ability of each spinal segment to bear weight, accommodate movement, and provide support. When one segment deteriorates to the point of instability, it can lead to localized pain and difficulties. Segmental instability allows too much movement between two vertebrae. The excess movement of the vertebrae can cause pinching or irritation of nerve roots. It can also cause too much pressure on the facet joints, leading to inflammation. It can cause muscle spasms as the paraspinal muscles try to stop the spinal segment from moving too much. The instability eventually results in faster degeneration in this area of the spine.
Degenerative changes in the spine can also lead to spondylolysis and spondylolisthesis. Spondylolisthesis is the term used to describe when one vertebra slips forward on the one below it. This usually occurs because there is a spondylolysis (defect) in the vertebra on top. For example, a fracture or a degenerative defect in the interarticular parts of lumbar vertebra L1 may cause a forward displacement of the lumbar vertebra L5 relative to the sacral vertebra S1 (called L5-S1 spondylolisthesis). When a spondylolisthesis occurs, the facet joint can no longer hold the vertebra back. The intervertebral disc may slowly stretch under the increased stress and allow other upper vertebra to slide forward.
An untreated persistent, episodic, severely disabling back pain problem can easily ruin the active life of a patient. In many instances, pain medication, splints, or other normally-indicated treatments can be used to relieve intractable pain in a joint. However, in for severe and persistent problems that cannot be managed by these treatment options, degenerative changes in the spine may require a bone fusion surgery to stop both the associated disc and facet joint problems.
A fusion is an operation where two bones, usually separated by a joint, are allowed to grow together into one bone. The medical term for this type of fusion procedure is arthrodesis.
Lumbar fusion procedures have been used in the treatment of pain and the effects of degenerative changes in the lower back. A lumbar fusion is a fusion in the S1-L5-L4 region in the spine.
One conventional way of achieving a lumbar fusion is a procedure called anterior lumbar interbody fusion (ALIF). In this procedure, the surgeon works on the spine from the front (anterior) and removes a spinal disc in the lower (lumbar) spine. The surgeon inserts a bone graft into the space between the two vertebrae where the disc was removed (the interbody space). The goal of the procedure is to stimulate the vertebrae to grow together into one solid bone (known as fusion). Fusion creates a rigid and immovable column of bone in the problem section of the spine. This type of procedure is used to try and reduce back pain and other symptoms.
Facet joint fixation procedures have also been used for the treatment of pain and the effects of degenerative changes in the lower back. These procedures take into account that the facet joint is the only true articulation in the lumbosacral spine. In one conventional procedure for achieving facet joint fixation, the surgeon works on the spine from the back (posterior). The surgeon passes screws from the spinous process through the lamina and across the mid-point of one or more facet joints.
Conventional treatment of spondylolisthesis may include a laminectomy to provide decompression and create more room for the exiting nerve roots. This can be combined with fusion using, e.g., an autologous fibular graft, which may be performed either with or without fixation screws to hold the bone together. In some cases the vertebrae are moved back to the normal position prior to performing the fusion, and in others the vertebrae are fused where they are after the slip, due to the increased risk of injury to the nerve with moving the vertebra back to the normal position.
Currently, these procedures entail invasive open surgical techniques (anterior and/or posterior). Further, ALIF entails the surgical removal of the disc. Like all invasive open surgical procedures, such operations on the spine risk infections and require hospitalization. Invasive open surgical techniques involving the spine continue to be a challenging and difficult area.
Embodiments of the invention provide bone fixation/fusion systems, devices, and related methods for stabilizing adjacent bone segments in a minimally invasive manner. The adjacent bone segments can comprise parts of the same bone that have been fractured, or two or more individual bones separated by a space or joint. As used herein, “bone segments” or “adjacent bone regions” refer to either situation, i.e., a fracture line in a single bone (which the devices serve to fixate), or a space or joint between different bone segments (which the devices serve to arthrodese or fuse). The devices can therefore serve to perform a fixation function between two or more individual bones, or a fusion function between two or more parts of the same bone, or both functions.
One aspect of the invention provides assemblies and associated methods for the fixation or fusion of bone structures comprising first and second bone segments separated by a fracture line or joint. The assemblies and associated methods comprise an anchor body sized and configured to be introduced into the first and second bone segments. The anchor body has a distal end located in an interior region of the second bone segment; a proximal end located outside an exterior region of the first bone segment; and an intermediate region spanning the fracture line or joint between the first and second bone segments. The assemblies and associated methods also include a distal anchor secured to the interior region of the second bone segment and affixed to the distal end of the anchor body to anchor the distal end in the second bone segment. The assemblies and associated methods further include a proximal anchor secured to the exterior region of the first bone segment and affixed to the proximal end of the anchor body, which, in concert with the distal anchor, places the anchor body in compression to compress and fixate the bone segments relative to the fracture line or joint. The assemblies and associated methods also include an elongated implant structure carried by the intermediate region of the anchor body and spanning the fracture line or joint between the bone segments. The elongated implant structure includes an exterior surface region treated to provide bony in-growth or through-growth along the implant structure, to accelerate the fixation or fusion of the first and second bone segments held in compression and fixated by the anchor body.
The bone fixation/fusion systems, devices, and related methods are well suited for stabilizing adjacent bone segments in the SI-Joint.
Accordingly, another aspect of the invention provides a method for the fusion of the sacral-iliac joint between an iliac and a sacrum. The method comprises creating an insertion path through the ilium, through the sacral-iliac joint, and into the sacrum. The method includes providing an anchor body sized and configured to be introduced through the insertion path laterally into the ilium and sacrum. The anchor body has a distal end sized and configured to be located in an interior region of the sacrum; a proximal end sized and configured to be located outside an exterior region of the iliac; and an intermediate region sized and configured to span the sacral-iliac joint. The method includes providing an elongated implant structure sized and configured to be passed over the anchor body to span the sacral-iliac joint between the iliac and sacrum. The elongated implant structure includes an exterior surface region treated to provide bony in-growth or through-growth along the implant structure. The method includes introducing the anchor body through the insertion path from the ilium, through the sacral-iliac joint, and into the sacrum. The method includes anchoring the distal end of the anchor body in the interior region of the sacrum. The method includes passing the elongated implant structure over the anchor body to span the sacral-iliac joint between the ilium and sacrum, and anchoring the proximal end of the anchor body to an exterior region of the ilium, which, in concert with the anchored distal end, places the anchor body in compression to compress and fixate the sacral-iliac joint. The bony in-growth or through-growth region of the implant structure accelerates the fixation or fusion of the sacral-iliac joint held in compression and fixated by the anchor body.
Embodiments of the invention provide apparatus, systems, and methods for the fusion and/or stabilization of the lumbar spine. The apparatus, systems, and methods include one or more elongated, stem-like implant structures sized and configured for the fusion or stabilization of adjacent bone structures in the lumbar region of the spine, either across the intervertebral disc or across one or more facet joints. Each implant structure includes a region formed along at least a portion of its length to promote bony in-growth onto or into surface of the structure and/or bony growth entirely through all or a portion of the structure. The bony in-growth or through-growth region along the surface of the implant structure accelerates bony in-growth or through-growth onto, into, or through the implant structure 20. The implant structure therefore provides extra-articular/intra osseous fixation, when bone grows in and around the bony in-growth or through-growth region. Bony in-growth or through-growth onto, into, or through the implant structure helps speed up the fusion and/or stabilization process of the adjacent bone regions fixated by the implant structure.
The assemblies of one or more implant structures make possible the achievement of diverse interventions involving the fusion and/or stabilization of lumbar and sacral vertebra in a non-invasive manner, with minimal incision, and without the necessitating the removing the intervertebral disc. The representative lumbar spine interventions, which can be performed on adults or children, include, but are not limited to, lumbar interbody fusion; translaminar lumbar fusion; lumbar facet fusion; trans-iliac lumbar fusion; and the stabilization of a spondylolisthesis.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
Part I
The following describes embodiments of the invention for use in the fixation or fusion of the SI-joint and other bone segments or joints.
As shown in
The anchor body 12 is anchored at a distal end to a distal anchor screw 14 coupled to an interior bone region in one side of the space or joint. The anchor body 12 is secured at a proximal end, on the opposite side of the space or joint, to an exterior bone region by an anchor nut 16 and anchor washer 18. The distal anchor screw 14 and anchor nut 16 hold the anchor body 12 in compression and, in doing so, the anchor body 12 compresses and fixates the bone segments or adjacent bone regions.
The anchor body 12 carries within the bone regions or segments an elongated, stem-like, cannulated implant structure 20. The implant structure 20 includes an interior bore 22 that accommodates its placement by sliding over the anchor body 12. As
The anchor body 12, nut 16, and washer 18 can be formed—e.g., by machining, molding, or extrusion—from a material usable in the prosthetic arts that is capable of being placed into and holding compressive forces and that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time. The anchor body 12, nut 16, and washer 18 are intended to remain in place for a time sufficient to stabilize the fracture or fusion site. Examples of such materials include, but are not limited to, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof.
In length (see
As best shown in
The proximal region of the anchor body 12 carrying the threads 26 is sized to extend, in use, a distance outside the one adjacent bone segment or region. In this way, the proximal region is, in use, exposed so that the proximal anchor nut 16 and washer 18 can be attached. The anchor nut 16 includes complementary internal screw threads that are sized and configured to mate with the external screw threads 26 on the proximal region of the anchor body 12. Representative diameters for an anchor nut 16 and anchor washer 18 for a 3.2 mm anchor body 12 are, respectively, 3.2 mm and 8 mm.
The distal region of the anchor body 12 carrying the threads 28 is sized to extend at least partially into the other adjacent bone segment or region, where it is to be coupled to the anchor screw 14, as will next be described.
Like the anchor body 12, nut and washer 18, the anchor screw 14 can likewise be formed—e.g., by machining, or molding—from a durable material usable in the prosthetic arts that is capable of being screwed into bone and that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time. The anchor screw 14, like the other components of the compression assembly 10, is intended to remain in place for a time sufficient to stabilize the fracture or fusion site. Examples of such materials include, but are not limited to, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, or a combination thereof.
The anchor screw 14 is sized to span a distance within the other adjacent bone segment or region at the terminus of the threaded distal region 28 of the anchor body 12. As best shown in
The anchor screw 14 also includes internal helical ridges or screw threads 32 formed within a bore in the anchor screw 14. The internal screw threads 32 are sized and configured to mate with the complementary external screw threads 28 on the distal region of the anchor body 12. When threaded and mated to the internal screw threads 32 of the anchor screw 14, the anchor screw 14 anchors the distal region of the anchor body 12 to bone to resists axial migration of the anchor body 12. As before described, the anchor screw 14 (on the distal end) and the anchor nut 16 and anchor washer 18 (on the proximal end) hold the anchor body 12 in compression, thereby compressing and fixating the bone segments or adjacent bone regions.
Alternatively, in place of the anchor screw 14, an internally threaded component free external screw threads can be is sized and configured to be securely affixed within the broached bore in the most distal bone segment where the broached bore terminates, e.g., by making an interference fit and/or otherwise being secured by the use of adhesives. Like the anchor screw 14, the interference fit and/or adhesives anchor the overall implant structure. Adhesives may also be used in combination with the anchor screw 14.
The implant structure 20 can be formed—e.g., by machining, molding, or extrusion—from a durable material usable in the prosthetic arts that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time. The implant structure 20, like the other components of the compression assembly 10, is intended to remain in place for a time sufficient to stabilize the fracture or fusion site. Such materials include, but are not limited to, titanium, titanium alloys, tantalum, tivanium (aluminum, vanadium, and titanium), chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof. Alternatively, the implant structure 20 may be formed from a suitable durable biologic material or a combination of metal and biologic material, such as a biocompatible bone-filling material. The implant structure 20 may be molded from a flowable biologic material, e.g., acrylic bone cement, that is cured, e.g., by UV light, to a non-flowable or solid material.
The implant structure 20 is sized according to the local anatomy. The morphology of the local structures can be generally understood by medical professionals using textbooks of human skeletal anatomy along with their knowledge of the site and its disease or injury. The physician is also able to ascertain the dimensions of the implant structure 20 based upon prior analysis of the morphology of the targeted bone region using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning.
As
As
To further enhance the creation and maintenance of compression between the bone segments or regions (see
The bony in-growth or through-growth region 24 may extend along the entire outer surface of the implant structure 20, as shown in
The bony in-growth or through-growth region 24 can be coated or wrapped or surfaced treated to provide the bony in-growth or through-growth region, or it can be formed from a material that itself inherently possesses a structure conducive to bony in-growth or through-growth, such as a porous mesh, hydroxyapetite, or other porous surface. The bony in-growth or through-growth region can include holes that allow bone to grow throughout the region.
In a preferred embodiment, the bony in-growth region or through-growth region 24 comprises a porous plasma spray coating on the implant structure 20. This creates a biomechanically rigorous fixation/fusion system, designed to support reliable fixation/fusion and acute weight bearing capacity.
The bony in-growth or through-growth region 24 may further be covered with various other coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. The entire implant structure 20 may be impregnated with such agents, if desired.
The physician identifies the bone segments or adjacent bone regions that are to be fixated or fused (arthrodesed) (see
A cannulated drill bit 40 is passed over the guide pin 38 (see
A broach 44 having the external geometry and dimensions matching the external geometry and dimensions of the implant structure 20 (which, in the illustrated embodiment, is triangular) (see
The broach 44 is withdrawn (see
The threaded screw driver 46 is unthreaded by reverse rotation from the anchor screw 14, and the guide pin 38 is removed (see
As shown in
The implant structure 20 is passed over the anchor body 12 by sliding it over the anchor body 12. As
The anchor washer 18 is passed by sliding over the exposed threaded proximal end 26 of the anchor body 12 into abutment against an exterior bone surface (see
The intimate contact created by the compression between the bony in-growth or through-growth region 24 along the surface of the implant structure 20 accelerates bony in-growth or through-growth onto, into, or through the implant structure 20, to accelerate the fusion process or fracture healing time.
As will be described in greater detail later, more than one compression stem assembly 10 can be implanted in a given bone segment. For example, as will be described later (see, e.g.,
1. Distal Anchor Plate
An alternative embodiment for the compression stem assembly 10 is shown in
In this embodiment (see
In this embodiment, instead of a threaded anchor screw 14, the distal end of the assembly 10 is anchored into bone by a generally rectilinear anchor plate 58. The anchor plate 58 is formed—e.g., by machining, or molding—from a hard, durable material usable in the prosthetic arts that is capable of cutting into and gaining purchase in bone, and that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time.
As best shown in
The anchor plate 58 also includes a bore 60 in its geometric center (see
Prior to introduction of the implant structure 20 into the broached bore 48 formed in the manner previously described (and as shown in
Upon contacting the terminus of the broached bore, the proximal end of the anchor body 58 is rotated 60.degree. degrees (as shown in
During rotation of the anchor plate 58 toward the bone-gripping position, the cutting edges 72 of the anchor plate 58 advance into bone and cut bone, seating the anchor plate 58 into bone in the bone segment or region (see
The sides 68 of the implant structure 20 at the distal end of the structure 20 preferably include cut-outs 70 (see
2. Two Piece Compressible Implant Structure
An alternative embodiment of a compressible implant structure is shown in
In this embodiment (see
As before described, each implant component 74 and can be formed—e.g., by machining, molding, or extrusion—from a durable material usable in the prosthetic arts that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time.
Each implant component 74 and 78 includes exterior bony in-growth or through-growth regions, as previously described.
Prior to introduction of the implant structure, a broached bore is formed through the bone segments in the manner previously described, and is shown in
The implant component 74 further includes a post 76 that extends through the broached bore into the most proximal bone segment, where the broached bore originates. The post 76 includes internal threads 80.
The second implant component 78 is sized and configured to be introduced into the broached bore of the most proximal bone segment. The second implant component includes an interior bore, so that the implant component 78 is installed by sliding it over the post 76 of the first implant component 74, as
An anchor screw 16 (desirably with a washer 18) includes external screw threads, which are sized and configured to mate with the complementary internal screw threads 80 within the post 76. Tightening the anchor screw 16 draws the first and second implant components 74 and 78 together, reducing the space or joint between the first and second bone segments and putting the resulting implant structure into compression, as
3. Radial Compression
(Split Implant Structure)
An alternative embodiment of an implant structure 82 is shown in
The implant structure 82 includes a body that can possess a circular or curvilinear cross section, as previously described. As before described, the implant structure 82 can be formed—e.g., by machining, molding, or extrusion—from a durable material usable in the prosthetic arts that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time.
The implant structure 82 includes one or more exterior bony in-growth or through-growth regions, as previously described.
Unlike previously described implant structures, the proximal end of the implant structure 82 includes an axial region of weakness comprising a split 84. Further included is a self-tapping screw 16. The screw 16 includes a tapered threaded body. The tapered body forms a wedge of increasing diameter in the direction toward the head of the screw 16. The screw 16 is self-tapping, being sized and configured to be progressively advanced when rotated into the split 84, while creating its own thread, as
Prior to introduction of the implant structure 84, a broached bore is formed through the bone segments in the manner previously described, and as shown in
After introduction of the implant structure 84 into the broached bore, the self-tapping screw 16 (desirably with a washer 18) is progressively advanced by rotation into the split 84. The wedge-shape of the threaded body of the screw 16 progressively urges the body of the implant structure 84 to expand axially outward along the split 84, as
It should be appreciated that an elongated, stem-like, implant structure 20 having a bony in-growth and/or through-growth region, like that shown in
Elongated, stem-like implant structures 20 like that shown in
1. Without Association of a Compression Stem Assembly
In one embodiment of a lateral approach (see
Before undertaking a lateral implantation procedure, the physician identifies the SI-Joint segments that are to be fixated or fused (arthrodesed) using, e.g., the Faber Test, or CT-guided injection, or X-ray/MRI of SI Joint.
Aided by lateral and anterior-posterior (A-P) c-arms, and with the patient lying in a prone position (on their stomach), the physician aligns the greater sciatic notches (using lateral visualization) to provide a true lateral position. A 3 cm incision is made starting aligned with the posterior cortex of the sacral canal, followed by blood-tissue separation to the ilium. From the lateral view, the guide pin 38 (with sleeve) (e.g., a Steinmann Pin) is started resting on the ilium at a position inferior to the sacrum S1 end plate and just anterior to the sacral canal. In A-P and lateral views, the guide pin 38 should be parallel to the S1 end plate at a shallow angle anterior (e.g., 15.degree. to 20.degree. off horizontal, as
Over the guide pin 38 (and through the soft tissue protector), the pilot bore 42 is drilled in the manner previously described, as is diagrammatically shown in
The shaped broach 44 is tapped into the pilot bore 42 over the guide pin 38 (and through the soft tissue protector) to create a broached bore 48 with the desired profile for the implant structure 20, which, in the illustrated embodiment, is triangular. This generally corresponds to the sequence shown diagrammatically in
As shown in
The implant structures 20 are sized according to the local anatomy. For the SI-Joint, representative implant structures 20 can range in size, depending upon the local anatomy, from about 35 mm to about 55 mm in length, and about 7 mm diameter. The morphology of the local structures can be generally understood by medical professionals using textbooks of human skeletal anatomy along with their knowledge of the site and its disease or injury. The physician is also able to ascertain the dimensions of the implant structure 20 based upon prior analysis of the morphology of the targeted bone using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning.
2. With Association of a Compression Stem Assembly
As shown in
More particularly, following formation of the broached bore 48, as previously described, the guide pin 38 is removed, while keeping the soft tissue protector in place. The anchor screw 14 of the compression stem assembly 10 is seated in bone in the sacrum S beyond the terminus of the broached bore 48, in the manner generally shown in
The threaded proximal end 28 of the anchor body 12 is threaded into and mated to the anchor screw 14 within the sacrum S1, as previously described and as shown in
As shown in
1. Without Association of a Compression Stem Assembly
As shown in
The postero-lateral approach involves less soft tissue disruption that the lateral approach, because there is less soft tissue overlying the entry point of the posterior iliac spine of the ilium. Introduction of the implant structure 20 from this region therefore makes possible a smaller, more mobile incision. Further, the implant structure 20 passes through more bone along the postero-lateral route than in a strictly lateral route, thereby involving more surface area of the SI-Joint and resulting in more fusion and better fixation of the SI-Joint. Employing the postero-lateral approach also makes it possible to bypass all nerve roots, including the L5 nerve root.
The set-up for a postero-lateral approach is generally the same as for a lateral approach. It desirably involves the identification of the SI-Joint segments that are to be fixated or fused (arthrodesed) using, e.g., the Faber Test, or CT-guided injection, or X-ray/MRI of SI Joint. It is desirable performed with the patient lying in a prone position (on their stomach) and is aided by lateral and anterior-posterior (A-P) c-arms. The same surgical tools are used to form the pilot bore 42 over a guide pin 38, except the path of the pilot bore 42 now starts from the posterior iliac spine of the ilium, angles through the SI-Joint, and terminates in the sacral alae. The pilot bore 42 is shaped into the desired profile using a broach, as before described (shown in
2. With Association of a Compression Stem Assembly
As shown in
As before explained, the set-up for a postero-lateral approach is generally the same as for a lateral approach. It is desirable performed with the patient lying in a prone position (on their stomach) and is aided by lateral and anterior-posterior (A-P) c-arms. The same surgical tools are used to form the pilot bore 42 over a guide pin 38 that starts from the posterior iliac spine of the ilium, angles through the SI-Joint, and terminates in the sacral alae. The pilot bore 42 is shaped into the desired profile using a broach 44, as before described (and as shown in
The threaded proximal end 28 of the anchor body 12 is threaded into and mated to the anchor screw 14 within the sacral alae, as previously described and as shown in
As shown in
Using either a posterior approach or a postero-lateral approach, one or more implant structures 20 can be individually inserted in a minimally invasive fashion, with or without association of compression stem assemblies 10, or combinations thereof, across the SI-Joint, as has been described. Conventional tissue access tools, obturators, cannulas, and/or drills can be used for this purpose. No joint preparation, removal of cartilage, or scraping are required before formation of the insertion path or insertion of the implant structures 20, so a minimally invasive insertion path sized approximately at or about the maximum outer diameter of the implant structures 20 need be formed.
The implant structures 20, with or without association of compression stem assemblies 10, obviate the need for autologous bone graft material, additional pedicle screws and/or rods, hollow modular anchorage screws, cannulated compression screws, threaded cages within the joint, or fracture fixation screws.
In a representative procedure, one to six, or perhaps eight, implant structures 20 might be needed, depending on the size of the patient and the size of the implant structures 20. After installation, the patient would be advised to prevent loading of the SI-Joint while fusion occurs. This could be a six to twelve week period or more, depending on the health of the patient and his or her adherence to post-op protocol.
The implant structures 20 make possible surgical techniques that are less invasive than traditional open surgery with no extensive soft tissue stripping. The lateral approach and the postero-lateral approach to the SI-Joint provide straightforward surgical approaches that complement the minimally invasive surgical techniques. The profile and design of the implant structures 20 minimize rotation and micromotion. Rigid implant structures 20 made from titanium provide immediate post-op SI Joint stability. A bony in-growth region 24 comprising a porous plasma spray coating with irregular surface supports stable bone fixation/fusion. The implant structures 20 and surgical approaches make possible the placement of larger fusion surface areas designed to maximize post-surgical weight bearing capacity and provide a biomechanically rigorous implant designed specifically to stabilize the heavily loaded SI-Joint.
The Lateral Approach and the Postero-Lateral Approach to the SI-Joint, aided by conventional lateral and/or anterior-posterior (A-P) visualization techniques, make possible the fixation of the SI-Joint in a minimally invasive manner using other forms of fixation/fusion structures. Either approach makes possible minimal incision size, with minimal soft tissue stripping, minimal tendon irritation, less pain, reduced risk of infection and complications, and minimal blood loss.
For example (see
Likewise, one or more of the screw-like structures 52 can be introduced using the postero-lateral approach described herein, entering from the posterior iliac spine of the ilium, angling through the SI-Joint, and terminating in the sacral alae. This path and resulting placement of the screw-like structure are shown in
As another example, one or more fusion cage structures 54 containing bone graft material can be introduced using the lateral approach described herein, being placed laterally through the ilium, the SI-Joint, and into the sacrum S1. This path and resulting placement of the fusion cage structures 54 are shown in
Likewise, one or more of the fusion cage structures 54 can be introduced using the postero-lateral approach described herein, entering from the posterior iliac spine of the ilium, angling through the SI-Joint, and terminating in the sacral alae. This path and resulting placement of the fusion cage structures 54 are shown in
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
Part II
The following describes embodiments of the implant for the fusion or fixation of other joints or bone segments.
The implant structure 20 can be formed—e.g., by machining, molding, or extrusion—from a durable material usable in the prosthetic arts that is not subject to significant bio-absorption or resorption by surrounding bone or tissue over time. The implant structure 20, is intended to remain in place for a time sufficient to stabilize a bone fracture or fusion site. Such materials include, but are not limited to, titanium, titanium alloys, tantalum, tivanium (aluminum, vanadium, and titanium), chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof.
Alternatively, the implant structure 20 may be formed from a suitable durable biologic material or a combination of metal and biologic material, such as a biocompatible bone-filling material. The implant structure 20 may be molded from a flowable biologic material, e.g., acrylic bone cement, that is cured, e.g., by UV light, to a non-flowable or solid material.
The implant structure 20 is sized according to the local anatomy. The morphology of the local structures can be generally understood by medical professionals using textbooks of human skeletal anatomy along with their knowledge of the site and its disease or injury. The physician is also able to ascertain the dimensions of the implant structure 20 based upon prior analysis of the morphology of the targeted bone region using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning.
As
As
As
The bony in-growth or through-growth region 24 desirably extends along the entire outer surface of the implant structure 20, as shown in
The bony in-growth or through-growth region 24 can be coated or wrapped or surfaced treated to provide the bony in-growth or through-growth region, or it can be formed from a material that itself inherently possesses a structure conducive to bony in-growth or through-growth, such as a porous mesh, hydroxyapetite, or other porous surface. The bony in-growth or through-growth region can includes holes that allow bone to grow throughout the region.
In a preferred embodiment, the bony in-growth region or through-growth region 24 comprises a porous plasma spray coating on the implant structure 20. This creates a biomechanically rigorous fixation/fusion system, designed to support reliable fixation/fusion and acute weight bearing capacity.
The bony in-growth or through-growth region 24 may further be covered with various other coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. The entire implant structure 20 may be impregnated with such agents, if desired.
The implant structure includes an interior bore that accommodates its placement in a non-invasive manner by sliding over a guide pin, as will be described in greater detail later.
As before stated, the implant structure 20 is well suited for the fusion and/or stabilization of adjacent bone structures in the lumbar region of the spine. Representative examples of the placement of the implant structure 20 in the lumbar region of the spine will now be described.
In the representative embodiment illustrated in
In the representative embodiment shown in
More particularly, in the representative embodiment shown in
Alternatively, or in combination, an array of implant structures 20 can likewise extend between L5 and S1 in the same trans-disc formation.
The implant structures 20 are sized according to the local anatomy. The implant structures 20 can be sized differently, e.g., 3 mm, 4 mm, 6 mm, etc.), to accommodate anterolateral variations in the anatomy. The implant structures 20 can be sized for implantation in adults or children.
The intimate contact created between the bony in-growth or through-growth region 24 along the surface of the implant structure 20 accelerates bony in-growth or through-growth onto, into, or through the implant structure 20, to accelerate trans-disc fusion between these lumbar vertebrae.
The physician identifies the vertebrae of the lumbar spine region that are to be fused using, e.g., the Faber Test, or CT-guided injection, or X-ray/MRI of the lumbar spine. Aided by lateral and anterior-posterior (A-P) c-arms, and with the patient lying in a prone position (on their stomach), the physician makes a 3 mm incision laterally or posterolaterally from the side (see
When the guide pin 38 is placed in the desired orientation, the physician desirable slides a soft tissue protector over the guide pin 38 before proceeding further. To simplify the illustration, the soft tissue protector is not shown in the drawings.
Through the soft tissue protector, a cannulated drill bit 40 is next passed over the guide pin 38 (see
When the pilot bore 42 is completed, the cannulated drill bit 40 is withdrawn over the guide pin 38.
Through the soft tissue protector, a broach 44 having the external geometry and dimensions matching the external geometry and dimensions of the implant structure 20 (which, in the illustrated embodiment, is triangular) (see
The broach 44 is withdrawn (see
The physician repeats the above-described procedure sequentially for the next anterolateral implant structures 20: for each implant structure, inserting the guide pin 38, forming the pilot bore, forming the broached bore, inserting the respective implant structure, withdrawing the guide pin, and then repeating the procedure for the next implant structure, and so on until all implant structures 20 are placed (as
In summary, the method for implanting the assembly of the implant structures 20 comprises (i) identifying the bone structures to be fused and/or stabilized; (ii) opening an incision; (iii) using a guide pin to established a desired implantation path through bone for the implant structure 20; (iv) guided by the guide pin, increasing the cross section of the path; (v) guided by the guide pin, shaping the cross section of the path to correspond with the cross section of the implant structure 20; (vi) inserting the implant structure 20 through the path over the guide pin; (vii) withdrawing the guide pin; (viii) repeating, as necessary, the procedure sequentially for the next implant structure(s) until all implant structures 20 contemplated are implanted; and (ix) closing the incision.
As
For purposes of illustration,
As another illustration of a representative embodiment,
As can be seen in the representative embodiment illustrated in
The first and second implant structures 20 are sized and configured according to the local anatomy. The selection of a translaminar lumbar fusion (posterior approach) is indicated when the facet joints are aligned with the sagittal plane. Removal of the intervertebral disc is not required, unless the condition of the disc warrants its removal.
A procedure incorporating the technical features of the procedure shown in
The intimate contact created between the bony in-growth or through-growth region 24 along the surface of the implant structure 20 across the facet joint accelerates bony in-growth or through-growth onto, into, or through the implant structure 20, to accelerate fusion of the facets joints between L4 and L5. Of course, translaminar lumbar fusion between L5 and S1 can be achieved using first and second implant structures in the same manner.
As can be seen in the representative embodiment illustrated in
A procedure incorporating the technical features of the procedure shown in
The intimate contact created between the bony in-growth or through-growth region 24 along the surface of the implant structure 20 across the facet joint accelerates bony in-growth or through-growth onto, into, or through the implant structure 20, to accelerate fusion of the facets joints between L4 and L5.
Of course, translaminar lumbar fusion between L5 and S1 can be achieved using first and second implant structures in the same manner.
In the representative embodiment illustrated in
As
The intimate contact created between the bony in-growth or through-growth region 24 along the surface of the implant structure 20 accelerates bony in-growth or through-growth onto, into, or through the implant structure 20, to accelerate lumbar trans-iliac fusion between vertebra L5 and S1.
A physician can employ the lateral (or posterolateral) procedure as generally shown in
The assembly as described makes possible the achievement of trans-iliac lumbar fusion using an anterior in a non-invasive manner, with minimal incision, and without necessarily removing the intervertebral disc between L5 and S1.
As
The postero-lateral approach involves less soft tissue disruption that the lateral approach, because there is less soft tissue overlying the entry point of the posterior iliac spine of the ilium. Introduction of the implant structure 20 from this region therefore makes possible a smaller, more mobile incision.
The set-up for a postero-lateral approach is generally the same as for a lateral approach. It desirably involves the identification of the lumbar region that is to be fixated or fused (arthrodesed) using, e.g., the Faber Test, or CT-guided injection, or X-ray/MRI of SI Joint. It is desirable performed with the patient lying in a prone position (on their stomach) and is aided by lateral and anterior-posterior (A-P) c-arms. The same surgical tools are used to form the pilot bore over a guide pin (e.g., on the right side), except the path of the pilot bore now starts from the posterior iliac spine of the ilium, angles through the SI-Joint, and terminates in the lumbar vertebra L5. The broached bore is formed, and the right implant 20 structure is inserted. The guide pin is withdrawn, and the procedure is repeated for the left implant structure 20, or vice versa. The incision site(s) are closed.
The assembly as described makes possible the achievement of trans-iliac lumbar fusion using a postero-lateral approach in a non-invasive manner, with minimal incision, and without necessarily removing the intervertebral disc between L5 and S1.
As shown, the implant structure 20 extends from a posterolateral region of the sacral vertebra S1, across the intervertebral disc into an opposite anterolateral region of the lumbar vertebra L5. The implant structure 20 extends in an angled path (e.g., about 20.degree. to about 40.degree. off horizontal) through the sacral vertebra S1 in a superior direction, through the adjoining intervertebral disc, and terminates in the lumbar vertebra L5.
A physician can employ a posterior approach for implanting the implant structure 20 shown in
The physician can, if desired, combine stabilization of the spondylolisthesis, as shown in
The various representative embodiments of the assemblies of the implant structures 20, as described, make possible the achievement of diverse interventions involving the fusion and/or stabilization of lumbar and sacral vertebra in a non-invasive manner, with minimal incision, and without the necessitating the removing the intervertebral disc. The representative lumbar spine interventions described can be performed on adults or children and include, but are not limited to, lumbar interbody fusion; translaminar lumbar fusion; lumbar facet fusion; trans-iliac lumbar fusion; and the stabilization of a spondylolisthesis. It should be appreciated that such interventions can be used in combination with each other and in combination with conventional fusion/fixation techniques to achieve the desired therapeutic objectives.
Significantly, the various assemblies of the implant structures 20 as described make possible lumbar interbody fusion without the necessity of removing the intervertebral disc. For example, in conventional anterior lumbar interbody fusion procedures, the removal of the intervertebral disc is a prerequisite of the procedure. However, when using the assemblies as described to achieve anterior lumbar interbody fusion, whether or not the intervertebral disc is removed depends upon the condition of the disc, and is not a prerequisite of the procedure itself. If the disc is healthy and has not appreciably degenerated, one or more implant structures 20 can be individually inserted in a minimally invasive fashion, across the intervertebral disc in the lumbar spine area, leaving the disc intact.
In all the representative interventions described, the removal of a disc, or the scraping of a disc, is at the physician's discretion, based upon the condition of the disc itself, and is not dictated by the procedure.
The bony in-growth or through-growth regions 24 of the implant structures 20 described provide both extra-articular and intra osseous fixation, when bone grows in and around the bony in-growth or through-growth regions 24.
Conventional tissue access tools, obturators, cannulas, and/or drills can be used during their implantation. No disc preparation, removal of bone or cartilage, or scraping are required before and during formation of the insertion path or insertion of the implant structures 20, so a minimally invasive insertion path sized approximately at or about the maximum outer diameter of the implant structures 20 need be formed. Still, the implant structures 20, which include the elongated bony in-growth or through-growth regions 24, significantly increase the size of the fusion area, from the relatively small surface area of a given joint between adjacent bones, to the surface area provided by an elongated bony in-growth or through-growth regions 24. The implant structures 20 can thereby increase the surface area involved in the fusion and/or stabilization by 3-fold to 4-fold, depending upon the joint involved.
The implant structures 20 can obviate the need for autologous grafts, bone graft material, additional pedicle screws and/or rods, hollow modular anchorage screws, cannulated compression screws, cages, or fixation screws. Still, in the physician's discretion, bone graft material and other fixation instrumentation can be used in combination with the implant structures 20.
The implant structures 20 make possible surgical techniques that are less invasive than traditional open surgery with no extensive soft tissue stripping and no disc removal. The assemblies make possible straightforward surgical approaches that complement the minimally invasive surgical techniques. The profile and design of the implant structures 20 minimize rotation and micro-motion. Rigid implant structures 20 made from titanium provide immediate post-op fusion stability. A bony in-growth region 24 comprising a porous plasma spray coating with irregular surface supports stable bone fixation/fusion. The implant structures 20 and surgical approaches make possible the placement of larger fusion surface areas designed to maximize post-surgical weight bearing capacity and provide a biomechanically rigorous implant designed specifically to stabilize the heavily loaded lumbar spine.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
This application is a continuation of U.S. patent application Ser. No. 15/952,102, filed Apr. 12, 2018, now abandoned, which is a continuation of U.S. patent application Ser. No. 15/195,955, filed Jun. 28, 2016, now U.S. Pat. No. 9,949,843, titled “APPARATUS, SYSTEMS, AND METHODS FOR THE FIXATION OR FUSION OF BONE”, which is a continuation-in-part of U.S. patent application Ser. No. 13/858,814, filed Apr. 8, 2013, titled “APPARATUS, SYSTEMS, AND METHODS FOR ACHIEVING TRANS-ILIAC LUMBAR FUSION,” now U.S. Pat. No. 9,375,323, which is a continuation of U.S. patent application Ser. No. 12/960,831, filed Dec. 6, 2010, titled “APPARATUS, SYSTEMS, AND METHODS FOR ACHIEVING TRANS-ILIAC LUMBAR FUSION,” now U.S. Pat. No. 8,414,648, which is a continuation-in-part of U.S. patent application Ser. No. 11/136,141, filed May 24, 2005, titled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE,” now U.S. Pat. No. 7,922,765, which is a continuation-in-part of U.S. patent application Ser. No. 10/914,629, filed Aug. 9, 2004, titled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE,” U.S. Patent Publication No. 2006-003625-A1, now abandoned. U.S. patent application Ser. No. 15/952,102, filed Apr. 12, 2018, is a continuation of U.S. patent application Ser. No. 15/195,955, filed Jun. 28, 2016, titled “APPARATUS, SYSTEMS, AND METHODS FOR THE FIXATION OR FUSION OF BONE”, now U.S. Pat. No. 9,949,843, which is also a continuation-in-part of U.S. patent application Ser. No. 14/274,486, filed May 9, 2014, now U.S. Pat. No. 9,486,264, which is a continuation of U.S. patent application Ser. No. 13/786,037, filed Mar. 5, 2013, titled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE USING COMPRESSIVE IMPLANTS,” now U.S. Pat. No. 8,734,462, which is a continuation of U.S. patent application Ser. No. 12/924,784, filed Oct. 5, 2010, titled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE USING COMPRESSIVE IMPLANTS,” now U.S. Pat. No. 8,388,667, which is a continuation-in-part of U.S. patent application Ser. No. 11/136,141, filed May 24, 2005, titled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE,” now U.S. Pat. No. 7,922,765 B2, each of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1951278 | Ericsson | Mar 1934 | A |
2136471 | Schneider | Nov 1938 | A |
2243717 | Moreira | May 1941 | A |
2414882 | Longfellow | Jul 1947 | A |
2562419 | Ferris | Jul 1951 | A |
2675801 | Bambara et al. | Apr 1954 | A |
2697433 | Zehnder | Dec 1954 | A |
3076453 | Tronzo | Feb 1963 | A |
3506982 | Steffee | Apr 1970 | A |
3694821 | Moritz | Oct 1972 | A |
3709218 | Halloran | Jan 1973 | A |
3744488 | Cox | Jul 1973 | A |
4059115 | Jumashev et al. | Nov 1977 | A |
4156943 | Collier | Jun 1979 | A |
4197645 | Scheicher | Apr 1980 | A |
4292964 | Ulrich | Oct 1981 | A |
4341206 | Perrett et al. | Jul 1982 | A |
4344190 | Lee et al. | Aug 1982 | A |
4399813 | Barber | Aug 1983 | A |
4423721 | Otte et al. | Jan 1984 | A |
4475545 | Ender | Oct 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4569338 | Edwards | Feb 1986 | A |
4612918 | Slocum | Sep 1986 | A |
4622959 | Marcus | Nov 1986 | A |
4630601 | Harder | Dec 1986 | A |
4638799 | Moore | Jan 1987 | A |
4657550 | Daher | Apr 1987 | A |
4743256 | Brantigan | May 1988 | A |
4773402 | Asher et al. | Sep 1988 | A |
4787378 | Sodhi | Nov 1988 | A |
4790303 | Steffee | Dec 1988 | A |
4834757 | Brantigan | May 1989 | A |
4846162 | Moehring | Jul 1989 | A |
4877019 | Vives | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4898186 | Ikada et al. | Feb 1990 | A |
4904261 | Dove et al. | Feb 1990 | A |
4950270 | Bowman et al. | Aug 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4981481 | Kranz et al. | Jan 1991 | A |
5034011 | Howland | Jul 1991 | A |
5034013 | Kyle et al. | Jul 1991 | A |
5035697 | Frigg | Jul 1991 | A |
5041118 | Wasilewski | Aug 1991 | A |
5053035 | McLaren | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5066296 | Chapman et al. | Nov 1991 | A |
5098434 | Serbousek | Mar 1992 | A |
5102414 | Kirsch | Apr 1992 | A |
5108397 | White | Apr 1992 | A |
5122141 | Simpson et al. | Jun 1992 | A |
5139498 | Astudillo Ley | Aug 1992 | A |
5139500 | Schwartz | Aug 1992 | A |
5147367 | Ellis | Sep 1992 | A |
5147402 | Bohler et al. | Sep 1992 | A |
5190551 | Chin et al. | Mar 1993 | A |
5197961 | Castle | Mar 1993 | A |
5242444 | MacMillan | Sep 1993 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5334205 | Cain | Aug 1994 | A |
5380325 | Lahille et al. | Jan 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5433718 | Brinker | Jul 1995 | A |
5443466 | Shah | Aug 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5470334 | Ross et al. | Nov 1995 | A |
5480402 | Kim | Jan 1996 | A |
5569249 | James et al. | Oct 1996 | A |
5591235 | Kuslich | Jan 1997 | A |
5593409 | Michelson | Jan 1997 | A |
5607424 | Tropiano | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5626616 | Speece | May 1997 | A |
5643264 | Sherman et al. | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5667510 | Combs | Sep 1997 | A |
5669909 | Zdeblick et al. | Sep 1997 | A |
5672178 | Petersen | Sep 1997 | A |
5683391 | Boyd | Nov 1997 | A |
5709683 | Bagby | Jan 1998 | A |
5713904 | Errico et al. | Feb 1998 | A |
5716358 | Ochoa et al. | Feb 1998 | A |
5725581 | Brånemark | Mar 1998 | A |
5743912 | LaHille et al. | Apr 1998 | A |
5759035 | Ricci | Jun 1998 | A |
5766174 | Perry | Jun 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5766261 | Neal et al. | Jun 1998 | A |
5788699 | Bobst et al. | Aug 1998 | A |
5800440 | Stead | Sep 1998 | A |
5868749 | Reed | Feb 1999 | A |
5897556 | Drewry et al. | Apr 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5941885 | Jackson | Aug 1999 | A |
5961522 | Mehdizadeh | Oct 1999 | A |
5961554 | Janson et al. | Oct 1999 | A |
6010507 | Rudloff | Jan 2000 | A |
6015409 | Jackson | Jan 2000 | A |
6030162 | Huebner et al. | Feb 2000 | A |
6053916 | Moore | Apr 2000 | A |
6056749 | Kuslich | May 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6086589 | Kuslich et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6120292 | Buser et al. | Sep 2000 | A |
6120504 | Brumback et al. | Sep 2000 | A |
6143031 | Knothe et al. | Nov 2000 | A |
6197062 | Fenlin | Mar 2001 | B1 |
6206924 | Timm | Mar 2001 | B1 |
6210442 | Wing et al. | Apr 2001 | B1 |
6214049 | Gayer et al. | Apr 2001 | B1 |
6221074 | Cole et al. | Apr 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6241732 | Overaker et al. | Jun 2001 | B1 |
6264657 | Urbahns et al. | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6287343 | Kuslich et al. | Sep 2001 | B1 |
6302885 | Essiger | Oct 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6306140 | Siddiqui | Oct 2001 | B1 |
6319253 | Ackeret et al. | Nov 2001 | B1 |
6406498 | Tormala et al. | Jun 2002 | B1 |
6409768 | Tepic et al. | Jun 2002 | B1 |
6451020 | Zucherman et al. | Sep 2002 | B1 |
6471707 | Miller et al. | Oct 2002 | B1 |
6485518 | Cornwall et al. | Nov 2002 | B1 |
6497707 | Bowman et al. | Dec 2002 | B1 |
6517541 | Sesic | Feb 2003 | B1 |
6520969 | Lambrecht et al. | Feb 2003 | B2 |
6524314 | Dean et al. | Feb 2003 | B1 |
6527775 | Warburton | Mar 2003 | B1 |
6556857 | Estes et al. | Apr 2003 | B1 |
6558386 | Cragg | May 2003 | B1 |
6565566 | Wagner et al. | May 2003 | B1 |
6575899 | Foley et al. | Jun 2003 | B1 |
6575991 | Chesbrough et al. | Jun 2003 | B1 |
6579293 | Chandran | Jun 2003 | B1 |
6582431 | Ray | Jun 2003 | B1 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6602293 | Biermann et al. | Aug 2003 | B1 |
6605090 | Trieu et al. | Aug 2003 | B1 |
6607530 | Carl et al. | Aug 2003 | B1 |
6620163 | Michelson | Sep 2003 | B1 |
6635059 | Randall et al. | Oct 2003 | B2 |
6666868 | Fallin | Dec 2003 | B2 |
6669529 | Scaries | Dec 2003 | B1 |
6673075 | Santilli | Jan 2004 | B2 |
6692501 | Michelson | Feb 2004 | B2 |
6712852 | Chung et al. | Mar 2004 | B1 |
6723099 | Goshert | Apr 2004 | B1 |
6723100 | Biedermann et al. | Apr 2004 | B2 |
6740118 | Eisermann et al. | May 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
D493533 | Blain | Jul 2004 | S |
6793656 | Mathews | Sep 2004 | B1 |
6827740 | Michelson | Dec 2004 | B1 |
6984235 | Huebner | Jan 2006 | B2 |
6989033 | Schmidt | Jan 2006 | B1 |
6991461 | Gittleman | Jan 2006 | B2 |
6993406 | Cesarano et al. | Jan 2006 | B1 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7118579 | Michelson | Oct 2006 | B2 |
7147666 | Grisoni | Dec 2006 | B1 |
7175663 | Stone | Feb 2007 | B1 |
7211085 | Michelson | May 2007 | B2 |
7223269 | Chappuis | May 2007 | B2 |
7314488 | Reiley | Jan 2008 | B2 |
7335205 | Aeschlimann et al. | Feb 2008 | B2 |
7338500 | Chappuis | Mar 2008 | B2 |
7396365 | Michelson | Jul 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7452369 | Barry | Nov 2008 | B2 |
7481831 | Bonutti | Jan 2009 | B2 |
7527649 | Blain | May 2009 | B1 |
7534254 | Michelson | May 2009 | B1 |
7537616 | Branch et al. | May 2009 | B1 |
7569054 | Michelson | Aug 2009 | B2 |
7569059 | Cerundolo | Aug 2009 | B2 |
7601155 | Petersen | Oct 2009 | B2 |
7608097 | Kyle | Oct 2009 | B2 |
7648509 | Stark | Jan 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7699852 | Frankel et al. | Apr 2010 | B2 |
7708761 | Petersen | May 2010 | B2 |
7727235 | Contiliano et al. | Jun 2010 | B2 |
7758646 | Khandkar et al. | Jul 2010 | B2 |
7780704 | Markworth et al. | Aug 2010 | B2 |
7846162 | Nelson et al. | Dec 2010 | B2 |
7850732 | Heinz | Dec 2010 | B2 |
7857832 | Culbert et al. | Dec 2010 | B2 |
7887565 | Michelson | Feb 2011 | B2 |
7892265 | Perez-Cruet et al. | Feb 2011 | B2 |
7901439 | Horton | Mar 2011 | B2 |
7909832 | Michelson | Mar 2011 | B2 |
7922765 | Reiley | Apr 2011 | B2 |
7942879 | Christie et al. | May 2011 | B2 |
8052728 | Hestad | Nov 2011 | B2 |
8062365 | Schwab | Nov 2011 | B2 |
8066705 | Michelson | Nov 2011 | B2 |
8066709 | Michelson | Nov 2011 | B2 |
8092505 | Sommers | Jan 2012 | B2 |
8142481 | Warnick | Mar 2012 | B2 |
8202305 | Reiley | Jun 2012 | B2 |
8221499 | Lazzara et al. | Jul 2012 | B2 |
8268099 | O'Neill et al. | Sep 2012 | B2 |
8308779 | Reiley | Nov 2012 | B2 |
8308783 | Morris et al. | Nov 2012 | B2 |
8317862 | Troger et al. | Nov 2012 | B2 |
8348950 | Assell et al. | Jan 2013 | B2 |
8350186 | Jones et al. | Jan 2013 | B2 |
8388667 | Reiley et al. | Mar 2013 | B2 |
8394129 | Morgenstern Lopez | Mar 2013 | B2 |
8398635 | Vaidya | Mar 2013 | B2 |
8414648 | Reiley | Apr 2013 | B2 |
8425570 | Reiley | Apr 2013 | B2 |
8430930 | Hunt | Apr 2013 | B2 |
8444693 | Reiley | May 2013 | B2 |
8449585 | Wallenstein et al. | May 2013 | B2 |
8467851 | Mire et al. | Jun 2013 | B2 |
8470004 | Reiley | Jun 2013 | B2 |
8475505 | Nebosky et al. | Jul 2013 | B2 |
8529608 | Terrill et al. | Sep 2013 | B2 |
8608802 | Bagga et al. | Dec 2013 | B2 |
D697209 | Walthall et al. | Jan 2014 | S |
8641737 | Matthis et al. | Feb 2014 | B2 |
8663332 | To et al. | Mar 2014 | B1 |
8672986 | Klaue et al. | Mar 2014 | B2 |
8734462 | Reiley et al. | May 2014 | B2 |
8778026 | Mauldin | Jul 2014 | B2 |
8840623 | Reiley | Sep 2014 | B2 |
8840651 | Reiley | Sep 2014 | B2 |
8845693 | Smith et al. | Sep 2014 | B2 |
8858601 | Reiley | Oct 2014 | B2 |
8920477 | Reiley | Dec 2014 | B2 |
8945190 | Culbert et al. | Feb 2015 | B2 |
8945193 | Kirschman | Feb 2015 | B2 |
8951254 | Mayer et al. | Feb 2015 | B2 |
8951293 | Glazer et al. | Feb 2015 | B2 |
8951295 | Matityahu et al. | Feb 2015 | B2 |
8961571 | Lee et al. | Feb 2015 | B2 |
8979911 | Martineau et al. | Mar 2015 | B2 |
8986348 | Reiley | Mar 2015 | B2 |
RE45484 | Foley et al. | Apr 2015 | E |
9039743 | Reiley | May 2015 | B2 |
9044321 | Mauldin et al. | Jun 2015 | B2 |
9060876 | To et al. | Jun 2015 | B1 |
9089371 | Faulhaber | Jul 2015 | B1 |
D738498 | Frey et al. | Sep 2015 | S |
9131955 | Swofford | Sep 2015 | B2 |
9149286 | Greenhalgh et al. | Oct 2015 | B1 |
9198676 | Pilgeram et al. | Dec 2015 | B2 |
9220535 | Röbling et al. | Dec 2015 | B2 |
9314348 | Emstad | Apr 2016 | B2 |
9358057 | Whipple et al. | Jun 2016 | B1 |
9375243 | Vestgaarden | Jun 2016 | B1 |
9375323 | Reiley | Jun 2016 | B2 |
9445852 | Sweeney | Sep 2016 | B2 |
9451999 | Simpson et al. | Sep 2016 | B2 |
9452065 | Lawson | Sep 2016 | B1 |
9486264 | Reiley et al. | Nov 2016 | B2 |
9492201 | Reiley | Nov 2016 | B2 |
9498264 | Harshman et al. | Nov 2016 | B2 |
9510872 | Donner et al. | Dec 2016 | B2 |
9517095 | Vaidya | Dec 2016 | B2 |
9526543 | Asfora | Dec 2016 | B2 |
9554909 | Donner | Jan 2017 | B2 |
9561063 | Reiley | Feb 2017 | B2 |
9566100 | Asfora | Feb 2017 | B2 |
9603613 | Schoenefeld et al. | Mar 2017 | B2 |
9603644 | Sweeney | Mar 2017 | B2 |
9615856 | Arnett et al. | Apr 2017 | B2 |
9622783 | Reiley et al. | Apr 2017 | B2 |
9655656 | Whipple | May 2017 | B2 |
9662124 | Assell et al. | May 2017 | B2 |
9662128 | Reiley | May 2017 | B2 |
9662157 | Schneider et al. | May 2017 | B2 |
9662158 | Reiley | May 2017 | B2 |
9675394 | Reiley | Jun 2017 | B2 |
9743969 | Reiley | Aug 2017 | B2 |
9757154 | Donner et al. | Sep 2017 | B2 |
9763695 | Mirda | Sep 2017 | B2 |
9820789 | Reiley | Nov 2017 | B2 |
9839448 | Reckling et al. | Dec 2017 | B2 |
9848892 | Biedermann et al. | Dec 2017 | B2 |
9936983 | Mesiwala et al. | Apr 2018 | B2 |
9949776 | Mobasser et al. | Apr 2018 | B2 |
9949843 | Reiley et al. | Apr 2018 | B2 |
9956013 | Reiley et al. | May 2018 | B2 |
9993276 | Russell | Jun 2018 | B2 |
10004547 | Reiley | Jun 2018 | B2 |
10058430 | Donner et al. | Aug 2018 | B2 |
10166033 | Reiley et al. | Jan 2019 | B2 |
10194962 | Schneider et al. | Feb 2019 | B2 |
10201427 | Mauldin et al. | Feb 2019 | B2 |
10219885 | Mamo et al. | Mar 2019 | B2 |
10258380 | Sinha | Apr 2019 | B2 |
10271882 | Biedermann et al. | Apr 2019 | B2 |
10335217 | Lindner | Jul 2019 | B2 |
10363140 | Mauldin et al. | Jul 2019 | B2 |
10426533 | Mauldin et al. | Oct 2019 | B2 |
10492921 | McShane, III et al. | Dec 2019 | B2 |
10531904 | Kolb | Jan 2020 | B2 |
10653454 | Frey et al. | May 2020 | B2 |
10729475 | Childs | Aug 2020 | B2 |
10743995 | Fallin et al. | Aug 2020 | B2 |
10758283 | Frey et al. | Sep 2020 | B2 |
10799367 | Vrionis et al. | Oct 2020 | B2 |
10806597 | Sournac et al. | Oct 2020 | B2 |
10842634 | Pasini et al. | Nov 2020 | B2 |
10932838 | Mehl et al. | Mar 2021 | B2 |
20010012942 | Estes et al. | Aug 2001 | A1 |
20010046518 | Sawhney | Nov 2001 | A1 |
20010047207 | Michelson | Nov 2001 | A1 |
20010049529 | Cachia et al. | Dec 2001 | A1 |
20020019637 | Frey et al. | Feb 2002 | A1 |
20020029043 | Ahrens et al. | Mar 2002 | A1 |
20020038123 | Visotsky et al. | Mar 2002 | A1 |
20020049497 | Mason | Apr 2002 | A1 |
20020077641 | Michelson | Jun 2002 | A1 |
20020082598 | Teitelbaum | Jun 2002 | A1 |
20020120275 | Schmieding et al. | Aug 2002 | A1 |
20020120335 | Angelucci et al. | Aug 2002 | A1 |
20020128652 | Ferree | Sep 2002 | A1 |
20020143334 | von Hoffmann et al. | Oct 2002 | A1 |
20020143335 | von Hoffmann et al. | Oct 2002 | A1 |
20020151903 | Takei et al. | Oct 2002 | A1 |
20020169507 | Malone | Nov 2002 | A1 |
20020183858 | Contiliano et al. | Dec 2002 | A1 |
20020198527 | Mückter | Dec 2002 | A1 |
20030018336 | Vandewalle | Jan 2003 | A1 |
20030032961 | Pelo et al. | Feb 2003 | A1 |
20030050642 | Schmieding et al. | Mar 2003 | A1 |
20030065332 | TenHuisen et al. | Apr 2003 | A1 |
20030074000 | Roth et al. | Apr 2003 | A1 |
20030078660 | Clifford et al. | Apr 2003 | A1 |
20030083668 | Rogers et al. | May 2003 | A1 |
20030083688 | Simonson | May 2003 | A1 |
20030088251 | Braun et al. | May 2003 | A1 |
20030097131 | Schon et al. | May 2003 | A1 |
20030139815 | Grooms et al. | Jul 2003 | A1 |
20030181979 | Ferree | Sep 2003 | A1 |
20030181982 | Kuslich | Sep 2003 | A1 |
20030199983 | Michelson | Oct 2003 | A1 |
20030229358 | Errico et al. | Dec 2003 | A1 |
20030233146 | Grinberg et al. | Dec 2003 | A1 |
20030233147 | Nicholson et al. | Dec 2003 | A1 |
20040010315 | Song | Jan 2004 | A1 |
20040024458 | Senegas et al. | Feb 2004 | A1 |
20040034422 | Errico et al. | Feb 2004 | A1 |
20040073216 | Lieberman | Apr 2004 | A1 |
20040073314 | White et al. | Apr 2004 | A1 |
20040082955 | Zirkle | Apr 2004 | A1 |
20040087948 | Suddaby | May 2004 | A1 |
20040097927 | Yeung et al. | May 2004 | A1 |
20040106925 | Culbert | Jun 2004 | A1 |
20040117022 | Marnay et al. | Jun 2004 | A1 |
20040127990 | Bartish, Jr. et al. | Jul 2004 | A1 |
20040138750 | Mitchell | Jul 2004 | A1 |
20040138753 | Ferree | Jul 2004 | A1 |
20040147929 | Biedermann et al. | Jul 2004 | A1 |
20040158324 | Lange | Aug 2004 | A1 |
20040176287 | Harrison et al. | Sep 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040181282 | Zucherman et al. | Sep 2004 | A1 |
20040186572 | Lange et al. | Sep 2004 | A1 |
20040210221 | Kozak et al. | Oct 2004 | A1 |
20040225360 | Malone | Nov 2004 | A1 |
20040230305 | Gorensek et al. | Nov 2004 | A1 |
20040260286 | Ferree | Dec 2004 | A1 |
20040267369 | Lyons et al. | Dec 2004 | A1 |
20050015059 | Sweeney | Jan 2005 | A1 |
20050015146 | Louis et al. | Jan 2005 | A1 |
20050033435 | Belliard et al. | Feb 2005 | A1 |
20050049590 | Alleyne et al. | Mar 2005 | A1 |
20050055023 | Sohngen et al. | Mar 2005 | A1 |
20050075641 | Singhatat et al. | Apr 2005 | A1 |
20050080415 | Keyer et al. | Apr 2005 | A1 |
20050107878 | Conchy | May 2005 | A1 |
20050112397 | Rolfe et al. | May 2005 | A1 |
20050113919 | Cragg et al. | May 2005 | A1 |
20050124993 | Chappuis | Jun 2005 | A1 |
20050131409 | Chervitz et al. | Jun 2005 | A1 |
20050137605 | Assell et al. | Jun 2005 | A1 |
20050143837 | Ferree | Jun 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050159749 | Levy et al. | Jul 2005 | A1 |
20050159812 | Dinger et al. | Jul 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050192572 | Abdelgany et al. | Sep 2005 | A1 |
20050216082 | Wilson | Sep 2005 | A1 |
20050228384 | Zucherman et al. | Oct 2005 | A1 |
20050246021 | Ringeisen et al. | Nov 2005 | A1 |
20050251146 | Martz et al. | Nov 2005 | A1 |
20050273101 | Schumacher | Dec 2005 | A1 |
20050277940 | Neff | Dec 2005 | A1 |
20060036247 | Michelson | Feb 2006 | A1 |
20060036251 | Reiley | Feb 2006 | A1 |
20060036252 | Baynham et al. | Feb 2006 | A1 |
20060054171 | Dall | Mar 2006 | A1 |
20060058793 | Michelson | Mar 2006 | A1 |
20060058800 | Ainsworth et al. | Mar 2006 | A1 |
20060062825 | Maccecchini | Mar 2006 | A1 |
20060084986 | Grinberg et al. | Apr 2006 | A1 |
20060089656 | Allard et al. | Apr 2006 | A1 |
20060111779 | Petersen | May 2006 | A1 |
20060129247 | Brown et al. | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060161163 | Shino | Jul 2006 | A1 |
20060178673 | Curran | Aug 2006 | A1 |
20060195094 | McGraw et al. | Aug 2006 | A1 |
20060217717 | Whipple | Sep 2006 | A1 |
20060241776 | Brown et al. | Oct 2006 | A1 |
20060271054 | Sucec et al. | Nov 2006 | A1 |
20060293662 | Boyer, II et al. | Dec 2006 | A1 |
20070027544 | McCord et al. | Feb 2007 | A1 |
20070038219 | Matthis et al. | Feb 2007 | A1 |
20070049933 | Ahn et al. | Mar 2007 | A1 |
20070066977 | Assell et al. | Mar 2007 | A1 |
20070083265 | Malone | Apr 2007 | A1 |
20070088362 | Bonutti et al. | Apr 2007 | A1 |
20070093841 | Hoogland | Apr 2007 | A1 |
20070093898 | Schwab et al. | Apr 2007 | A1 |
20070106383 | Abdou | May 2007 | A1 |
20070149976 | Hale et al. | Jun 2007 | A1 |
20070156144 | Ulrich et al. | Jul 2007 | A1 |
20070156241 | Reiley et al. | Jul 2007 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070161989 | Heinz et al. | Jul 2007 | A1 |
20070173820 | Trieu | Jul 2007 | A1 |
20070219634 | Greenhalgh et al. | Sep 2007 | A1 |
20070233080 | Na et al. | Oct 2007 | A1 |
20070233146 | Henniges et al. | Oct 2007 | A1 |
20070233247 | Schwab | Oct 2007 | A1 |
20070250166 | McKay | Oct 2007 | A1 |
20070270879 | Isaza et al. | Nov 2007 | A1 |
20070282443 | Globerman et al. | Dec 2007 | A1 |
20080021454 | Chao et al. | Jan 2008 | A1 |
20080021455 | Chao et al. | Jan 2008 | A1 |
20080021456 | Gupta et al. | Jan 2008 | A1 |
20080021461 | Barker et al. | Jan 2008 | A1 |
20080021480 | Chin et al. | Jan 2008 | A1 |
20080065093 | Assell et al. | Mar 2008 | A1 |
20080065215 | Reiley | Mar 2008 | A1 |
20080071356 | Greenhalgh et al. | Mar 2008 | A1 |
20080109083 | Van Hoeck et al. | May 2008 | A1 |
20080125868 | Branemark et al. | May 2008 | A1 |
20080132901 | Recoules-Arche et al. | Jun 2008 | A1 |
20080140082 | Erdem et al. | Jun 2008 | A1 |
20080147079 | Chin et al. | Jun 2008 | A1 |
20080154374 | Labrom | Jun 2008 | A1 |
20080161810 | Melkent | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080234758 | Fisher et al. | Sep 2008 | A1 |
20080255562 | Gil et al. | Oct 2008 | A1 |
20080255618 | Fisher et al. | Oct 2008 | A1 |
20080255622 | Mickiewicz et al. | Oct 2008 | A1 |
20080255664 | Hogendijk et al. | Oct 2008 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
20080255667 | Horton | Oct 2008 | A1 |
20080275454 | Geibel | Nov 2008 | A1 |
20080294202 | Peterson et al. | Nov 2008 | A1 |
20080306554 | McKinley | Dec 2008 | A1 |
20090012529 | Blain et al. | Jan 2009 | A1 |
20090018660 | Roush | Jan 2009 | A1 |
20090024174 | Stark | Jan 2009 | A1 |
20090036927 | Vestgaarden | Feb 2009 | A1 |
20090037148 | Lin et al. | Feb 2009 | A1 |
20090043393 | Duggal et al. | Feb 2009 | A1 |
20090082810 | Bhatnagar et al. | Mar 2009 | A1 |
20090082869 | Slemker et al. | Mar 2009 | A1 |
20090099602 | Aflatoon | Apr 2009 | A1 |
20090099610 | Johnson et al. | Apr 2009 | A1 |
20090105770 | Berrevooets et al. | Apr 2009 | A1 |
20090118771 | Gonzalez-Hernandez | May 2009 | A1 |
20090131986 | Lee et al. | May 2009 | A1 |
20090138053 | Assell et al. | May 2009 | A1 |
20090157119 | Hale | Jun 2009 | A1 |
20090163920 | Hochschuler et al. | Jun 2009 | A1 |
20090187247 | Metcalf, Jr. et al. | Jul 2009 | A1 |
20090216238 | Stark | Aug 2009 | A1 |
20090270929 | Suddaby | Oct 2009 | A1 |
20090287254 | Nayet et al. | Nov 2009 | A1 |
20090312798 | Varela | Dec 2009 | A1 |
20090319043 | McDevitt et al. | Dec 2009 | A1 |
20090324678 | Thorne et al. | Dec 2009 | A1 |
20100003638 | Collins et al. | Jan 2010 | A1 |
20100022535 | Lee et al. | Jan 2010 | A1 |
20100076502 | Guyer et al. | Mar 2010 | A1 |
20100081107 | Bagambisa et al. | Apr 2010 | A1 |
20100094290 | Vaidya | Apr 2010 | A1 |
20100094295 | Schnieders et al. | Apr 2010 | A1 |
20100094420 | Grohowski | Apr 2010 | A1 |
20100106194 | Bonutti et al. | Apr 2010 | A1 |
20100106195 | Serhan et al. | Apr 2010 | A1 |
20100114174 | Jones et al. | May 2010 | A1 |
20100114317 | Lambrecht et al. | May 2010 | A1 |
20100131011 | Stark | May 2010 | A1 |
20100137990 | Apatsidis et al. | Jun 2010 | A1 |
20100145461 | Landry et al. | Jun 2010 | A1 |
20100160977 | Gephart et al. | Jun 2010 | A1 |
20100168798 | Clineff et al. | Jul 2010 | A1 |
20100191292 | DeMeo et al. | Jul 2010 | A1 |
20100262242 | Chavatte et al. | Oct 2010 | A1 |
20100268228 | Petersen | Oct 2010 | A1 |
20100280619 | Yuan et al. | Nov 2010 | A1 |
20100280622 | McKinley | Nov 2010 | A1 |
20100286778 | Eisermann et al. | Nov 2010 | A1 |
20100331851 | Huene | Dec 2010 | A1 |
20100331893 | Geist et al. | Dec 2010 | A1 |
20110009869 | Marino et al. | Jan 2011 | A1 |
20110022089 | Assell et al. | Jan 2011 | A1 |
20110029019 | Ainsworth et al. | Feb 2011 | A1 |
20110040362 | Godara et al. | Feb 2011 | A1 |
20110046737 | Teisen | Feb 2011 | A1 |
20110060373 | Russell et al. | Mar 2011 | A1 |
20110060375 | Bonutti | Mar 2011 | A1 |
20110066190 | Schaller et al. | Mar 2011 | A1 |
20110082551 | Kraus | Apr 2011 | A1 |
20110093020 | Wu | Apr 2011 | A1 |
20110098747 | Donner et al. | Apr 2011 | A1 |
20110098816 | Jacob et al. | Apr 2011 | A1 |
20110098817 | Eckhardt et al. | Apr 2011 | A1 |
20110106175 | Rezach | May 2011 | A1 |
20110153018 | Walters et al. | Jun 2011 | A1 |
20110160866 | Laurence et al. | Jun 2011 | A1 |
20110178561 | Roh | Jul 2011 | A1 |
20110184417 | Kitch et al. | Jul 2011 | A1 |
20110184518 | Trieu | Jul 2011 | A1 |
20110184519 | Trieu | Jul 2011 | A1 |
20110184520 | Trieu | Jul 2011 | A1 |
20110196372 | Murase | Aug 2011 | A1 |
20110230966 | Trieu | Sep 2011 | A1 |
20110238074 | Ek | Sep 2011 | A1 |
20110238124 | Richelsoph | Sep 2011 | A1 |
20110238181 | Trieu | Sep 2011 | A1 |
20110245930 | Alley et al. | Oct 2011 | A1 |
20110257755 | Bellemere et al. | Oct 2011 | A1 |
20110264229 | Donner | Oct 2011 | A1 |
20110276098 | Biedermann et al. | Nov 2011 | A1 |
20110295272 | Assell et al. | Dec 2011 | A1 |
20110295370 | Suh et al. | Dec 2011 | A1 |
20110313471 | McLean et al. | Dec 2011 | A1 |
20110313532 | Hunt | Dec 2011 | A1 |
20110319995 | Voellmicke et al. | Dec 2011 | A1 |
20120004730 | Castro | Jan 2012 | A1 |
20120083887 | Purcell et al. | Apr 2012 | A1 |
20120095560 | Donner | Apr 2012 | A1 |
20120179256 | Reiley | Jul 2012 | A1 |
20120191191 | Trieu | Jul 2012 | A1 |
20120226318 | Wenger et al. | Sep 2012 | A1 |
20120253398 | Metcalf et al. | Oct 2012 | A1 |
20120259372 | Glazer et al. | Oct 2012 | A1 |
20120271424 | Crawford | Oct 2012 | A1 |
20120277866 | Kalluri et al. | Nov 2012 | A1 |
20120296428 | Donner | Nov 2012 | A1 |
20120323285 | Assell et al. | Dec 2012 | A1 |
20130018427 | Pham et al. | Jan 2013 | A1 |
20130030456 | Assell et al. | Jan 2013 | A1 |
20130030529 | Hunt | Jan 2013 | A1 |
20130035727 | Datta | Feb 2013 | A1 |
20130053852 | Greenhalgh et al. | Feb 2013 | A1 |
20130053854 | Schoenefeld et al. | Feb 2013 | A1 |
20130053902 | Trudeau | Feb 2013 | A1 |
20130053963 | Davenport | Feb 2013 | A1 |
20130072984 | Robinson | Mar 2013 | A1 |
20130085535 | Greenhalgh et al. | Apr 2013 | A1 |
20130096683 | Kube | Apr 2013 | A1 |
20130116793 | Kloss | May 2013 | A1 |
20130123850 | Schoenefeld et al. | May 2013 | A1 |
20130123935 | Hunt et al. | May 2013 | A1 |
20130131678 | Dahners | May 2013 | A1 |
20130144343 | Arnett et al. | Jun 2013 | A1 |
20130158609 | Mikhail et al. | Jun 2013 | A1 |
20130172736 | Abdou | Jul 2013 | A1 |
20130197590 | Assell et al. | Aug 2013 | A1 |
20130203088 | Baerlecken et al. | Aug 2013 | A1 |
20130218215 | Ginn et al. | Aug 2013 | A1 |
20130218282 | Hunt | Aug 2013 | A1 |
20130231746 | Ginn et al. | Sep 2013 | A1 |
20130237988 | Mauldin | Sep 2013 | A1 |
20130245703 | Warren et al. | Sep 2013 | A1 |
20130245763 | Mauldin | Sep 2013 | A1 |
20130267836 | Mauldin et al. | Oct 2013 | A1 |
20130267961 | Mauldin et al. | Oct 2013 | A1 |
20130267989 | Mauldin et al. | Oct 2013 | A1 |
20130274890 | McKay | Oct 2013 | A1 |
20130325129 | Huang | Dec 2013 | A1 |
20140012334 | Armstrong et al. | Jan 2014 | A1 |
20140012340 | Beck et al. | Jan 2014 | A1 |
20140031934 | Trieu | Jan 2014 | A1 |
20140031935 | Donner et al. | Jan 2014 | A1 |
20140031938 | Lechmann et al. | Jan 2014 | A1 |
20140031939 | Wolfe et al. | Jan 2014 | A1 |
20140046380 | Asfora | Feb 2014 | A1 |
20140074175 | Ehler et al. | Mar 2014 | A1 |
20140088596 | Assell et al. | Mar 2014 | A1 |
20140088707 | Donner et al. | Mar 2014 | A1 |
20140121776 | Hunt | May 2014 | A1 |
20140135927 | Pavlov et al. | May 2014 | A1 |
20140142700 | Donner et al. | May 2014 | A1 |
20140172027 | Biedermann et al. | Jun 2014 | A1 |
20140200618 | Donner et al. | Jul 2014 | A1 |
20140207240 | Stoffman et al. | Jul 2014 | A1 |
20140257294 | Gedet et al. | Sep 2014 | A1 |
20140257408 | Trieu et al. | Sep 2014 | A1 |
20140276846 | Mauldin et al. | Sep 2014 | A1 |
20140276851 | Schneider et al. | Sep 2014 | A1 |
20140277139 | Vrionis et al. | Sep 2014 | A1 |
20140277165 | Katzman et al. | Sep 2014 | A1 |
20140277460 | Schifano et al. | Sep 2014 | A1 |
20140277462 | Yerby et al. | Sep 2014 | A1 |
20140277463 | Yerby et al. | Sep 2014 | A1 |
20140288649 | Hunt | Sep 2014 | A1 |
20140288650 | Hunt | Sep 2014 | A1 |
20140296982 | Cheng | Oct 2014 | A1 |
20140330382 | Mauldin | Nov 2014 | A1 |
20140364917 | Sandstrom et al. | Dec 2014 | A1 |
20150012051 | Warren et al. | Jan 2015 | A1 |
20150039037 | Donner et al. | Feb 2015 | A1 |
20150080951 | Yeh | Mar 2015 | A1 |
20150080972 | Chin et al. | Mar 2015 | A1 |
20150094765 | Donner et al. | Apr 2015 | A1 |
20150112444 | Aksu | Apr 2015 | A1 |
20150147397 | Altschuler | May 2015 | A1 |
20150150683 | Donner et al. | Jun 2015 | A1 |
20150173805 | Donner et al. | Jun 2015 | A1 |
20150173904 | Stark | Jun 2015 | A1 |
20150182268 | Donner et al. | Jul 2015 | A1 |
20150190149 | Assell et al. | Jul 2015 | A1 |
20150190187 | Parent et al. | Jul 2015 | A1 |
20150209094 | Anderson | Jul 2015 | A1 |
20150216566 | Mikhail et al. | Aug 2015 | A1 |
20150238203 | Asfora | Aug 2015 | A1 |
20150250513 | De Lavigne Sainte | Sep 2015 | A1 |
20150250611 | Schifano et al. | Sep 2015 | A1 |
20150250612 | Schifano et al. | Sep 2015 | A1 |
20150257892 | Lechmann et al. | Sep 2015 | A1 |
20150313720 | Lorio | Nov 2015 | A1 |
20150320450 | Mootien et al. | Nov 2015 | A1 |
20150320451 | Mootien et al. | Nov 2015 | A1 |
20150320469 | Biedermann et al. | Nov 2015 | A1 |
20150342753 | Donner et al. | Dec 2015 | A1 |
20160000488 | Cross, III | Jan 2016 | A1 |
20160022429 | Greenhalgh et al. | Jan 2016 | A1 |
20160095711 | Castro | Apr 2016 | A1 |
20160095721 | Schell et al. | Apr 2016 | A1 |
20160100870 | Lavigne et al. | Apr 2016 | A1 |
20160106477 | Hynes et al. | Apr 2016 | A1 |
20160106479 | Hynes et al. | Apr 2016 | A1 |
20160120661 | Schell et al. | May 2016 | A1 |
20160143671 | Jimenez | May 2016 | A1 |
20160016630 | Papangelou et al. | Jun 2016 | A1 |
20160157908 | Cawley et al. | Jun 2016 | A1 |
20160166301 | Papangelou et al. | Jun 2016 | A1 |
20160175113 | Lins | Jun 2016 | A1 |
20160184103 | Fonte et al. | Jun 2016 | A1 |
20160213487 | Wilson et al. | Jul 2016 | A1 |
20160242820 | Whipple et al. | Aug 2016 | A1 |
20160242912 | Lindsey et al. | Aug 2016 | A1 |
20160249940 | Stark | Sep 2016 | A1 |
20160287171 | Sand et al. | Oct 2016 | A1 |
20160287301 | Mehl et al. | Oct 2016 | A1 |
20160310188 | Marino et al. | Oct 2016 | A1 |
20160310197 | Black et al. | Oct 2016 | A1 |
20160324643 | Donner et al. | Nov 2016 | A1 |
20160324656 | Morris et al. | Nov 2016 | A1 |
20160374727 | Greenhalgh et al. | Dec 2016 | A1 |
20170014235 | Jones et al. | Jan 2017 | A1 |
20170020573 | Cain et al. | Jan 2017 | A1 |
20170020585 | Harshman et al. | Jan 2017 | A1 |
20170049488 | Vestgaarden | Feb 2017 | A1 |
20170086885 | Duncan et al. | Mar 2017 | A1 |
20170128083 | Germain | May 2017 | A1 |
20170128214 | Mayer | May 2017 | A1 |
20170135733 | Donner et al. | May 2017 | A1 |
20170135737 | Krause | May 2017 | A1 |
20170143513 | Sandstrom et al. | May 2017 | A1 |
20170156879 | Janowski | Jun 2017 | A1 |
20170156880 | Halverson et al. | Jun 2017 | A1 |
20170202511 | Chang et al. | Jul 2017 | A1 |
20170209155 | Petersen | Jul 2017 | A1 |
20170216036 | Cordaro | Aug 2017 | A1 |
20170224393 | Lavigne et al. | Aug 2017 | A1 |
20170246000 | Pavlov et al. | Aug 2017 | A1 |
20170258498 | Redmond et al. | Sep 2017 | A1 |
20170258506 | Redmond et al. | Sep 2017 | A1 |
20170258606 | Afzal | Sep 2017 | A1 |
20170266007 | Gelaude et al. | Sep 2017 | A1 |
20170296344 | Souza et al. | Oct 2017 | A1 |
20170303938 | Rindal et al. | Oct 2017 | A1 |
20170333205 | Joly et al. | Nov 2017 | A1 |
20180104071 | Reckling et al. | Apr 2018 | A1 |
20180177534 | Mesiwala et al. | Jun 2018 | A1 |
20180200063 | Kahmer et al. | Jul 2018 | A1 |
20180228617 | Srour et al. | Aug 2018 | A1 |
20180228621 | Reiley et al. | Aug 2018 | A1 |
20180368894 | Wieland et al. | Dec 2018 | A1 |
20190090888 | Sand et al. | Mar 2019 | A1 |
20190133613 | Reiley et al. | May 2019 | A1 |
20190133783 | Unger et al. | May 2019 | A1 |
20190142606 | Freudenberger | May 2019 | A1 |
20190159818 | Schneider et al. | May 2019 | A1 |
20190159901 | Mauldin et al. | May 2019 | A1 |
20190298528 | Lindsey et al. | Oct 2019 | A1 |
20190298542 | Kloss | Oct 2019 | A1 |
20190343640 | Donner et al. | Nov 2019 | A1 |
20190343641 | Mauldin et al. | Nov 2019 | A1 |
20190343653 | McKay | Nov 2019 | A1 |
20200000595 | Jones et al. | Jan 2020 | A1 |
20200008817 | Reiley et al. | Jan 2020 | A1 |
20200008850 | Mauldin et al. | Jan 2020 | A1 |
20200246158 | Bergey | Aug 2020 | A1 |
20200261240 | Mesiwala et al. | Aug 2020 | A1 |
20200268525 | Mesiwala et al. | Aug 2020 | A1 |
20220031474 | Reckling et al. | Feb 2022 | A1 |
20220151668 | Mauldin et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
1128944 | Aug 1996 | CN |
1190882 | Aug 1998 | CN |
1909848 | Feb 2007 | CN |
101795632 | Aug 2010 | CN |
102361601 | Feb 2012 | CN |
102011001264 | Sep 2012 | DE |
102012106336 | Jan 2014 | DE |
1287796 | Mar 2003 | EP |
2070481 | Feb 2012 | EP |
2796104 | Oct 2014 | EP |
2590576 | Oct 2015 | EP |
274923881 | Mar 2017 | EP |
2887899 | Aug 2017 | EP |
2341852 | Aug 2018 | EP |
2496162 | Oct 2018 | EP |
3616634 | Mar 2020 | EP |
2408389 | Apr 2021 | EP |
59200642 | Nov 1984 | JP |
05-176942 | Jul 1993 | JP |
05184615 | Jul 1993 | JP |
09149906 | Oct 1997 | JP |
10-85231 | Apr 1998 | JP |
11318931 | Nov 1999 | JP |
2002509753 | Apr 2002 | JP |
2003511198 | Mar 2003 | JP |
2003533329 | Nov 2003 | JP |
2003534046 | Nov 2003 | JP |
2004121841 | Apr 2004 | JP |
2004512895 | Apr 2004 | JP |
2004516866 | Jun 2004 | JP |
2006506181 | Feb 2006 | JP |
2007535973 | Dec 2007 | JP |
2008540036 | Nov 2008 | JP |
2009521990 | Jun 2009 | JP |
2009533159 | Sep 2009 | JP |
2010137016 | Jun 2010 | JP |
2015510506 | Apr 2015 | JP |
WO9731517 | Aug 1997 | WO |
WO0117445 | Mar 2001 | WO |
WO0238054 | May 2002 | WO |
WO03007839 | Jan 2003 | WO |
WO0402344 | Jan 2004 | WO |
WO2004043277 | May 2004 | WO |
WO2005009729 | Feb 2005 | WO |
WO2006003316 | Jan 2006 | WO |
WO2006023793 | Mar 2006 | WO |
WO2006074321 | Jul 2006 | WO |
WO2009025884 | Feb 2009 | WO |
WO2009029074 | Mar 2009 | WO |
WO2010105196 | Sep 2010 | WO |
WO2011010463 | Jan 2011 | WO |
WO2011110865 | Sep 2011 | WO |
WO2011124874 | Oct 2011 | WO |
WO2011149557 | Dec 2011 | WO |
WO2012015976 | Feb 2012 | WO |
WO2013000071 | Jan 2013 | WO |
WO2013119907 | Aug 2013 | WO |
WO2017147537 | Aug 2017 | WO |
Entry |
---|
Sand et al.; U.S. Appl. No. 17/447,550 entitled “Systems and methods for decorticating the sacroloac joint,” filed Sep. 13, 2021. |
Mesiwala et al.; U.S. Appl. No. 17/217,794 entitled “Implants for spinal fization or fusion,” filed Mar. 30, 2021. |
Reckling et al.; U.S. Appl. No. 17/116,903 entitled “Sacro-iliac joint stabilizing implants and methods of implantation,” filed Dec. 9, 2020. |
Acumed; Acutrak Headless Compressioin Screw (product information); 12 pgs: © 2005; retrieved Sep. 25, 2014 from http://www.rcsed.ac.uk/fellows/lvanrensburg/classification/surgtech/acumed/manuals/acutrak-brochure%200311.pdf. |
Al-Khayer et al.; Percutaneous sacroiliac joint arthrodesis, a novel technique; J Spinal Disord Tech; vol. 21; No. 5; pp. 359-363; Jul. 2008. |
Khurana et al.; Percutaneous fusion of the sacroiliac joint with hollow modular anchorage screws, clinical and radiological outcome, J Bone Joint Surg; vol. 91-B; No. 5; pp. 627-631; May 2009. |
Lu et al.; Mechanical properties of porous materials; Journal of Porous Materials; 6(4); pp. 359-368; Nov. 1, 1999. |
Peretz et al.; The internal bony architecture of the sacrum; Spine; 23(9); pp. 971-974; May 1, 1998. |
Richards et al.; Bone density and cortical thickness in normal, osteopenic, and osteoporotic sacra; Journal of Osteoporosis; 2010(ID 504078); 5 pgs; Jun. 9, 2010. |
Wise et al.; Minimally invasive sacroiliac arthrodesis, outcomes of a new technique; J Spinal Disord Tech; vol. 21; No. 8; pp. 579-584; Dec. 2008. |
Reiley; U.S. Appl. No. 16/930,174 entitled Apparatus, system, and methods for the fixation or fusion of bone,: filed Jul. 15, 2020. |
Reiley; U.S. Appl. No. 16/932,001 entitled “Apparatus, systems, and methods for the fixation or fusion of bone,” filed Jul. 17, 2020. |
Reiley; U.S. Appl. No. 16/933,108 entitled “Apparatus, systems, and methods for the fixation or fusion of bone,” filed Jul. 20, 2020. |
Stuart et al.; U.S. Appl. No. 17/104,753 entitled “Bone stabilizing implants and methods of placement across SI joints,” filed Nov. 25, 2020. |
Schneider et al.; U.S. Appl. No. 17/443,388 entitled “Matrix implant,” filed Jul. 26, 2021. |
Mesiwala et al.; U.S. Appl. No. 17/649,265 entitled “Implants for spinal fixation and or fusion,” filed Jan. 28, 2022. |
Mesiwala et al.; U.S. Appl. No. 17/649,296 entitled “Implants for spinal fixation and or fusion,” filed Jan. 28, 2022. |
Mauldin et al.; U.S. Appl. No. 17/650,473 entitled “Fenestrated implant,” filed Feb. 9, 2022. |
Number | Date | Country | |
---|---|---|---|
20200345509 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15952102 | Apr 2018 | US |
Child | 16933084 | US | |
Parent | 15195955 | Jun 2016 | US |
Child | 15952102 | US | |
Parent | 12960831 | Dec 2010 | US |
Child | 13858814 | US | |
Parent | 15195955 | Jun 2016 | US |
Child | 15952102 | Apr 2018 | US |
Parent | 13786037 | Mar 2013 | US |
Child | 14274486 | US | |
Parent | 12924784 | Oct 2010 | US |
Child | 13786037 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13858814 | Apr 2013 | US |
Child | 15195955 | US | |
Parent | 11136141 | May 2005 | US |
Child | 12960831 | US | |
Parent | 14274486 | May 2014 | US |
Child | 15195955 | US | |
Parent | 11136141 | May 2005 | US |
Child | 12924784 | US |