The present invention is related to wind turbines for generating electric power, and more particularly, to an apparatus to detect an aerodynamic condition such as a flow separation condition in blades of wind turbines.
Renewable energy has become a major focus for energy and environment sustainability. Wind is an example of an appropriate energy source for utility-level power generation. The power generation for wind turbines may be substantially affected by the aerodynamic characteristics of wind-turbine interaction. For example, the amount of power extracted from the wind may in part depend on the aerodynamic angle of attack between the rotor blades and the incoming air flow. If, for a given wind speed, a certain maximum angle of attack is exceeded, the air flow can separate at the surface of the rotor blades and vortices may form. This effect is known as flow separation and limits the aerodynamic efficiency of the blades to extract power from the wind. This may substantially increase acoustic noise generated by the wind turbine.
Certain vibration-sensing devices for sensing such a condition have generally been installed into the blades and, as a result, their reliability tends to suffer due to the forces experienced by a rotating object. Other listening devices, which may be located outside the blade, may be subject to acoustic interference and/or may lack the ability to quickly and precisely detect where and when a flow separation condition may be initiated. For example, a flow separation condition may initially develop just in a portion of a blade path swept by a given blade. At least in view of the foregoing considerations, it would be desirable to provide a reliable and cost-effective apparatus for improved detection of such aerodynamic conditions.
The invention is explained in the following description in view of the drawings that show:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of various embodiments of the present invention. However, those skilled in the art will understand that embodiments of the present invention may be practiced without these specific details, that the present invention is not limited to the depicted embodiments, and that the present invention may be practiced in a variety of alternative embodiments. In other instances, to avoid pedantic and unnecessary description well known methods, procedures, and components have not been described in detail.
Furthermore, various operations may be described as multiple discrete steps performed in a manner that is helpful for understanding embodiments of the present invention. However, the order of description should not be construed as to imply that these operations need be performed in the order they are presented, nor that they are even order dependent. Repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may. Lastly, the terms “comprising”, “including”, “having”, and the like, as used in the present application, are intended to be synonymous unless otherwise indicated.
In one example embodiment, at least one acoustic sensor 24 may be remotely located from blade 22, such as on nacelle 16. Acoustic sensor 24 may be focused to monitor a portion 26 of a blade path 28 swept by rotor blades 22 to detect an aerodynamic condition, such as a flow separation condition, (schematically represented by a darkened area 30) affecting the blade in the portion of the blade path being monitored. This may allow acoustic sensor 24 to be focused on a radially outer portion of the blade path, particularly in the upper half of the blade path sweep, where the flow separation (e.g., incipient stall) may be expected to initiate, as may be historically and/or experimentally learned. In one example embodiment, a controller 27 (
In one example embodiment, acoustic sensor 24 may be a microphone, such as a unidirectional microphone, as schematically represented in
In one example embodiment, as may be seen in
In one example embodiment, the array 34 of acoustic sensors may comprise electronically-steerable acoustic sensors, which may be dynamically focused to the portion of the blade path where the aerodynamic condition may affect a given blade. For example, if a certain one of circumferential sector of sectors CS1-CS4 is the portion of the blade path where the aerodynamic condition may be affecting a given blade, (e.g., causing a relatively high-level of noise) such an array of electronically-steerable acoustic sensors would be able to dynamically locate such circumferential sector to detect the aerodynamic condition.
In one example embodiment, as shown in
It will be appreciated that aspects of an example inventive apparatus—as may be used to monitor a portion of a blade path swept by a rotor blade to detect an aerodynamic condition affecting the blade in the portion of the blade path being monitored—and methods disclosed herein may be implemented by any appropriate processor apparatus using any appropriate programming language or programming technique. The apparatus can take the form of any appropriate circuitry, such as may involve a hardware embodiment, a software embodiment or an embodiment comprising both hardware and software elements. In one embodiment, the apparatus may be implemented by way of software and hardware (e.g., processor, sensors, etc.), which may include but is not limited to firmware, resident software, microcode, etc. Furthermore, parts of the processor apparatus can take the form of a computer program product accessible from a processor-usable or processor-readable medium providing program code for use by or in connection with a processor or any instruction execution system. Examples of processor-readable media may include non-transitory tangible processor-readable media, such as a semiconductor or solid-state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk—read only memory (CD-ROM), compact disk—read/write (CD-RAN) and DVD. An interface display may be a tablet, flat panel display, PDA, or the like.
In one example embodiment, a processing system suitable for storing and/or executing program code may include in one example at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution. Input/output or I/O devices (including but not limited to keyboards, displays, pointing devices, etc.) can be coupled to the apparatus either directly or through intervening I/O controllers. Network adapters may also be coupled to the apparatus to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.
While various embodiments of the present invention have been shown and described herein, it will be apparent that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3881056 | Gibson | Apr 1975 | A |
3895188 | Ingraham | Jul 1975 | A |
5548656 | Weisel | Aug 1996 | A |
6498859 | Kuerti | Dec 2002 | B2 |
6619918 | Rebsdorf | Sep 2003 | B1 |
6688841 | Wobben | Feb 2004 | B1 |
7400054 | Wesselink | Jul 2008 | B2 |
7487673 | Ormel | Feb 2009 | B2 |
7896614 | Fisher | Mar 2011 | B2 |
8035241 | Subramanian | Oct 2011 | B2 |
8277185 | Menke | Oct 2012 | B2 |
20040057828 | Bosche | Mar 2004 | A1 |
20040258521 | Wobben | Dec 2004 | A1 |
20060018752 | LeMieux | Jan 2006 | A1 |
20070031237 | Bonnet | Feb 2007 | A1 |
20070124025 | Schram | May 2007 | A1 |
20070183607 | Andrews et al. | Aug 2007 | A1 |
20080069692 | Oohara | Mar 2008 | A1 |
20090311097 | Pierce | Dec 2009 | A1 |
20100098541 | Benito | Apr 2010 | A1 |
20100101328 | Enevoldsen et al. | Apr 2010 | A1 |
20100284787 | Petersen | Nov 2010 | A1 |
20110140419 | Stockner | Jun 2011 | A1 |
20120027591 | Kinzie | Feb 2012 | A1 |
20120027592 | Kinzie | Feb 2012 | A1 |
20120207589 | Fridthjof | Aug 2012 | A1 |
20130149145 | Shibata | Jun 2013 | A1 |
20150118047 | Yoon | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2075462 | Jul 2009 | EP |
2004293527 | Oct 2004 | JP |
WO 2007089136 | Aug 2007 | WO |
Entry |
---|
JP 2004293527, English Machine Translation, Translated by ProQuest Apr. 29, 2016. |
Number | Date | Country | |
---|---|---|---|
20140356164 A1 | Dec 2014 | US |