Many devices have components designed or intended to be used only once. However, convenience or expense may motivate users to re-use such components. In certain industries, such as the medical device industry, re-use of components may undermine the safe, sterile, or effective operation of the device.
Commonly-owned U.S. Pat. No. 6,569,099 discloses an ultrasonic device and method for wound treatment, the entire contents of which are incorporated herein by reference. This patent discloses, inter alia, a device that sprays liquid particles to a wound via an applicator. The liquid particles provide a medium for propagation of the ultrasonic waves. Commonly-owned U.S. patent application Ser. No. 11/473,934, the entire contents of which are incorporated herein by reference, discloses a removable applicator nozzle for an ultrasound wound therapy device. However, although generally intended to be used only once and then discarded, the removable applicator of U.S. patent application Ser. No. 11/473,934 may be re-used, which may lead to the re-use of non-sterile applicators.
As can be appreciated, an apparatus for preventing the re-use of an applicator nozzle is desirable to prevent the use of non-sterile equipment in the treatment of wounds. The present invention provides an apparatus to prevent the re-use of an applicator nozzle that may be used in non-contact ultrasound therapy for the treatment of wounds. More generally, the present invention provides a locking device to prevent re-use of removable components of medical devices.
The present invention provides a locking device. The locking device has many possible uses. For example, the locking device can be used to prevent re-use of other devices. In certain embodiments, the locking device can be used to prevent re-use of a component of a medical device, such as a detachable nozzle, treatment head, and the like. When used in this manner, the term “locking device” is synonymous with the term “apparatus for preventing re-use”. Such devices are effective for decreasing the re-use of removable components of medical devices intended for single use.
In certain embodiments, the locking device is used to prevent re-use of an applicator nozzle, for example an applicator nozzle designed for use with an ultrasound therapy device. When used in this manner, the term “locking device” is synonymous with the term “apparatus for preventing applicator nozzle re-use”.
According to one aspect of any of the foregoing, the locking device includes a housing having a first sidewall and a second sidewall, a first arm attached to the first sidewall and having a paddle portion, and a second arm attached to the second sidewall and having a hook portion. The hook portion may be configured to hold the paddle portion in a first position, such that when the hook portion is released, the paddle portion moves to a second position. In certain embodiments, movement of the paddle portion to a second position prevents re-use of, for example, an applicator nozzle or other removable device component.
According to another aspect, the invention provides an applicator nozzle interconnected to a locking device. When used in this manner, the locking device is synonymous with an apparatus for preventing re-use.
According to another aspect, the invention provides a method for preventing re-use of an applicator.
According to another aspect, the invention provides a kit for use in methods of wound care. The kit comprises an applicator nozzle and an apparatus for preventing re-use of the applicator nozzle. The kit may optionally include instructions for use of the nozzle, sterile wipes for cleansing the nozzle prior to single use, and a warning indicating that the nozzle is designed for a single use. As packaged, the nozzle and apparatus for preventing re-use may or may not be interconnected. In certain embodiments, the contents of the kit are sterilized prior to packaging.
In certain embodiments, the kit further includes a bottle or other fluid source for use in ultrasound wound therapy. The bottle optionally includes a fluid such as, for example a saline solution. In certain embodiments, the fluid consists essentially of a saline solution, for example, the fluid does not include a medicament. In certain embodiments, the kit includes flexible tubing sized and shaped to interconnect to the applicator nozzle. Exemplary kits may include any combination of the foregoing components.
The invention contemplates operative combinations of any of the foregoing or following aspects, embodiments, or features of the invention.
The above and other features and advantages of the invention will be more fully understood by the following illustrative description with reference to the appended drawings, which may not be to scale.
The present disclosure provides a locking device, as well as kits comprising a locking device, and methods of using a locking device to prevent re-use of removable components of a device or system. One particular use of the locking device is to prevent re-use of components of medical devices. As such, the locking device is also referred to as an apparatus for preventing re-use. When coupled to a removable component of a device, the locking device prevents the component from being repeatedly used. This is of particular importance when the risk of contamination is high, and good practice warrants that a removable component is used once but not re-used.
One particular use of the locking device of the present invention is in the field of ultrasound wound care. Certain ultrasound wound therapy devices have, as a component, a removable nozzle (often referred to as an applicator or an applicator nozzle). The ultrasound therapy device is used to deliver ultrasound energy (in the presence or absence of a liquid spray) to wounds and other patient tissue. The nozzle is the portion of the device that is positioned most closely to the patient, even when used with non-contact devices where the nozzle and other device components do not contact patient tissue (e.g., wherein ultrasound energy is delivered from a non-contact distance from patient wound tissue). Because of the proximity to wound tissue, and the risk that the nozzle will become contaminated with material from the wound, operator, or other source, it is preferable for each nozzle to be used only once. The locking device of the present invention can be used to prevent re-use of an applicator nozzle, such as applicator nozzles used with ultrasound wound therapy devices. When used in this manner, the locking device is synonymous with an apparatus for preventing applicator nozzle re-use.
The present invention provides a locking device. In certain embodiments, the locking device is an apparatus designed to prevent re-use of a removable component of another device or system. In other words, in certain embodiments, the locking device is an apparatus for preventing re-use. In certain embodiments, the locking device is an apparatus designed to prevent re-use of an applicator nozzle, for example, an applicator nozzle used with an ultrasound wound therapy device. In other words, in certain embodiments, the locking device is an apparatus for preventing re-use of an applicator nozzle.
The locking device 106 couples to the applicator nozzle 104, and is configured to allow the applicator nozzle 104 to couple with the ultrasound therapy device only one time. In this embodiment, the locking device is an apparatus that prevents re-use of the applicator nozzle. Here, the locking device can be coupled to the applicator such that, once an applicator is disengaged (following engagement) from an ultrasound therapy device, elements of the locking device change position to prevent re-engagement of the used applicator to the ultrasound wound therapy device. In other words, the locking device is designed so that an applicator can be functionally interconnected to a wound therapy device and used only one time. Once the applicator is uncoupled from the wound therapy device, the locking device prevents re-use of the applicator by preventing functional re-interconnection of the applicator to the wound therapy device.
As shown in
This particular applicator nozzle design is merely exemplary of the nozzle designs with which locking device 106 can be used. Any nozzle design suitable for use with the ultrasound therapy device can be readily configured for interconnection with the locking device 106. In use, the locking device 106 prevents re-use of an applicator nozzle, such as applicator nozzle 104. Similarly, this particular applicator nozzle is merely exemplary of a removable device component with which the locking device can be interfitted to prevent re-use.
The obstruction arm 202 includes an obstruction arm lever portion 202a and a paddle portion 202b. As shown in
The positioning arm 204 includes a positioning arm lever portion 204a and a hook 204b The positioning arm lever portion 204a extends inward toward the center of the housing 206 from the top end 216b of the second wall 216. The hook 204b is attached to the end of the positioning arm lever portion 204a, and extends downwards toward the base 220, back towards the second wall 216, and slightly upwards. A tab 234 extends upwards from the top surface of the positioning arm lever portion 204a. The tab 234 is positioned at the end of the positioning arm lever portion 204a just above the hook 204b, and has a width that is narrower than the width of the positioning arm lever portion 204a. The width of the tab 234 gradually narrows from the base toward the top edge, such that the tab 234 is wider at the base than at the top edge. The proximal side of the tab 234 is sloped to create the changing width, forming a cam face, while the distal side of the tab 234 has a flat surface. The positioning arm 204 is pivotable about the point where it attaches to the second wall 216. In certain embodiments, the positioning arm 204 may be a cantilever spring, anchored at the point where it attaches to the second wall 216.
The first side support 208 extends inward from the first wall 214. The first side support 208 is triangularly shaped, and includes a bottom edge 228 extending at about a 45 degree angle from the first wall 214, which aligns with the obstruction arm lever portion 202b. The first side support 208 is in the same plane as the obstruction arm lever portion 202b, and thus the bottom edge 228 of the first side support 208 prevents the obstruction arm lever portion 202b from moving upwards past the position shown in
The second side support 210 extends inward from the second wall 216. The second side support 210 is triangularly shaped, with a first side including portion of the second wall 216, a second side extending downward at an angle from the base of the positioning arm lever portion 204a, and a third side extending inward from about the middle of the second wall 216. As depicted, the second side support 210 includes a catch 224, which extends downwards toward the base 220. In some configurations, the catch 224 interfits with the hook 204b of the positioning arm 204.
The base support 212 extends inward from the base 220 toward the center of the U-shaped housing 206. The base support 212 includes a surrounding edge 236 and an inner arm 238. The base support 212 is positioned distal to and below the obstruction arm 202.
As shown in
In some embodiments, the second side support 210 has a second catch 224a to hold the hook 204b of the arm 204. As shown in
According to one embodiment, the exemplary measurements of the locking device are in inches, and may vary by ±0.100 inches. The exemplary angles may vary by ±0.500 degrees. In certain embodiments, the exemplary measurements may vary by about ±0.050 inches, ±0.005 inches, or ±0.002 inches, and the exemplary angles may vary by about ±0.500 degrees, ±0.200 degrees, or ±0.100 degrees.
According to one embodiment, the locking device 306 is permanently attached to the applicator nozzle 304. The locking device 306 may snap-fit with the applicator nozzle 304. In one embodiment, the locking device 306 and applicator nozzle 304 have an interference-fit between one another. The locking device 306 has tapered protrusions 350 (
According to various embodiments, the locking device and applicator nozzle may be constructed from any selected material or combination of materials, including, for example, plastics, thermoplastics, polymers, polycarbonates, and metals. One exemplary material is GE Lexan polycarbonate HPS4. Another exemplary material is Bayer Bayblend® FR110 polycarbonate/ABS resin with Baystate Polymer L8623. The materials may include white colorant, blue colorant, or any other selected colorant. In certain embodiments, the applicator nozzle and the locking device are constructed from the same material. In other embodiments, the applicator nozzle and the locking device are constructed from different materials. In certain embodiments, the applicator nozzle and the locking device are gamma irradiated or otherwise sterilized prior to packaging. In other words, the applicator nozzle and the locking device are sterilized such that they are sterile when packaged and sold, prior to their use.
According to various embodiments, in use the locking device and applicator nozzle are interconnected. However, the locking device and applicator nozzle may be constructed and sold as an interconnected unit, or may be constructed separately and later interconnected. Such separate construction and interconnection includes, for example, retro-fitting of previously fabricated applicators.
In another aspect, the invention provides a kit containing an applicator nozzle and a locking device. In certain embodiments, the kit contains an applicator nozzle interconnected to a locking device. In other embodiments, the kit contains an applicator nozzle and a locking device that have not yet been interconnected. The components of the kit can be sterilized prior to packaging, such that the applicator nozzle and locking device are sterile prior to use.
In certain embodiments, the kit further contains one or more additional components. Exemplary additional components include, but are not limited to, instructions for use, a warning label that reminds the user that the applicator is intended for single-use, sterile wipes, flexible tubing, a bottle or other fluid container (with or without fluid).
As noted above, U.S. application Ser. No. 11/473,934 provides a detailed description of an ultrasound wound therapy device suitable for use in non-contact wound therapy, including a detailed description of exemplary ultrasound transducer and applicator nozzle designs. These designs and features of devices and methods for non-contact ultrasound wound therapy are exemplary of nozzle designs with which the apparatus described in the instant application can be used. The invention contemplates suitable combinations of any of the aspects and embodiments disclosed in the present application with the aspects and embodiments disclosed in application Ser. No. 11/473,934, filed Jun. 23, 2006, as well as aspects and embodiments describing additional nozzle designs disclosed in Application Ser. No. 60/878,621, filed Jan. 4, 2007. Application Ser. Nos. 11/473,934 and 60/878,621 are incorporated by reference in their entirety.
The above description of kits equally applies to a locking device designed for interconnection with a component of another type of device.
To further illustrate, applicants provide below a brief discussion of the methods and devices for non-contact ultrasound therapy described in the above referenced co-pending applications. Note that the particular applicator configurations described in these applications and summarized below are merely exemplary of the removable device components that can be interfitted with the locking device of the present invention.
Referring to
It is envisioned for the applicator 1000 to be designed for use with an ultrasound wound therapy device, such as the device described in U.S. Pat. No. 6,569,099 or U.S. application Ser. No. 11/473,934, the entire contents of which are incorporated herein by reference.
An exemplary ultrasound wound therapy device includes a transducer assembly 500 operatively connected to a generator (not shown). As described herein, the ultrasound wound therapy device may further include an applicator 1000 that can be interconnected to (engaged with) the transducer assembly. Briefly, the generator includes the components necessary to supply power to the transducer assembly, and also contains a graphical user interface (GUI) for displaying information helpful to the operator. The generator consists of three major functional sections: the AC MAINS, the main board, and the GUI board. The local AC MAINS is connected to an appliance inlet with a hospital grade detachable power cord. The appliance inlet is a power entry module listed for medical applications. In certain embodiments, the appliance inlet is a power entry module with an 115V/230V voltage selection, and is designed to operate on 115 Vac and 60 Hz (e.g., for operation in North America) or 230 Vac and 50 Hz (e.g., for operation in Europe).
The MAIN board converts the secondary output voltage from the MAINS transformer to the low voltage power rails for the internal electronics and the drive voltage for the drive electronics to the transducer assembly. The MAIN board contains a microprocessor that controls, measures, and monitors the drive electronics. The transducer assembly connects to the MAIN board. The microprocessor, referred to as the engine, monitors the performance of the system and communicates the information to a second microprocessor located on the GUI board. In certain embodiments, the engine communicates to the second microprocessor via a RS-232 communication link. In certain embodiments, the electronics drive the ultrasound portion of the drive electronics with a push-pull converter that has a feedback loop with a Phase Locked Loop (PLL) to track the center frequency of the ultrasound components.
The GUI board provides the graphical user interface for the operator. A custom membrane switch panel with, for example 6 keys, allows the operator to select the functions and operating parameters of the system. A purchased graphical LCD display, connected to the GUI board, can be used to display information to the operator. For example, information about the system's status, mode of operation, and treatment time can be displayed via the GUI. The GUI may have a back light generator for the LCD on it. The GUI microprocessor runs the system by controlling the human interface and running the various algorithms to control the operation of the system. For example, a treatment algorithm can be run on the GUI microprocessor. In certain embodiments, the ultrasound wound therapy device may include one or more of a timer to record total treatment time, a timer to count-down from a selected treatment time to zero, and an alarm to indicate that the total treatment time has elapsed or that there is a problem with some component of the device.
Now referring to
When present, the cup 300 may be designed to hold at least a portion of a bottle 600 (
The valve 400 is also illustrated in
Referring to
The applicator 1000 is mechanically connectable with a transducer assembly 500 of an ultrasound wound therapy device, hereinafter referred to as a transducer assembly. When activated, the transducer assembly 500 produces ultrasonic waves having a frequency of about 1 kHz to about 10,000 MHz. Preferably, the transducer assembly produces low frequency ultrasonic waves of about 10-100 kHz, about 20-60 kHz, about 20-30 kHz, or about 40-50 kHz. The ultrasonic waves deliver ultrasonic energy to a wound surface, including below the wound surface, via a spray which acts as the coupling agent for the ultrasonic energy as further described below. The ultrasonic energy provides bactericidal, therapeutic and other effects for decreasing the healing time for the wound as disclosed by U.S. Pat. No. 6,569,099, the entire contents of which are incorporated herein by reference. Without being bound by theory, the liquid spray delivered to the wound may also have bactericidal, therapeutic, and other effects on wound healing at the surface of and/or below the surface of the wound. In use, ultrasound energy emitted from the transducer and a fluid spray produced when fluid is dripped on a face of the transducer are delivered to a wound.
Specifically, the proximal portion 702 of the nozzle 700 slides over a distal portion 504 of the transducer assembly 500. The plurality of aligning slots 712 (illustrated as two slots) of the nozzle 700 engage with a plurality of aligning pins 508 (
In use, the cup 300 is inserted onto the “valve” 400 (as shown in
The separation distance between the free end surface of the transducer tip 705 (
In a particularly useful embodiment, the valve opening is appropriately sized to allow a desired amount of fluid 602 to pass therethrough such that the fluid 602 that drips onto the tip 505 of the transducer assembly 500 can wrap around the circumference of the tip 505. Such an effect is known as the Babaev effect, or vacuum effect, and creates a capillary action that wicks or applies the fluid 602 around the circumference of the tip 505 of the transducer assembly 500.
The fluid 602 to be sprayed and provided within the bottle 600 can be any appropriate carrier, such as saline, water (regular or distilled), or oil to be applied to tissue, such as a vegetable, peanut, or canola oil, optionally with a soluble pharmaceutical (e.g., an antibiotic), antiseptic, conditioner, surfactant, emollient, or other active ingredient. The fluid 602 can also be a combination of two or more fluids and/or substances having microscopic particles, such as powder and the like. Exemplary fluids include, but are not limited to, sterile water, saline solution, oil, oxygenated water, or other isotonic or hypertonic solutions. Exemplary fluids may, in certain embodiments, further include drugs (e.g., therapeutic agents) such as antibiotics, anti-fungals, anti-virals, growth factors, analgesics, narcotics, and the like, formulated in any of the foregoing fluids or in other pharmaceutically acceptable fluids appropriate for the formulation of the particular drug. However, in certain embodiments, the fluid does not include a drug. The fluid may be sterilized so that, in use, a spray of a sterile solution can be administered to patients. In other embodiments, no fluid is delivered and the nozzle is used to deliver ultrasonic energy alone (in the absence of a spray or other coupling agent) from a non-contact distance.
Moreover, applicator nozzles are merely exemplary of removable device components with which the locking device of the present invention can be used.
Those skilled in the art will know or be able to ascertain using no more than routine experimentation, many equivalents to the embodiments and practices described herein. Accordingly, it will be understood that the foregoing descriptions are to be considered in all respects illustrative, rather than limiting, of the invention. For example, a variety of systems and/or methods may be implemented based on the disclosure and still fall within the scope of the invention. The specifications and other disclosures in the patents, patent applications, and other references cited herein are hereby incorporated by reference in their entirety. The invention contemplates suitable combinations of one or more of any of the foregoing features of the locking device and/or applicator nozzle.
This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/876,678, filed on Dec. 22, 2006. The content of the foregoing application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60876678 | Dec 2006 | US |