The present invention is directed to apparatuses, turbine nozzles, and turbine shrouds. More particularly, the present invention is directed to apparatuses, turbine nozzles, and turbine shrouds including cooling fluid channels.
Gas turbines operate under extreme conditions. In order to drive efficiency higher, there have been continual developments to allow operation of gas turbines at ever higher temperatures. As the temperature of the hot gas path increases, the temperature of adjacent regions of the gas turbine necessarily increase in temperature, due to thermal conduction from the hot gas path.
In order to allow higher temperature operation, some gas turbine components, such as nozzles and shrouds, have been divided such that the higher temperature regions (such as the fairings of the nozzles and the inner shrouds of the shrouds) may be formed from materials, such as ceramic matrix composites, which are especially suited to operation at extreme temperatures, whereas the lower temperature regions (such as the outside and inside walls of the nozzles and the outer shrouds of the shrouds) are made from other materials which are less suited for operation at the higher temperatures, but which may be more economical to produce and service.
Joining the portions of gas turbines in higher temperature regions to the portions of gas turbines in lower temperature regions may present challenges, particularly with regard to interfaces between metals and ceramic matrix composite materials. Large thermal gradients between the metal portion and the ceramic matrix composite portion may result in high thermal strain in the component, reducing performance and component service life. Further, in many instances, components having a metal portion and a ceramic matrix composite portion include a volume between metal and ceramic matrix composite portions for which a flow of a purge gas is appropriate. Purge gas may be used, among other purposes, to minimize leaks between adjacent turbine components. However, providing both a purge fluid to purge the volume between the metal and the ceramic matrix composite portions as well as a temperature modulation fluid to reduce temperature differentials and thermal strain across the interface between the metal portion and the ceramic matrix composite portion may reduce the efficiency of the turbine by requiring a greater flow of fluid to be diverted from the compressor than either a purge fluid or a temperature modulation fluid would alone.
In an exemplary embodiment, an apparatus includes a first article, a second article, a first interface volume disposed between and enclosed by the first article and the second article, a cooling fluid supply, and at least one cooling fluid channel in fluid communication with the cooling fluid supply and the first interface volume. The first article includes a first material composition. The second article includes a second material composition. The at least one cooling fluid channel includes a heat exchange portion disposed in at least one of the first article and the second article downstream of the cooling fluid supply and upstream of the first interface volume.
In another exemplary embodiment, a turbine nozzle includes an outside wall, a fairing, a first interface volume disposed between and enclosed by the outside wall and the fairing, an inside wall, a second interface volume disposed between and enclosed by the inside wall and the fairing, a cooling fluid supply, and at least one cooling fluid channel in fluid communication with the cooling fluid supply, the first interface volume, and the second interface volume. The outside wall includes a metal. The fairing includes a ceramic matrix composite. The inside wall includes a metal. The at least one cooling fluid channel includes a heat exchange portion disposed downstream of the cooling fluid supply and upstream of the first interface volume and the second interface volume.
In another exemplary embodiment, a turbine shroud includes an outer shroud, an inner shroud, a first interface volume disposed between and enclosed by the outer shroud and the inner shroud, a cooling fluid supply, and at least one cooling fluid channel in fluid communication with the cooling fluid supply and the first interface volume. The outer shroud includes a metal. The inner shroud includes a ceramic matrix composite. The at least one cooling fluid channel includes a heat exchange portion disposed downstream of the cooling fluid supply and upstream of the first interface volume.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided are exemplary apparatuses and gas turbine components, such as turbine nozzles and turbine shrouds. Embodiments of the present disclosure, in comparison to articles and methods not utilizing one or more features disclosed herein, decrease costs, decrease thermal strain, increase efficiency, improve elevated temperature performance, or a combination thereof.
Referring to
In another embodiment, the apparatus 100 further includes a third article 114 and a second interface volume 116 disposed between and enclosed by the third article 114 and the second article 104. The third article 114 includes a third material composition. The at least one cooling fluid channel 110 is upstream of and in fluid communication with the second interface volume 116, and the heat exchange portion 112 is upstream of the second interface volume 116. In a further embodiment, the third material composition of the third article 114 includes a third thermal tolerance less than the second thermal tolerance.
The apparatus 100 may further include a sealing member 118 disposed between the first article 102 and the second article 104, wherein the sealing member 118 encloses the first interface volume 106, a sealing member 118 disposed between the second article 104 and the third article 114, wherein the sealing member 118 encloses the second interface volume 116, or both. The sealing member 118 may form a hermetic seal or a non-hermetic seal.
The first interface volume 106, the second interface volume 116, or both may be arranged and disposed to exhaust a cooling fluid from the cooling fluid supply 108 to an external environment 120. In one embodiment, wherein the sealing member 118 forms a non-hermetic seal, a partially restricted flow of the cooling fluid may pass by the sealing member 118 to exhaust to the outside environment. In another embodiment (not shown), the apparatus 100 may include a valve or restricted flow path independent of the sealing member 118 through which a partially restricted flow of the cooling fluid may pass to exhaust to the outside environment.
Utilizing the cooling fluid to purge the first interface volume 106, the second interface volume 116, or both, whether through a non-hermetic seal enclosed by sealing member 118, a valve, or a restricted flow path independent of the sealing member 118, may reduce the amount of a cooling fluid diverted from a cooling fluid supply 108, increasing efficiency of the apparatus 100 relative to a comparable apparatus using separate flows of the cooling fluid to thermally regulate the apparatus 100 and to purge the first interface volume 106, the second interface volume 116, or both.
The first material composition may be any suitable material, including, but not limited to, a metal, a nickel-based alloy, a superalloy, a nickel-based superalloy, an iron-based alloy, a steel alloy, a stainless steel alloy, a cobalt-based alloy, a titanium alloy, or a combination thereof. The second material composition may be any suitable material, including, but not limited to, a refractory metal, a superalloy, a nickel-based superalloy, a cobalt-based superalloy, a ceramic matrix composite, or a combination thereof. The ceramic matrix composite may include, but is not limited to, a ceramic material, an aluminum oxide-fiber-reinforced aluminum oxide (Ox/Ox), carbon-fiber-reinforced carbon (C/C), carbon-fiber-reinforced silicon carbide (C/SiC), and silicon-carbide-fiber-reinforced silicon carbide (SiC/SiC). In one embodiment, the first material composition is a metal and the second material composition is a ceramic matrix composite.
In an embodiment having a first article 102 and a third article 114, the third material composition may be the first material composition, or the third material composition may include a distinct material composition from the first material composition. As used herein, a “distinct” material composition indicates that the first material composition and the third material composition differ from one another by more than a difference in trace impurities such that the first material composition and the third material composition have material properties which are sufficiently different from one another to have a material affect at the operating conditions to which the article 100 is subjected. Also in an embodiment having a first article 102 and a third article 114, the third thermal tolerance may be the first thermal tolerance, or the third thermal tolerance may be distinct from the first thermal tolerance.
In one embodiment, the apparatus 100 includes a reduced thermal gradient 122 between the first article 102 and the second article 104 relative to a comparable apparatus (not shown) in which a comparable at least one cooling fluid channel is isolated from a comparable interface volume. In an embodiment having a first article 102 and a third article 114, the apparatus 100 may also include a reduced thermal gradient 122 between the second article 104 and the third article 114 relative to the comparable apparatus. Without being bound by theory, it is believed that using a cooling fluid from a cooling fluid supply 108 which passes through a heat exchange portion 112 of a cooling fluid channel 110 prior to purging at least one of a first interface volume 106 and a second interface volume 116 may cool the second article 104, may elevate the temperature of at least one of the first interface volume 106 and the second interface volume 116, and may further elevate the temperature of at least one of the first article 102 and the third article 114.
Referring to
Referring to
Referring to
The apparatus 100 may be any suitable apparatus, including, but not limited to a turbine component. Suitable turbine components, may include, but are not limited to, nozzles (also known as vanes), shrouds, buckets (also known as blades), turbine cases, and combustor liners.
Referring to
Referring to
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The United States Government retains license rights in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms by the terms of Government Contract No. DE-FE0024006 awarded by the United States Department of Energy.
Number | Name | Date | Kind |
---|---|---|---|
4292008 | Grosjean | Sep 1981 | A |
5098257 | Hultgren | Mar 1992 | A |
5690473 | Kercher | Nov 1997 | A |
6758653 | Morrison | Jul 2004 | B2 |
7217088 | Albrecht | May 2007 | B2 |
7448850 | Bulgrin | Nov 2008 | B2 |
8075256 | Little | Dec 2011 | B2 |
8162598 | Liang | Apr 2012 | B2 |
20100068034 | Schiavo | Mar 2010 | A1 |
20100183435 | Campbell | Jul 2010 | A1 |
20120237786 | Morrison et al. | Sep 2012 | A1 |
20120257954 | Chanteloup et al. | Oct 2012 | A1 |
20130280040 | Johns | Oct 2013 | A1 |
20140064969 | Romanov | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
3075964 | Oct 2016 | EP |
2015047698 | Apr 2015 | WO |
Entry |
---|
Extended European Search Report and Opinion issued in connection with corresponding EP Application No. 17161520.6 dated Aug. 1, 2017. |
Office Action issued in connection with corresponding EP Application No. 17161520.6 dated Oct. 26, 2018. |
Number | Date | Country | |
---|---|---|---|
20170276021 A1 | Sep 2017 | US |