APPARATUS TO DIRECT FLOW OF FLUID

Information

  • Patent Application
  • 20250050389
  • Publication Number
    20250050389
  • Date Filed
    October 29, 2024
    9 months ago
  • Date Published
    February 13, 2025
    5 months ago
Abstract
A chemical transfer coupler including a chemical flow chamber and a probe are provided. The probe extends through the chemical flow chamber and defines a first recessed slot. The first recessed slot extends helically along the probe.
Description
TECHNICAL FIELD

This disclosure generally relates to closed transfer systems (CTS). More particularly, a closed transfer system for directing the flow of fluid to rinse a chemical is provided.


BACKGROUND

Existing CTS systems use a coupler to control the flow of fluid between a container and a sprayer tank. The container and the sprayer tank are fluidly coupled through the coupler to dispense liquid (e.g. chemicals) from the container and transfer the chemicals to the sprayer tank from the container. The chemicals are drawn through the coupler and into the sprayer tank by means of gravity or a pressure differential to extract the chemicals. Once the extraction is complete, the container and the coupler are rinsed before the container is removed. This is primarily done to prevent an operator of the coupler, container, or the sprayer tank from exposure to harmful chemicals.


However, while transferring the chemicals, viscous chemicals or sediments can build up inside the coupler in dead zones where the flow of rinse water does not adequately rinse away chemical residue. Such dead zones occur where there is not sufficient flow or pressure to rinse away very thick chemical concentrate formulations or formulations containing particles in suspension that can sink and gather as a layer of sediment. Residues of one batch for transferring the chemicals could potentially contaminate the next batch mixed. Thus, the need for an improved coupler rinsing technique exists.


The art recognizes the need for a solution to ensure that the chemicals from the dead zones of the coupler are efficiently and effectively cleaned, which reduces the chances of contamination.


SUMMARY

Embodiments of a chemical transfer coupler are provided herein. The chemical transfer coupler includes a chemical flow chamber and a probe. The probe extends through the chemical flow chamber and defines a first recessed slot. The first recessed slot extends helically along the probe.


In some forms, the probe defines a second recessed slot extending helically along the probe. In some forms, the probe includes a probe end fitting, and one or more of the first recessed slot and the second recessed slot extend helically along the probe end fitting. In some forms, the probe end fitting has a first end and a second end, and one or more of the first recessed slot and the second recessed slot extend helically from the first end to the second end. In some forms, the probe end fitting has a first end and a second end, and one or more of the first recessed slot and the second recessed slot extend helically along only a portion of the probe end fitting between the first end and the second end. In some forms, the probe includes a shaft, and one or more of the first recessed slot and the second recessed slot extend helically along the shaft. In some forms, the first recessed slot and the second recessed slot extend helically along the probe in a first rotational direction. In some forms, the first recessed slot extends helically along the probe in first rotational direction, and the second recessed slot extends helically along the probe in second rotational direction. In some forms, the first rotational direction is opposite the second rotational direction.


In some forms, the first recessed slot is positioned on the probe opposite the second recessed slot. In some forms, the first recessed slot is substantially identical to the second recessed slot in shape. In some forms, the first recessed slot and the second recessed slot are mirror images of one another in shape. In some forms, a width dimension of the first recessed slot is greater than a depth dimensions of the first recessed slot. In some forms, a depth of the first recessed slot is tapered along a length of the first recessed slot. In some forms, a depth of the first recessed slot is substantially uniform along the probe.


Some embodiments provide a chemical transfer coupler that includes a chemical flow chamber and a probe. The probe extends through the chemical flow chamber and defines a first recessed slot having a first upper end and a first lower end, and a second recessed slot having a second upper end and a second lower end. The first recessed slot and the second recessed slot extend helically along the probe. The first lower end and the second lower end converge toward one another.


In some forms, the first upper end and the second upper end are separated by a first probe circumference portion, the first lower end and the second lower end are separated by a second probe circumference portion, and the first probe circumference portion is larger than the second probe circumference portion. In some forms, one or more of the first recessed slot and the second recessed slot are defined in a probe end fitting of the probe. In some forms, the first recessed slot and the second recessed slot converge to at least partially overlap one another at the first lower end and the second lower end.


Some embodiments provide a chemical transfer coupler that includes a chemical flow chamber and a probe. The probe extends through the chemical flow chamber and defines a plurality of recessed slots that extend helically along the probe in a first rotational direction.


In some forms, the plurality of recessed slots are evenly spaced apart from one another about the probe.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a front isometric view of a coupler according to an embodiment;



FIG. 2 is a partial cross-sectional view of the coupler of FIG. 1 taken along line X-X of FIG. 1;



FIG. 3 is a partial top isometric view of a probe of the coupler of FIG. 1;



FIG. 4 is a partial cross-sectional view of the coupler of FIG. 1 in the open position taken along line X-X;



FIG. 5A and 5B are partial top isometric views of a probe with one or more recessed channels according to an embodiment;



FIG. 6A and 6B are partial top isometric views of a probe with one or more recessed channels according to an embodiment;



FIG. 7A is a flow schematic of fluid inside of a chemical chamber of the coupler of FIG. 1 in use with the probe of FIG. 3, rendered transparently for clarity;



FIG. 7B is a flow schematic of fluid inside of the chemical chamber of the coupler of FIG. 1 in use with the probe of FIG. 5A and 5B, rendered transparently for clarity;



FIG. 7C is a flow schematic of fluid inside of the chemical chamber of the coupler of FIG. 1 in use with the probe of FIG. 6A and 6B, rendered transparently for clarity;



FIG. 8A is a front isometric view of a flow distributor according to an embodiment;



FIG. 8B is a cross-sectional view of the flow distributor of FIG. 8A in use with a coupler according to an embodiment; and



FIG. 9 is a cross-sectional view of a chemical flow chamber of a coupler according to an embodiment.





DETAILED DESCRIPTION

Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the disclosure. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the disclosure. Thus, embodiments of the disclosure are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the disclosure. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the disclosure.


Embodiments of an improved closed chemical transfer system are provided herein. The chemical transfer system includes a coupler body within which a probe device is contained, and the probe can be lifted and lowered via a handle to allow the flow of chemicals and rinse fluid from the inside of a container to flow out of an outlet of the coupler. Various structural features are provided on one or both of the probe and the inside of the coupler body to improve the flow of rinse fluid within the body of the coupler. In this way, areas along the flow path of chemicals from the container to the outlet, which typically might contain dead zones, can be thoroughly rinsed to prevent the build of chemicals within the coupler body over time from continued use of the closed transfer system.



FIG. 1 illustrates a closed transfer system having a coupler 10 for transferring fluid and a container 15 that is selectively evacuated via fluid connection with the coupler 10. In particular, a cap 20 is provided for securement onto the container 15, and the cap 20 is structurally designed to interface with a locking mechanism 25 of the coupler 10. In particular, the cap 20 is coupled to an opening 30 of the container 15. The coupler 10 includes an inlet opening 32, an outlet 34, and a handle 36, which can be rotationally actuated to actuate various internal elements of the coupler 10, as will be described further below. FIG. 1 illustrates the cap 20 securely coupled to the container 15, and the container 15/cap 20 are coupled to the inlet opening 32 of the coupler 10. In this way, fluid can selectively flow from the container 15 through the cap 20, into the coupler 10 through the inlet opening 32, and out of the coupler 10 through the outlet 34.



FIGS. 2-4 illustrate further internal aspects of the closed transfer system of FIG. 1. As shown, the coupler 10 includes several internal components that facilitate the selective transfer of fluid from the container 15 to the outlet 34. In particular, the coupler 10 includes the locking mechanism 25, a probe 40, and a chemical flow chamber 60 having an inner chamber wall 62. The locking mechanism 25 is actuated via the handle 36 such that when the handle 36 is rotated, the locking mechanism 25 secures the container 15 and the cap 20 to the coupler 10. The probe 40 includes a probe end fitting 44 and one or more air valves 46. The probe end fitting 44 includes one or more rinse apertures 48 in fluid communication with a source of rinse water, and one or more recessed slots 50. In some forms, the probe 40 and/or the probe end fitting 44 are substantially cylindrical in shape. The probe also includes a base end (not shown), which raises and lowers the probe 40 in response to the rotational actuation of the handle 36. Accordingly, the probe 40 can be actuated between two positions: upward into the container 15 in a raised position, and downward into the body of the coupler 10 in a lowered position, at least partially inside of the chemical flow chamber 60. The lowered position is shown in FIG. 2, and the raised position is shown in FIG. 4. The chemical flow chamber 60 provides a fluid connection between the container 15/inlet opening 32 and the outlet 34, and between the rinse apertures 48 and the outlet 34.


As the probe 40 is raised, the probe end fitting 44 engages a removable plug seal 22 of the cap 20, and the removable plug seal 22 becomes coupled to the probe end fitting 44. As the probe 40 is raised further, the removable plug seal 22 is lifted away from engagement with the cap 20, and fluid communication is created between the fluid contents of the container 15 and the chemical flow chamber 60. FIG. 4 illustrates the probe 40 in the fully raised position, in which fluid flows out of the container 15, around the outer wall of the probe 40, into the chemical flow chamber 60, and out of the outlet 34 via gravity feed or via vacuum suction applied at the outlet 34, as shown by the fluid flow path arrows. To facilitate fluid flow out of the container 15, the air valves 46, provided in the form of one-way valves, allow air from the environment to flow into the container 15 to prevent a vacuum from forming inside the container 15 during fluid evacuation. When the probe 40 is lowered back down into the body of the coupler 10, the removable plug seal 22 is re-seated into the cap 20 to fluidly seal the contents of the container 15.


The closed transfer system also includes a rinsing function, wherein the probe 40 is designed to spray rinse water from a rinse water source out of the one or more rinse apertures 48. After the contents of the container 15 have been emptied, and while the probe 40 is in the raised position (see FIG. 4), rinse water can be applied to the probe 40 to spray rinse water out of the one or more rinse apertures 48 to rinse the inside of the container 15. In some forms, the probe end fitting 44 is static at the end of the probe 40 and in some forms, the probe end fitting is rotatable to spray rinse water in multiple directions. The rinse water flows along the same fluid flow path depicted in FIG. 4 with respect to the fluid originally contained within the container 15. Accordingly, the rinse water flows out of the container 15, around the outer wall of the probe 40, into the chemical flow chamber 60, and out of the outlet 34 via gravity feed or via vacuum suction applied at the outlet 34. Thus, the rinse water serves the purpose of rinsing the container 15 as well as the flow path of the fluid from inside the container 15. In this way, chemical residue from the contents of the container 15 can be rinsed off of the internal components of the coupler 10.


In some forms, the rinse water can also be sprayed out of the one or more rinse apertures 48 while the probe 40 is in the lowered position (see FIG. 2). As such, the rinse apertures 48 can spray rinse water to rinse off the cap 20/removable plug seal 22. The one or more recessed slots 50 extend longitudinally along the outer surface of the probe end fitting 44 in a substantially straight line and can help facilitate the flow of fluid in an annular space between the probe end fitting 44 and the chemical flow chamber 60 while the probe 40 is in the lowered position.


In some embodiments, the fluid contained in the container 15 can be viscous, dense, or have a chemical formulation that can lead to residue or build up inside of the chemical flow chamber 60. In particular, because the outlet 34 is positioned in a discrete location extending radially outward from the outer circumference of the chemical flow chamber 60 and generally perpendicular to the inlet opening 32, the portions of the inner chamber wall 62 that are farther away from the outlet 34, especially the bottom/lower portions of the chemical flow chamber 60 that are positioned on the opposite side of the chemical flow chamber 60 as the outlet 34, can be susceptible to residue or build up from the chemicals transferred by the closed transfer system. Accordingly, it would be useful to direct the flow of rinse water through the body of the coupler 10 such that rinse water is more evenly circulated throughout the chemical flow chamber 60.



FIGS. 5A and 5B illustrate a probe 140 according to an embodiment. The probe 140 can include substantially similar structures that perform similar functions as many of the structures listed above for the probe 40, such as the probe end fitting 44, air valves 46, rinse apertures 48, and recessed slots 50. For example, the probe 140 includes a probe end fitting 144, one or more air valves 146, one or more rinse apertures 148, at least one first side slot 150 (shown in FIG. 5A), and at least one second side slot 152 (shown in FIG. 5B). However, differently from the recessed slots 50 of the probe 40, which extend longitudinally in a substantially straight line on the outer surface of the probe end fitting 44, the first side slot 150 and the second side slot 152 of the probe 140 extend helically around the outside of the probe end fitting 144 from a first end 154 of the probe end fitting 144 to a second end 156 of the probe end fitting 144. As shown in FIGS. 5A and 5B, the first side slot 150 and the second side slot 152 extend around the outside of the probe end fitting 144 in the same direction, e.g. both clockwise or both counterclockwise.


In some forms, the slots 150, 152 extend along only a portion of the distance between the first end 154 and the second end 156 of the probe end fitting, e.g. not all the way to either (or both) of the first end 154 or the second end 156. In some embodiments, the slots 150, 152 extend along portions of both the probe end fitting 144 and the outer surface of the shaft of the probe 140. In some embodiments, the slots 150, 152 extend along only the shaft of the probe 140 and not along the outer surface of the probe end fitting 144. In some forms, the depths of the slots 150, 152 into the probe end fitting 144 are substantially the same along the entire length of the slots 150, 152. In some other forms, the depths of the slots 150, 152 into the probe end fitting are tapered along the length of the slots 150, 152. For example, near the first end 154, the slots 150, 152 may extend inwardly deeper into the probe end fitting 144 than at the second end 156 or vice versa.


The first side slot 150 and/or the second side slot 152 can be designed to have a helix angle, e.g. the angle between the helix line and an axial line extending through a helix on the helix's right circular cylinder, that is substantially uniform along the entire length of the first side slot 150 and/or the second side slot 152 respectively. The helix angle of the first side slot 150 and/or the second side slot 152 can be between 5° and 85°. In some forms, the first side slot 150 and/or the second side slot 152 have substantially the same helix angle, and in some forms, the first side slot 150 and the second side slot 152 have substantially different helix angles. In some forms, the helix angle of one or both of the first side slot 150 and the second side slot 152 changes along the length of each respective slot 150, 152. For example, if unwound onto a flattened plane, the first side slot 150 and/or the second side slot 152 can be provided in a parabolic, exponential, logarithmic, or other linear shape. In some forms, the first side slot 150 and the second side slot 152 are formed at the first end 154 at approximately 180° offset from each other, e.g. substantially directly across from each other on the probe end fitting 144. For example, in embodiments where the first side slot 150 and the second side slot 152 are substantially identical in shape and size, the second side slot 152 will be offset by 180° around the outer circumference of the probe end fitting 144 with respect to the first side slot 150 for the entire length of the second side slot 152.


In some forms, one or more portions of the first side slot 150 and/or the second side slot 152 extend longitudinally in a substantially straight line. For example, a first portion of one or both of the first side slot 150 and the second side slot 152 can extend longitudinally for approximately 5 mm to 20 mm in a substantially straight line as the respective slot 150, 152 extends away from the first end 152. Then, from the end of the first portion up to the second end 156, each respective slot 150, 152 can extend along the outer surface of the probe end fitting 144 in a helix shape with a helix angle between 5° and 85°. Accordingly, the slots 150, 152 can include both linear, longitudinal portions, and helical portions. It should be noted that the first side slot 150 and/or the second side slot 152 can be provided in the form of multiple slots. Accordingly, the probe end fitting 144 can include 3, 4, 5, or more recessed slots. It should be noted that the first side slot 150 and/or the second side slot 152 can be provided in the form of slots with a variety of width dimensions in proportion to the overall size of the probe end fitting 144. For example, in some forms, the width dimension (W1) of one or both of the first side slot 150 and the second side slot 152 can be between approximately 1/50th to ⅓rd of the total circumference of the probe end fitting 144. In some forms, the width dimension (W1) of one or both of the first side slot 150 and the second side slot 152 is substantially uniform along the length of the respective slot 150, 152, and in some forms, the width dimension (W1) of one or both of the first side slot 150 and the second side slot 152 varies along the length of the respective slot 150, 152.



FIGS. 6A and 6B illustrate a probe 240, according to an embodiment. Similar to the probe 140, the probe 240 includes a probe end fitting 244, one or more air valves 246, one or more rinse apertures 248, at least one first side slot 250 (shown in FIG. 6A), and at least one second side slot 252 (shown in FIG. 6B). However, differently from the recessed slots 150 of the probe 140, which extend around the outside of the probe end fitting 144 in the same direction, e.g. both clockwise or both counterclockwise, the first side slot 250 and the second side slot 252 of the probe 240 of FIGS. 6A and 6B extend around the outside of the probe end fitting 244 in different directions, e.g. one clockwise and the other counterclockwise. In some forms, the first side slot 250 and the second side slot 252 are formed at a first end 254 of the probe end fitting 244 at approximately 180° offset from each other, e.g. substantially directly across from each other on the probe end fitting 144. In some forms, the first side slot 250 and the second side slot 252 are formed at the first end 254 of the probe end fitting 244 such that the width dimensions (W2) of the slots 250, 252 are entirely overlapping. In some forms, the slots 250, 252 are formed at the first end 254 of the probe end fitting 244 such that the slots 250, 252 are directly adjacent to one another. In some forms, the slots 250, 252 are formed at the first end 254 such that the slots 250, 252 are separated by a distance dimension.


Because the first side slot 250 and the second side slot 252 extend in different directions, the slots 250, 252 converge toward each other as they extend around the outside of the probe end fitting 244 from the first end 254 to the second end 256. Accordingly, the width dimensions (W2) of each slot 250, 252 may completely overlap as the slots 250, 252 reach a second end 256 of the probe end fitting 244. In some forms, the slots 250, 252 extend directly adjacent to one another at the second end 256. In some forms, the slots 250, 252 are separated by a distance dimension at the second end 256.


In use, the probe 240 is positioned within the chemical flow chamber 60 such that slots 250, 252 converge away from the outlet 34 and toward the portions of the inner chamber wall 62 that are opposite the portion of the chemical flow chamber 60 out of which the outlet 34 radially extends. Accordingly, rinse water flowing out of the rinse apertures 248 is directed away from the outlet 34 to facilitate an increased flow velocity of rinse water to potential “dead zones” inside of the chemical flow chamber 60. In addition, all other geometric and other properties of the first side slot 150 and the second side slot 152 described above are imputed herein to apply to the description with respect to the first side slot 250 and the second side slot 252 and apply interchangeably to the probe 240.



FIGS. 7A-7C illustrate the flow of rinse fluid through the chemical flow chamber 60 having the probes 40, 140, and 240, respectively, extending therein, the probes 40, 140, and 240 being in the lowered position. For example, in FIG. 7A, the probe 40 is implemented (not shown), and, thus, rinse water flows into the chemical flow chamber 60 from the rinse apertures 48 and generally vertically downward into the annular space between the probe end fitting 44 and the inner chamber wall 62, following the direction of the recessed slots 50, which extend longitudinally along the outer surface of the probe end fitting 44 in a substantially straight line. By nature of gravity or via vacuum suction, the rinse water then flows out of the outlet 34. Accordingly, with the probe 40 deployed within the chemical flow chamber 60, the rinse water has a tendency to flow at higher velocities along a relatively direct path from the inlet of the chemical flow chamber 60 towards the outlet 34.


In contrast, FIG. 7B illustrates the flow of fluid in the chemical flow chamber 60 in use with the probe 140 (not shown). Because the first side slot 150 and the second side slot 152 are helically shaped and curve in the same direction around the probe end fitting 144, the rinse water sprayed from the rinse apertures 148 is directed to flow into the annular space between the probe end fitting 144 and the inner chamber wall 62 in the direction corresponding to the curvature of the slots 150, 152, e.g. counterclockwise (as depicted), or clockwise, depending on the orientation of the slots 150, 152. Accordingly, the probe 140 facilitates one or more fluid vortexes, and turbulence generally, within the chemical flow chamber 60 that can help to thoroughly rinse the inner chamber wall 62. In particular, the probe 140 creates higher velocities of fluid flow to the portions of the inner chamber wall 62 that are opposite the outlet 34 where chemical residue can have a tendency to build up.



FIG. 7C illustrates the flow of fluid in the chemical flow chamber 60 in use with the probe 240 (not shown). In particular, the outlet 34 extends radially outward from a first portion of the chemical flow chamber 60. Because the first side slot 250 and the second side slot 252 are helically shaped and curve in opposite directions around the probe end fitting 244, converging in a direction away from the outlet 34 at the second end 256 of the probe end fitting 244 and toward a second portion of the chemical flow chamber 60 opposite the first portion with the outlet 34, the rinse water sprayed from the rinse apertures 248 is directed to flow through the annular space between the probe end fitting 244 and the inner chamber wall 62 in a direction corresponding to the curvature of the slots 250, 252, e.g. toward the second portion of the chemical flow chamber 60 that is opposite the outlet 34. Accordingly, the probe 240 facilitates one or more fluid vortexes, and turbulence generally, within the chemical flow chamber 60 that can help to thoroughly rinse the inner chamber wall 62. In particular, the probe 240 creates higher velocities of fluid flow to the portions of the inner chamber wall 62 that are opposite the outlet 34 where chemical residue can have a tendency to build up.



FIGS. 8A and 8B illustrate a flow distributor 334 that can be coupled to, or integrated with, the aforementioned probes 40, 140, 240. The flow distributor 334 includes a plurality of vanes 336 and a collar 342 having a center bore. The flow distributor 334 can be molded or machined as a separate component which can be mounted within the chemical flow chamber 40 onto the shaft of the probe 40, 140, 240. The vanes 336 extend along the outer surface of the collar 342 from a first end 354 to a second end 356. In some forms, the vanes 336 extend along only a portion of the distance between the first end 354 and the second end 356, e.g., not all the way to either or both of the first end 354 or the second end 356.


The vanes 336 are arranged in a helical fashion such that from the first end 354 to the second end 356, the vanes 336 extend around the circumference of the collar 342 in a clockwise fashion (as shown). In some forms, the vanes 336 extend around the circumference of the collar 342 in a counterclockwise fashion. In some embodiments, the vanes 336 are all angled at the same pitch. In some forms, the pitch of one or more of the vanes 336 is different from the other vanes 336. The vanes 336 can be positioned around the collar 342 at a pitch between about 5° and about 85°. In some forms, one or more of the vanes 336 can be arranged in a clockwise fashion and one or more of the other vanes 336 can be arranged in a counterclockwise fashion. Accordingly, the oppositely-oriented vanes 336 will converge toward each other as they extend around the collar 342 from the first end 354 to the second end 356.


In some embodiments, the flow distributor 334 is rotatably coupled with the probe 40, 140, 240, such that the flow distributor can freely rotate about the longitudinal axis of the probe 40, 140, 240. In some embodiments, the flow distributor 334 is fixed to the probe 40, 140, 240. In an embodiment where the vanes 336 are arranged to converge toward each other and the flow distributor 334 is fixed, the flow distributor can be fixed such that the vanes 336 direct rinse water toward the portions of the inner chamber wall 62 that are opposite the outlet 34, e.g. the vanes 336 extend toward the portions of the inner chamber wall 62 that are opposite the outlet 34 as the vanes 336 extend from the first end 354 to the second end 356.


The vanes 336 can be configured such that the width dimension (W3) of the vanes 336 is substantially the same along the entire length dimension (L) of the vanes 336. In some forms, the width dimension (W3) of the vanes 336 changes along the length (L) of the vanes 336. For example, the vanes 336 can be tapered as the vanes extend toward one or both of the first end 354 and the second end 356. Similarly, the vanes 336 can have a radial extension dimension (R) that is substantially the same along the entire length dimension (L). In some forms, however, the radial extension dimension (R) can be tapered as the vanes extend toward one or both of the first end 354 and the second end 356. In use, the flow distributor 334 thus generates additional turbulence and produces a more evenly distributed velocity of fluid flow throughout the chemical flow chamber 60 to facilitate rinsing away any residue contained in the chemical flow chamber 60.


Referring next to FIG. 9, a cross-sectional view of a chemical flow chamber 440 for use within the coupler 10 according to an embodiment is illustrated. The chemical flow chamber 440 includes an upper collar 442, a midsection 444, and a base portion 446. The upper collar 442 and the base portion 446 can each be provided in the form of a cylinder. In some forms, the outer diameter of the upper collar 442 is smaller than the outer diameter of the base portion 446. Accordingly, the midsection 444 can be provided in a hollow, frustoconical shape that connects the upper collar 442 to the base portion 446. On an inner surface 450 of the midsection 444, one or more internal vanes 448 extend inward from the inner surface 450 into the chemical flow chamber 440. The internal vanes 448 can be provided in a variety of three-dimensional shapes, including any suitable polyhedron such as an irregular tetrahedron.


In some forms, as the internal vanes 448 extend from adjacent the upper collar 442 to adjacent the base portion 446, the internal vanes 448 gradually extend farther radially outward from the inner surface 450 of the midsection 444, e.g. the internal vanes 448 are tapered toward the upper collar 442. In some forms, the internal vanes 448 are tapered in a width dimension as the internal vanes 448 extend toward the base portion 446. The internal vanes 448 can be provided in the form of any number of blade, fin, or fluid-directing geometry. Accordingly, the internal vanes 448 can guide rinse fluid that is introduced by a probe such as probe 40, 140, 240 to thoroughly rinse the inside of the chemical flow chamber 440 as the rinsing fluid flows from the upper collar 442 toward an outlet 450 in the base portion 446. It is contemplated that the chemical flow chamber 440 can be combined with any of the probes 40, 140, 240 previously discussed, or with the flow distributor 334.


It will be appreciated by those skilled in the art that while the disclosure has been described above in connection with particular embodiments and examples, the disclosure is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the disclosure are set forth in the following claims.

Claims
  • 1. A chemical transfer coupler comprising: a chemical flow chamber; anda probe extending through the chemical flow chamber, the probe defining a first recessed slot, the first recessed slot extending helically along the probe.
  • 2. The chemical transfer coupler of claim 1, wherein the probe defines a second recessed slot extending helically along the probe.
  • 3. The chemical transfer coupler of claim 2, wherein the probe includes a probe end fitting, andone or more of the first recessed slot and the second recessed slot extend helically along the probe end fitting.
  • 4. The chemical transfer coupler of claim 3, wherein the probe end fitting has a first end and a second end, andone or more of the first recessed slot and the second recessed slot extend helically from the first end to the second end.
  • 5. The chemical transfer coupler of claim 3, wherein the probe end fitting has a first end and a second end, andone or more of the first recessed slot and the second recessed slot extend helically along only a portion of the probe end fitting between the first end and the second end.
  • 6. The chemical transfer coupler of claim 2, wherein the probe includes a shaft, andone or more of the first recessed slot and the second recessed slot extend helically along the shaft.
  • 7. The chemical transfer coupler of claim 2, wherein the first recessed slot and the second recessed slot extend helically along the probe in a first rotational direction.
  • 8. The chemical transfer coupler of claim 2, wherein the first recessed slot extends helically along the probe in first rotational direction, andthe second recessed slot extends helically along the probe in second rotational direction.
  • 9. The chemical transfer coupler of claim 2, wherein the first recessed slot is positioned on the probe opposite the second recessed slot.
  • 10. The chemical transfer coupler of claim 2, wherein the first recessed slot is substantially identical to the second recessed slot in shape.
  • 11. The chemical transfer coupler of claim 2, wherein the first recessed slot and the second recessed slot are mirror images of one another in shape.
  • 12. The chemical transfer coupler of claim 1, wherein a width dimension of the first recessed slot is greater than a depth dimension of the first recessed slot.
  • 13. The chemical transfer coupler of claim 1, wherein a depth of the first recessed slot is tapered along a length of the first recessed slot.
  • 14. The chemical transfer coupler of claim 1, wherein a depth of the first recessed slot is substantially uniform along the probe.
  • 15. A chemical transfer coupler comprising: a chemical flow chamber; anda probe extending through the chemical flow chamber, the probe defining a first recessed slot having a first upper end and a first lower end, anda second recessed slot having a second upper end and a second lower end, wherein the first recessed slot and the second recessed slot extend helically along the probe, and the first lower end and the second lower end converge toward one another.
  • 16. The chemical transfer coupler of claim 15, wherein the first upper end and the second upper end are separated by a first probe circumference portion, the first lower end and the second lower end are separated by a second probe circumference portion, and the first probe circumference portion is larger than the second probe circumference portion.
  • 17. The chemical transfer coupler of claim 15, wherein one or more of the first recessed slot and the second recessed slot are defined in a probe end fitting of the probe.
  • 18. The chemical transfer coupler of claim 15, wherein the first recessed slot and the second recessed slot converge to at least partially overlap one another at the first lower end and the second lower end.
  • 19. A chemical transfer coupler comprising: a chemical flow chamber; anda probe extending through the chemical flow chamber, the probe defining a plurality of recessed slots that extend helically along the probe in a first rotational direction.
  • 20. The chemical transfer coupler of claim 19, wherein the plurality of recessed slots are evenly spaced apart from one another about the probe.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to U.S. patent application Ser. No. 17/930,898 filed on Sep. 9, 2022, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application No. 63/261,040 filed on Sep. 9, 2021, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
63261040 Sep 2021 US
Continuations (1)
Number Date Country
Parent 17930898 Sep 2022 US
Child 18930490 US