Apparatuses and methods assisting in dental therapies

Information

  • Patent Grant
  • 12090020
  • Patent Number
    12,090,020
  • Date Filed
    Tuesday, March 27, 2018
    6 years ago
  • Date Issued
    Tuesday, September 17, 2024
    4 months ago
Abstract
Provided herein are methods and apparatuses for recommending tooth leveling (e.g., one or more of anterior leveling, posterior leveling, and arch-shape recommendations) for orthodontic devices and methods for patients. Factors involved in the leveling of teeth can include symmetry, doctor preferences, preferences regarding gender, the country in which the patient is being treated, and other issues related to the aesthetics of the mouth and arch shape. The device can comprise an aligner configured to fit over a patient's teeth. Methods of designing and manufacturing aligners based on leveling recommendations are also provided.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are incorporated herein by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND

Orthodontic procedures typically involve repositioning a patient's teeth to a desired arrangement in order to correct malocclusions and/or improve aesthetics. To achieve these objectives, orthodontic appliances such as braces, shell aligners, and the like can be applied to the patient's teeth by an orthodontic practitioner and/or by the patients themselves. The appliance can be configured to exert force on one or more teeth in order to effect desired tooth movements according to a treatment plan.


Orthodontic aligners may include devices that are removable and/or replaceable over the teeth. Orthodontic aligners may be provided as part of an orthodontic treatment plan. In some orthodontic treatment plans involving removable and/or replaceable aligners, a patent may be provided plurality of orthodontic aligners over the course of treatment to make incremental position adjustments to the patient's teeth. An orthodontic aligner may have a polymeric trough with an inner cavity shaped to receive and resiliently reposition teeth from one tooth arrangement to a successive tooth arrangement. Orthodontic aligners may include “active” regions that impose repositioning forces on teeth and “passive” regions that retain teeth in their current state.


Many orthodontic treatment plans, including at least some of those that involve removable and/or replaceable appliances that provide incremental forces on teeth over time, include a determination of tooth leveling. Tooth leveling may involve the extent to which a person's teeth are intruded or extruded relative to their gums. Under many orthodontic treatment plans, tooth leveling may be determined independently of other aspects of determination of final position(s) of a patient's teeth. Some factors influencing tooth leveling are aesthetics (which, in many orthodontic treatment plans may primarily affect anterior tooth positioning) and clinical positioning (which may primarily affect posterior teeth). A tooth leveling determination may also depend on what a given doctor thinks is appropriate for a patient as well as characteristics of the patient (patient gender, patient heritage, patent location, etc.). Existing systems do not effectively provide a treatment professional with recommendations of tooth levels appropriate for a patient, much less offer treatment professionals the ability to design orthodontic appliances to accommodate and/or visualize the effects of tooth level recommendations.


SUMMARY

Systems, methods, and/or computer-readable media described herein provide technical solutions to the highly technical problems of machine visualization of tooth leveling recommendations. “Tooth leveling,” as used herein, may refer to a parameter for identifying the extent a tooth is intruded and/or extruded from a patient's gums. Tooth leveling may be achieved by a variety of ways, including application of incremental forces to a tooth over a specified period of time. Tooth leveling may generally refer to adjusting/modifying the position (e.g., the z-component of position) of a tooth or teeth. Tooth leveling may include anterior leveling (e.g., leveling of the anterior teeth, e.g., incisors and canines), posterior leveling (e.g., leveling of posterior teeth, e.g., premolars and molars, and/or arch shape. The methods and apparatuses described herein may include one or more of: anterior leveling, posterior leveling or arch shape adjustment. Thus, “tooth leveling” may refer to one or more of these (in combination). In some variations, it may be beneficial to separately perform methods for anterior leveling and posterior leveling of teeth; as mentioned, a recommendation for tooth leveling may include both anterior tooth leveling and posterior tooth leveling (and/or arch shape) or it may include just one or two of these.


Systems, methods, and/or computer-readable media explored herein train automated agents to learn latent leveling factors to associate one or more specific leveling recommendations with specific patient types. An “automated agent,” as used herein, may refer to one or more computer-program instructions, which when accessed by a computer processor, execute one or more computer-implemented methods without human intervention.


A “latent leveling factor,” as used herein, may refer to a factor, unknown at the time of training, that forms the basis of a significant association between specific treatment professional(s) and specific historical leveling recommendations those treatment professional(s) have provided to patients. A “latent leveling factor,” in some implementations, may also refer to a factor, unknown at the time of training that forms the basis of a significant association between specific patient type and specific historical leveling recommendations for that patient type. A “leveling recommendation,” as used herein, may refer to a recommended tooth leveling provided to a patient as part of a prescription. A “historical leveling recommendation,” as used herein, may refer to a leveling recommendation that was implemented on a specific patient and/or group of patients. A historical leveling recommendation may be contrasted with an “estimated” or “derived” leveling recommendation that is to be prescribed to a patient. A “patient type,” as used herein, may refer to a characteristic (gender, country of origin, age, jaw parameter range, face parameter range, arch parameter range, malocclusion characteristic, etc.) common to two or more patients. A “treatment professional,” used interchangeably herein with “doctor,” “orthodontist,” “dentist,” etc., may refer to any individual who implements a treatment plan, such as an orthodontic or restorative treatment plan.


In some implementations, a first set of historical leveling parameters are gathered. One or more of the first set of historical leveling parameters may be associated with a first set of treatment professionals. In some implementations, the first set of historical leveling parameters may include leveling parameters that the first set of treatment professionals have prescribed and/or implemented on a first set of patients. In various implementations, a second set of historical leveling parameters may be gathered. One or more of the second set of historical leveling parameters may be associated with a first set of patient types of patients who have undergone a treatment plan. The second set of historical leveling parameters may include leveling parameters implemented on the patent type of the first set of patients in the past.


A set of latent leveling factors may be derived from the first dataset and the second dataset. One or more of the latent leveling factors may provide a latent statistical basis (e.g., may be associated in a statistically significant way) to associate the first set of historical leveling parameters with the first set of doctors in the first dataset. One or more of the latent leveling factors may further provide a latent statistical basis to associate the second set of historical leveling parameters with the patient types of the first set of patients in the second dataset. Operations may be taken to regularize the set of latent leveling factors by, e.g., whether one or more of the latent leveling factors exceeds a complexity threshold, and removing any latent leveling factors exceeding the complexity threshold. Operations may also be taken to identify whether or not the one or more of the latent leveling factors correspond to bias by seeing if the latent leveling factors deviate from a known correlation between the first set of historic leveling parameters and the second set of historic leveling parameters.


The latent leveling factors may be used to derive a leveling recommendation for one or more combinations of doctors from the set of first doctors and one or more patient types from the one or more first set of patients. In some implementations, the latent leveling factors allow the combinations of doctor/patient type pairs to be associated with specific leveling recommendations. Advantageously, these latent leveling factors may be learned through training the automated agents described herein. One or more leveling recommendations may be stored in a leveling recommendation database as described further herein.


In various implementations, a leveling recommendation is identified for a specific patient as part of final dental position calculations and/or visualizations for that patient. The leveling recommendation may include recommended tooth levels for the outcome of an orthodontic prescription. The leveling recommendation may include specific parameters to identify the extent the patient's teeth will be extruded and/or intruded from their gums after the orthodontic treatment plan. The leveling recommendation may be provided in conjunction with, or independent of, other final dental position parameters, such as tooth location(s), orientation(s), etc.


In various implementations, the patient data may be associated with a doctor identifier of a doctor who is implementing the treatment plan. The doctor identifier may correspond to the specific doctor implementing the treatment plan or may correspond to one or more doctors who have provided prescriptions to other patients similarly situated to the patient.


In some implementations, patient data may be gathered. The patient data may include information about the patient's gender, country of origin, age, jaw parameter range, face parameter range, arch parameter range, malocclusion characteristic, etc. The patient data may be used to associate the patient with a patient type identifier. The patient type identifier may use one or more patient characteristics to group the patient with other patients who have undergone or will undergo orthodontic treatment. As an example, the patient type identifier may group the patient with other patients based on one or more of gender, country of origin, age, jaw parameter range, face parameter range, arch parameter range, malocclusion characteristic, etc.


The doctor identifier and the patient identifier may be used to identify a leveling recommendation for the patient. As noted herein, the leveling recommendation may be derived from one or more latent leveling factors using automated agents to learn those latent leveling factors based on historic leveling parameters used in historic populations of patients by historic populations of treatment professionals. The doctor and/or the patient may be provided with instructions to display the leveling recommendation in a format that is convenient to their orthodontic treatment plan(s). In various implementations, the leveling recommendations may be incorporated into one or more tooth positions displayed in treatment visualization software for the doctor and/or patient. As noted herein, the tooth positions may include and/or be compatible with tooth parameters, implicit ratings, vector ratings, multiple ratings for a patient, and/or a larger leveling model configured to be displayed on a computer to the doctor and/or the patient.


In general, described herein are methods and apparatuses (including systems, devices and software, hardware, and/or firmware) for providing recommendations, and in particular, recommendations that are tailored to a particular health care provider, for treating a particular patient. In particular, described herein a apparatuses and methods for providing a particular, specified health care provider with recommendation for orthodontic treatment, including leveling of one or more teeth. As used herein, a health care provider may refer to a physician, nurse, dentist, orthodontist, technician, etc., and may for the sake of simplicity be referred to herein as a “doctor”.


In some embodiments, anterior tooth leveling may generally include creating a model based on known or assumed factors regarding doctors and patients and then capturing the residual error using a factorized matrix. This may provide an accurate prediction for anterior leveling that should be desirable to the specific doctor being provided with the recommendation. Similarly, posterior leveling may generally include analysis of previous cases (for a particular doctor) in order to determine the factors involved in posterior leveling; these factors may then be used to evaluate a proposed leveling, e.g., using either a Naïve Bayes or a Tree-augmented Naïve Bayes model. By optimizing over the scorer, a recommendation can be generated. Finally, arch shape recommendations may recommend an arch shape for a given doctor and type of patient using a combination of elliptic Fourier descriptors and a collaborative filter based on matrix factorization (e.g., matrix factorization in 3 dimensions) in order to predict Elliptic Fourier Descriptor (EFD) components that are doctor and patient specific.


In some embodiments, described herein are methods for providing a leveling recommendation to a doctor for a patient's teeth, the method comprising: inputting into a computing system an initial anterior leveling dataset of the patient's anterior teeth; inputting into the computing system an incisor preference (bpref) received from the doctor regarding a leveling position of lateral incisors; obtaining with the computing system an average anterior leveling (μ) dataset derived from a plurality of patients; determining a final leveling dataset based on the initial anterior leveling dataset, the incisor preference received from the doctor and the average anterior leveling dataset; and displaying, to the doctor, a final leveling recommendation from the final leveling dataset.


These methods may also include determining leveling (e.g., a leveling dataset) including the posterior teeth as well, although in some variations, the posterior teeth may be excluded. Any of these methods may also include generating an orthodontic device from the final leveling dataset. For example, a method of providing a leveling recommendation may also include determining a posterior leveling dataset based on the patient's posterior teeth, and determining the dataset may comprise determining the final leveling data set based on the initial anterior leveling dataset, the incisor preference received from the doctor, the average anterior leveling dataset, and the posterior leveling dataset.


In any of the methods described herein, the final leveling recommendation (e.g., anterior, posterior, arch shape) may be displayed on the computing device, may be displayed as an output (visual, digital, printout), or may be displayed as a model (virtual, 3D fabricated, etc.) of the teeth and/or a dental appliance to be used on the teeth.


Determining the final leveling dataset may be based on at least one latent factor, wherein the at least one latent factor comprises one or more of: a country bias, a gender bias, a patient-type bias, and a doctor/gender bias. In particular, the latent factor may be a doctor/gender bias (e.g., pdg).


The incisor preference (bpref) may be received from the doctor regarding the leveling position of lateral incisors with respect to a leveling position of central incisors. This bpref may be a preference by the doctor that the lateral incisors be raised with respect to the central incisors, and/or a preference by the doctor that the lateral incisors be level with the central incisors, and/or a preference by the doctor that the lateral incisors and central incisors be leveled based gingival margins of the patient.


Determining a final leveling dataset may include or involve applying matrix factorization to matrices containing the initial anterior leveling dataset, the incisor preference (bpref), and the average anterior leveling dataset (μ).


The final leveling dataset may comprise a matrix containing a set of possible leveling recommendations and a score for each leveling recommendation. Any of these methods may include selecting the final leveling recommendation from the final leveling dataset. The selected final leveling recommendation may comprise a highest score from the set of possible leveling recommendations. The final leveling recommendation may be added to the average anterior leveling dataset.


As another example of a method for providing a leveling recommendation, described herein are methods for providing an anterior leveling recommendation to a doctor for a patient's teeth. The method may include: inputting into a computing system an initial anterior leveling dataset of the patient's anterior teeth; inputting into the computing system an incisor preference (bpref) received from the doctor regarding a leveling position of lateral incisors; obtaining with the computing system an average anterior leveling (u) dataset derived from a plurality of patients; determining a final anterior leveling dataset based on the initial anterior leveling dataset, the incisor preference received from the doctor and the average anterior leveling dataset; and displaying, to the doctor, a final anterior leveling recommendation from the final leveling dataset.


A method for providing an arch shape recommendation to a doctor for a patient's dental arch may include: inputting into a computing system an initial arch shape dataset of the patient's dental arch; grouping the patient into a patient class based on the initial arch shape dataset; obtaining with the computing system an average arch shape dataset for the patient class; determining, with the computing system, a patient bias based on an average residual of arch shape recommendations for the patient class; determining, with the computing system, a doctor bias based on average residual of arch shape recommendations for the patient class made by the doctor; determining a final arch shape dataset based on the initial arch shape dataset, the patient bias, and the doctor bias; and displaying, to the doctor, a final arch shape recommendation from the final arch shape dataset. The methods for providing an arch shape recommendation may be part of a general method for providing a leveling recommendation to a doctor for a patient's teeth.


Determining the final arch shape may comprise applying matrix factorization to matrices containing the initial arch shape dataset, the patient bias, the doctor bias, and the average arch shape dataset. The final arch shape dataset may comprise a matrix containing a set of possible arch shape recommendations and a score for each arch shape recommendation.


Also described herein are methods for providing a leveling recommendation to a doctor for a patient's posterior teeth. For example, a method of providing a leveling recommendation to a doctor for a patient's posterior teeth may include: inputting into a computing system an initial posterior leveling dataset of the patient's posterior teeth; obtaining with the computing system an average posterior leveling dataset from a plurality of patients; determining a final posterior leveling dataset based on the initial posterior leveling dataset, the average posterior leveling dataset, and at least one factor from the initial posterior leveling dataset; and selecting a final posterior leveling recommendation from the final posterior leveling dataset. The methods for providing a leveling recommendation to a doctor for a patient's posterior teeth may be part of a general method for providing a leveling recommendation to a doctor for a patient's teeth. The at least one factor may comprise a leveling difference between corresponding teeth on a lower jaw and an upper jaw of the patient, and/or a leveling difference between corresponding teeth on a left and right side of a jaw of the patient, and/or an absolute leveling of at least one tooth. Determining may comprise using classifier theory to determine a probability distribution representing whether a given posterior leveling recommendation will be accepted by the doctor.


The selected final posterior leveling recommendation may comprise the highest probability from probability distribution. The final anterior leveling recommendation may be added to the average posterior leveling dataset.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1A shows an example of a system for estimating leveling recommendations using application of historical leveling parameters associated with doctors and application of historical leveling parameters associated with patient types.



FIG. 1B shows an example of a system for generating leveling recommendations derived from latent leveling factors.



FIG. 1C shows an example of a method for estimating leveling recommendations using application of historical leveling parameters associated with doctors and application of historical leveling parameters associated with patient types.



FIG. 1D shows an example of a method for generating leveling recommendations derived from latent leveling factors.



FIG. 1E illustrates an exemplary flowchart of a method for providing a leveling recommendation to a doctor for a patient's teeth as described herein.



FIG. 2A is a graphical representation of the Naïve Bayes model.



FIG. 2B shows an example of the initial distribution of levelings for tooth 4 and the accepted distribution of levelings.



FIG. 3 is a sample distribution of upper to lower leveling for upper teeth 4 and 13 and their corresponding lower jaw teeth, 29 and 20, respectively.



FIG. 4 shows facial symmetry sample distributions including an initial leveling symmetry distribution between teeth 5 and 12, a corrected symmetry distribution, and the change in symmetry after correction.



FIG. 5 shows a sample distribution over the change in leveling seen from initial to accepted in tooth 5.



FIG. 6 shows a spanning tree that models dependence between variables using mutual information. The node labels indicate tooth number.



FIG. 7 is a simplified block diagram of a data processing system for designing and manufacturing an orthodontic aligner using leveling recommendations derived from latent leveling factors.



FIG. 8 shows an orthodontic aligner manufactured according to the algorithms described herein.





DETAILED DESCRIPTION

The present disclosure is related to systems, methods, computing device readable media, and devices for creating an orthodontic aligner.


The planning and fabrication of such dental appliances as an example elastic polymeric positioning appliance is described in detail in U.S. Pat. No. 5,975,893, and in published PCT application WO 98/58596 which designates the United States, and which is herein incorporated by reference for all purposes. Systems of dental appliances employing technology described in U.S. Pat. No. 5,975,893, are commercially available from Align Technology, Inc., Santa Clara, Calif., under the tradename, Invisalign System. Align Technology, Inc.


Throughout the body of the Detailed Description, the use of the terms “orthodontic aligner”, “aligner”, or “dental aligner” is synonymous with the use of the terms “appliance” and “dental appliance” in terms of dental applications. For purposes of clarity, embodiments are hereinafter described within the context of the use and application of appliances, and more specifically “dental appliances.”


Factors involved in the leveling of teeth include symmetry, doctor preferences, preferences regarding gender, the country in which the patient is being treated, and other issues related to the aesthetics of the mouth and arch shape.


In general, described herein are methods for providing a leveling recommendation to a doctor for a patient's teeth. These leveling methods may be used for providing one or more of: anterior leveling recommendation, posterior leveling recommendations, and arch shape recommendations.



FIG. 1A shows an example of a system 100A for estimating leveling recommendations using application of historical leveling parameters associated with doctors and application of historical leveling parameters associated with patient types. The system 100A may include engines and/or datastores. A computer system can be implemented as an engine, as part of an engine or through multiple engines. As used in this paper, an engine includes one or more processors or a portion thereof. A portion of one or more processors can include some portion of hardware less than all of the hardware comprising any given one or more processors, such as a subset of registers, the portion of the processor dedicated to one or more threads of a multi-threaded processor, a time slice during which the processor is wholly or partially dedicated to carrying out part of the engine's functionality, or the like. As such, a first engine and a second engine can have one or more dedicated processors or a first engine and a second engine can share one or more processors with one another or other engines. Depending upon implementation-specific or other considerations, an engine can be centralized or its functionality distributed. An engine can include hardware, firmware, or software embodied in a computer-readable medium for execution by the processor. The processor transforms data into new data using implemented data structures and methods, such as is described with reference to the FIGS. in this paper.


The engines described in this paper, or the engines through which the systems and devices described in this paper can be implemented, can be cloud-based engines. As used in this paper, a cloud-based engine is an engine that can run applications and/or functionalities using a cloud-based computing system. All or portions of the applications and/or functionalities can be distributed across multiple computing devices, and need not be restricted to only one computing device. In some embodiments, the cloud-based engines can execute functionalities and/or modules that end users access through a web browser or container application without having the functionalities and/or modules installed locally on the end-users' computing devices.


As used in this paper, datastores are intended to include repositories having any applicable organization of data, including tables, comma-separated values (CSV) files, traditional databases (e.g., SQL), or other applicable known or convenient organizational formats. Datastores can be implemented, for example, as software embodied in a physical computer-readable medium on a specific-purpose machine, in firmware, in hardware, in a combination thereof, or in an applicable known or convenient device or system. Datastore-associated components, such as database interfaces, can be considered “part of” a datastore, part of some other system component, or a combination thereof, though the physical location and other characteristics of datastore-associated components is not critical for an understanding of the techniques described in this paper.


Datastores can include data structures. As used in this paper, a data structure is associated with a particular way of storing and organizing data in a computer so that it can be used efficiently within a given context. Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address, a bit string that can be itself stored in memory and manipulated by the program. Thus, some data structures are based on computing the addresses of data items with arithmetic operations; while other data structures are based on storing addresses of data items within the structure itself. Many data structures use both principles, sometimes combined in non-trivial ways. The implementation of a data structure usually entails writing a set of procedures that create and manipulate instances of that structure. The datastores, described in this paper, can be cloud-based datastores. A cloud-based datastore is a datastore that is compatible with cloud-based computing systems and engines.


In the example of FIG. 1A, the system 100A includes a latent factor determination engine 132, a leveling parameter recommendation engine 134, a leveling parameter doctor datastore 136, a leveling parameter patient type datastore 138, and a leveling parameter recommendation datastore 140. One or more of the modules of the system 100A may be coupled to one another or to modules not explicitly shown.


The latent factor determination engine 132 may be configured to estimate latent leveling factors using historical leveling parameters indexed by doctor and historical leveling parameters indexed by patient type. In some implementations, the latent factor determination engine 132 gathers first set of historic leveling parameters, each of the first set of the historic leveling parameters associated with a first set of doctors implementing a treatment plan. The latent factor determination engine 132 may further gather a second set of historic leveling parameters, where each of the second set of historic leveling parameters is associated with a first set of patient types of patients who have undergone the treatment plan.


The latent factor determination engine 132 may further be configured to derive from the first set of historical leveling data and the second set of historical leveling data a set of latent leveling factors that were used as the basis of prescribing the first and second set of historical data. One or more of the latent leveling factors may provide a latent statistical basis to associate the first set of the historic leveling parameters with the first set of doctors in the first dataset. One or more of the latent leveling factors may provide a basis to associate the second set of historical leveling parameters with the first set of patient types in the second dataset. The latent factor determination engine 132 may use automated agents to identify these latent leveling factors using techniques such as sparse-matrix factorization of the first dataset against the second dataset or vice versa.


The latent factor determination engine 132 may be configured to regularize the set of latent leveling factors. For instance, the latent factor determination engine 132 may be configured to determine whether one or more of the latent leveling factors exceeds a complexity threshold, and removing any latent leveling factors exceeding the complexity threshold. In some implementations, the latent factor determination engine 132 may be configured to identify whether one or more of the latent leveling factors correspond to bias by seeing if the latent leveling factors deviate from a known correlation between the first set of historic leveling parameters and the second set of historic leveling parameters. Examples of regularization and bias determination techniques are described in great detail herein.


The leveling parameter recommendation estimation engine 134 may be configured to use the latent leveling factors to derive a leveling recommendation for one or more combinations of doctors from the first set of doctors and patient types from one of the first set of patient types. Advantageously, the leveling recommendation may have a high likelihood of being applicable to future populations of doctors and/or patient types. Advantageously, the leveling recommendation may be based on latent leveling factors which were previously unknown and/or unknowable. In various implementations, the leveling parameter recommendation estimation engine 134 may be configured to store leveling recommendations for various combinations of doctors and patient types in the leveling parameter recommendation datastore 140.


The leveling parameter doctor datastore 136 may be configured to store historic leveling parameters provided by doctors at some time. The leveling parameter doctor datastore 136 may include a datastore that indexes leveling parameters prescribed in the past by doctor. In some implementations, the historical leveling parameters in the leveling parameter doctor datastore 136 implements a matrix of historic leveling recommendations by doctor. The leveling parameter patient type datastore 138 may be configured to store historic leveling parameters prescribed to different patient types over time. The leveling parameter patient type datastore 138 may include a datastore that indexes leveling recommendations by patient type. In various implementations, the leveling parameter patient type datastore 138 implements a matrix of historic leveling recommendations by patient type.


The leveling parameter recommendation datastore 140 may be configured to store latent leveling factors, such as those latent leveling factors identified and/or derived by the leveling parameter recommendation estimation engine 134.



FIG. 1B shows an example of a system 100B for generating leveling recommendations derived from latent leveling factors. The system 100B may include a patient type identification engine 142, a doctor association engine 144, an estimated leveling parameter recommendation gathering engine 146, a patient datastore 148, a doctor datastore 150, and the leveling parameter recommendation datastore 140. One or more of the modules of the system 100B may be coupled to one another or to modules not explicitly shown.


The patient type identification engine 142 may be configured to gather patient data of one or more patients from the patient datastore 148. The patient type identification engine 142 may further be configured to identify patient types of patients whose information has been gathered. The doctor association engine 144 may be configured to gather from the doctor datastore 148 doctor identifiers of doctors implementing a treatment plan. The doctor association engine 144 may further be configured to associate patient data with a doctor identifier of a doctor implementing a treatment plan.


The estimated leveling parameter recommendation gathering engine 146 may be configured to identify one or more leveling recommendations for a doctor/patient type pair. In some implementations, the leveling recommendations are gathered from the leveling parameter recommendation datastore 140. As noted herein, the leveling parameters may provide latent statistical basis to associate a first set of the historic leveling parameters with a first set of doctors in a first dataset and further providing a basis to associate a second set of historical leveling parameters with a first set of patient types in a second dataset.


As also noted herein, leveling parameter recommendation datastore 140 may be configured to store latent leveling factors, such as those latent leveling factors identified and/or derived by the leveling parameter recommendation estimation engine 134 (see FIG. 1A).


The patent datastore 148 may include a datastore configured to store patient data of a patient. Such patient data may include identifiers of gender, heritage, and/or other background data of a patient as well as identifiers associated with jaw shape/size, arch shape/size, facial characteristics, and/or other physical characteristics. The patient data may form a basis to associate a patient with a patient type. The doctor datastore 150 may be configured to store doctor data of doctors. The doctor data may include identifiers of doctors as well as information about treatment plans that those doctors have implemented in the past.



FIG. 1C shows an example of a method 100C for estimating leveling recommendations using application of historical leveling parameters associated with doctors and application of historical leveling parameters associated with patient types. The method 100C may be executed by one or more modules described herein, including but not limited to the modules of the system 100A shown in FIG. 1A. It is noted the method 100C may include a greater or fewer number of operations than those depicted. It is noted other structures may operate to perform the operations of the method 100C.


At an operation 152, a first dataset including a first set of historic leveling parameters may be gathered. In some implementations, one or more of the first set of the historic leveling parameters is associated with a first set of doctors implementing a treatment plan. In some implementations, the latent factor determination engine 132 may gather from the leveling parameter doctor datastore 136 a first set of historic leveling parameters.


At an operation 154, a second dataset including a second set of historic leveling parameters may be gathered. In various implementations, one or more of the second set of historic leveling parameters is associated with a first set of patient types of patients who have undergone the treatment plan. As noted herein, the latent factor determination engine 132 may gather from the leveling parameter patient type datastore 138 a second set of historic leveling parameters where those historic leveling parameters are associated with a first set of patient types of patients who have undergone a treatment plan.


At an operation 156, a set of latent leveling factors may be derived from the first dataset and the second dataset. In various implementations, one or more of the latent leveling factors provides a latent statistical basis to associate the first set of the historic leveling parameters with the first set of doctors in the first dataset. One or more of the latent leveling factors may also provide a basis to associate the second set of historical leveling parameters with the first set of patient types in the second dataset. As discussed further herein, the leveling parameter recommendation estimation engine 134 may operate to derive a set of latent leveling factors from the first dataset and the second dataset.


At an operation 158, the set of leveling factors may be regularized. At an operation 160, one or more of the latent leveling factors may be removed if they indicate bias. The leveling parameter recommendation estimation engine 134 may operate to implement operations 158 and/or 160.


At an operation 162, the latent leveling factors may be used to derive a leveling recommendation for one or more combinations of doctors from the first set of doctors and patient types from one of the first set of patient types. The leveling parameter recommendation estimation engine 134 may operate, as discussed further herein, to derive a leveling recommendation for one or more combinations of doctors from the first set of doctors and patient types from one of the first set of patient types.


At an operation 164, a leveling recommendation database may be created using the derived leveling recommendations. As noted herein, the leveling parameter recommendation estimation engine 134 may operate to store one or more derived leveling recommendations in the leveling parameter recommendation datastore 140.



FIG. 1D shows an example of a method 100D for generating leveling recommendations derived from latent leveling factors. The method 100D may be executed by one or more modules described herein, including but not limited to the modules of the system 100B shown in FIG. 1B. It is noted the method 100D may include a greater or fewer number of operations than those depicted. It is noted other structures may operate to perform the operations of the method 100D.


At an operation 170, patient data of a patient is gathered. In some implementations, the patient type identification engine 142 may gather patient data from the patent datastore 148. The patient data may have been manually inputted, may have been crawled through one or more automated agents, or gathered from a larger universe of patient data using various data gathering techniques.


At an operation 172, the patient data is associated with a doctor identifier of a doctor implementing a treatment plan. The doctor association engine 144 may gather from the doctor datastore 148 a doctor identifier of a doctor implementing a treatment plan. At an operation 174, the patient data may be associated with a patient type identifier of a patient type. In some implementations, the patient type identification engine 142 may operate to associate the patient data with a patient type identifier of a patient type. The association may be due to, e.g., gender, heritage, and/or other background data of a patient as well as identifiers associated with jaw shape/size, arch shape/size, facial characteristics, and/or other physical characteristics.


At an operation 176, the doctor identifier and the patient type identifier may be used to identify a leveling recommendation. In some implementations, the leveling recommendation is derived from one or more latent leveling factors. As noted herein, in some implementations, the leveling factors provide a latent statistical basis to associate a first set of the historic leveling parameters with a first set of doctors in a first dataset. The leveling factors may further provide a basis to associate a second set of historical leveling parameters with a first set of patient types in a second dataset.


At an operation 178, instructions to display the leveling recommendation may be provided. In various implementations, the estimated leveling parameter recommendation gathering engine 146 may be configured to translate the leveling recommendation to a representation to be used in orthodontic treatment plans. As an example, in some implementations, the estimated leveling parameter recommendation gathering engine 146 may provide instructions to identify one or more 32-vector representations of leveling recommendations. As another example, the estimated leveling parameter recommendation gathering engine 146 may provide instructions to fabricate shell aligners, such as those used for an incremental orthodontic treatment plan, to implement the leveling recommendation.



FIG. 1E schematically illustrates one variation of a method for providing a leveling recommendation as will be described in greater detail below. In FIG. 1E, the method illustrated may include inputting (e.g., into a computing system) an initial anterior leveling dataset of the patient's anterior teeth 101. The user (e.g., doctor, dentist, technician, etc.) may then input an incisor preference (bpref) regarding a leveling position of lateral incisors 103. The Incisor preference may indicate position of lateral incisors relative to central incisors. An average anterior leveling (μ) dataset may then be derived from a plurality of patients 105, including datasets in a library or database of patient information. Based on this information, the method may then determine a final leveling dataset based on the initial anterior leveling dataset, the incisor preference received from the doctor and the average anterior leveling dataset 107. Determining a final leveling dataset may include latent factor such as country bias, gender bias, doctor/gender bias, etc.). As will be described in greater detail below, any of these methods may use matrix factorization to determine the final leveling dataset. The final leveling dataset may include possible leveling recommendations and a score for each leveling recommendation.


In some embodiments, the final leveling recommendation may be selected from the final leveling dataset 109 (e.g., the set having the highest score from the set of possible leveling recommendations). In some variations, the final leveling recommendation is added to the average anterior leveling dataset 111.


In any of these methods, a posterior leveling dataset may be determined based on the patient's posterior teeth (e.g., determining the dataset by determining the final leveling data set based on the initial anterior leveling dataset, the incisor preference received from the doctor, the average anterior leveling dataset, and the posterior leveling dataset) 113.


Once determined, the final leveling recommendation may be displayed (e.g., to the doctor), from the final leveling dataset 115.


Anterior Leveling Recommendation System using Sparse-matrix factorization


As mentioned above, matrix-factorization via a sparse version of singular value decomposition (SVD) can be deployed in a tooth-leveling recommendation system for anterior positioning of a patient's teeth and for determining arch shape.


When used with dense matrices, singular value decomposition of an m×n matrix M can be is represented as:

M=UΣV*  (1)

    • where U is an m×m matrix, Σ is an m×n diagonal scaling matrix, and V* is an n×n matrix. In the context of a recommendation system, M can be considered to be a matrix where each row represents a user and each column represents an item. Cells of the matrix indicate a rating. The decomposition of M can be thought of as identifying a set of n latent factors (equivalent to the principal axes of a PCA) in the columns of V* and the mappings (UΣ) of the original rows onto the latent factors. The matrices are such that Σ is ordered from the most relevant factor to the least. The advantage of SVD is that the number of columns in U, the number of rows in V*, and the number of rows and columns in the scaling matrix Σ can be truncated to obtain a close approximation of M.


In a tooth-leveling recommendation system, this corresponds to finding the L most significant latent factors that represent the ratings of users for each item. This can be represented as factoring the rating matrix as:

M=PQ  (2)

    • where M is the |users|×|items| matrix of ratings, P is a |users|×L matrix of users by latent factors, and Q is an L×|items| matrix of the latent factors for each item. M is a sparse matrix and the factorization cannot be performed by SVD. Instead, a parameter adjustment technique can be applied, such as Stochastic Gradient Descent (SGD), to attempt to learn the factorization from the sparse set of ratings.


To learn the factorization of the sparse rating matrix, the matrices P and Q can be initialized with some small values. Then, starting with the first latent factor l=1, iterating through each known rating for product i by user u, rui, and computing the current prediction of the rating:











r
^

ui

=




k
=
1

l




p
uk



q
ki







(
3
)









    • which is the sum of the user's preferences times the qualities of the item for all latent factors that have been completed so far are currently being worked on, l.





The error between the prediction and the actual rating is:

eui=rui−{circumflex over (r)}ui  (4)


Finding the best solution for P and Q is equivalent to minimizing the following over the entire set of ratings IC:










min

P
,
Q







(


r
ui

-




k
=
1

l




p
uk



q
ki




)

2






(
5
)









    • which can be achieved using SGD by finding the derivative of the error with respect to P and Q:



















e
ui
2





p
ul



=



2


e
ui







p
ul





e
ui








=



2


e
ui







p
ul





(


r
ui

-




k
=
1

l




p
uk



q
ki




)








=




-
2



e
ui



q
li















(
6
)






(
7
)









(
8
)
















e
ui
2





q
li



=



2


e
ui







q
li





e
ui








=



2


e
ui







q
li





(


r
ui

-




k
=
1

l




p
uk



q
ki




)








=




-
2



e
ui



p
ul















(
9
)






(
10
)









(
11
)












    • and by moving P and Q in the opposite direction:

      pul←pulαγeuiqli  (12)
      qli←qli+γeuipul  (13)

    • where γ is a learning rate parameter and is typically set low at approximately 0.001.





By iterating over the entire set of ratings several times, the first latent factor, represented in the column vector pu1 and the row vector q1i, can be learned. The error can be minimized using the first latent factor, and the next latent factor l=2 can be learned through the same stochastic gradient descent algorithm. The process can then be repeated until all L factors are learned.


In practice, a latent factor model will have |users|×|items|×L parameters. It is common to have results with over one hundred million parameters. Thus, the model as stated is prone to over fitting. The solution to the over-fitting problem is regularization—penalizing complicated models in some way. The most common approach is to modify Equation 5 by including the l2 norm of P and Q, indicated by ∥⋅∥.











min

P
,
Q








(

u
,
i

)


𝒦





(


r
ui

-




k
=
1

l




p
uk



q
ki




)

2



+

λ


(




P


2

+



Q


2


)






(
14
)









    • since

















X






X


2


=






X




Tr


(

XX
T

)



=

2

X






(
15
)









    • the update equations become:

      pul←pul+γ(euiqli−λpul)  (16)
      qli←qli+γ(euipul−λqli  (17)





To remove biases, Equation 3 can be replaced with:











r
^

ui

=

μ
+

b
u

+

b
i

+




k
=
1

L




p
uk



q
ki








(
18
)









    • where μ is the average of all item ratings, bi is the difference between the average rating of item i and μ, and bu is the average over all rui−bi·bi can be thought of as the quality of the item with respect to all other items and bu is how easily user μ is satisfied. A basic predictor, using L=0, is then:

      {circumflex over (r)}ui=μ+bu+bi  (19)





indicating that the prediction of user μ's rating of item i is the average of all ratings plus the difference in quality of item i as compared to the average plus the user's (lack of) pickiness.


As with the latent factors, the biases can then be regularized by finding the solution to:











min


b
i

,

b
u

,
P
,
Q







(


r
ui

-
μ
-

b
u

-

b
i

-




k
=
1

l




p
uk



q
ki




)

2



+

λ


(


b
u
2

+

b
i
2

+



P


2

+



Q


2


)






(
20
)







This approach can first compute the average rating, μ, then find the optimal, regularized set of bu and bi before finding the set of latent factors as described above using the update equations:

bu←bu+γ(eui−λbu)  (21)
bi←bi+γ(eui−λbi)  (22)


From the standpoint of recommendation systems for tooth-leveling that have been created to-date, there are a number of challenges with recommending a specific leveling:

    • 1) an explicit set of training ratings does not exist, instead there is only an implicit rating of the final, accepted, leveling,
    • 2) the implicit rating is no longer a scalar value, but is instead a vector of levelings, so that the matrix factorization approach as described above no longer applies directly, and
    • 3) each patient only sees a single doctor, so there is only one recommendation per patient.


In the following disclosure, these issues are addressed and a new recommendation system is developed for tooth leveling that considers both the initial arch shape, initial tooth leveling, and learned doctor preferences.


Arch shapes are generally parameterized. The initial arch shape can be parameterized plus the initial leveling in RI and the final leveling in R32, where I is the number of basis vectors needed to represent the concatenation of the parameterized arch shape plus the parameterized initial tooth leveling.


Having parameterized the initial arch shape and leveling in RI and the final leveling in R32 it can be seen how recommendations might be implemented in a tooth leveling recommendation system.


In a typical rating system, a doctor considers a particular item and assigns it a rating, e.g., 1-5 stars. In our case, we only have implicit ratings, a given accepted leveling can be thought of as being rated highly, but we have no examples where a given doctor rates a leveling poorly, except for the initial levelings which are implicitly bad since they are to be corrected. A doctor provides a mapping from the initial arch shape and leveling to the final leveling:

f:custom character1custom character32  (23)


The doctor's mapping can be based on a number of biases plus latent factors. Rather than predicting a doctor's approval for a particular leveling (initial or final), the initial, parameterized patient data can be used to predict a final leveling directly.


Each bias can be represented as an leveling offset and the matrix vector product of a doctor's latent preferences (a vector of length L) can be computed with a matrix consisting of the patient's latent factors (of size 32×L).


The goal becomes the construction of a mapping on a per-doctor/per-patient basis. Unfortunately, a patient only sees a single doctor and has only one example of an initial arch, initial leveling, and final leveling for a given patient. The solution to this problem is to identify groups of patient arches by clustering the data using K-Means, agglomerative clustering, Birch, or some other appropriate algorithm for mapping RI to one of a set of patient types, P. This mapping considers how a given doctor will approach a given type of patient as compared to a different doctor examining a similar patient. Note, for this to be effective, the representation of the initial arch shape should be made in a scale and rotation invariant feature space such as is provided by normalized EFDs.


The leveling that was accepted for a given doctor, d, and patient type, p, can be termed Lpd. The leveling recommender will suggest an Ĺpd that will include the average final tooth leveling across the data set (mu or μ), the leveling requested in the treatment form (bpref with values of Laterals0_5mmMoreGingivalThenCentrals, LateralsLevelWithCentrals, and GingivalMargins), a per-country bias (bc), a per-gender bias (bg), a per-patient type bias (bp), and a per-doctor/per-gender bias (bdg) plus a set of latent factors for each patient type, Ap, and the particular doctors preferences for those factors, Dd:











L
·

pd

=

μ
+

b
pref

+

b
c

+

b
g

+

b
p

+

b
dg

+




l
=
1

L




d
d
l



a
p
l








(
24
)









    • where ddld is the 1-th latent factor for doctor d and apl is the 1-th latent vector for patient type p.





To compute the biases and the latent factors, initialize all Ĺpd can be initialized to =0. The error residual is then:

Rpd=Lpd−{circumflex over (L)}pd  (25)
=Lpd−0  (26)
=Lpd  (27)


To find μ, the following can be computed:









μ
=


1


𝒦






R
j






(
28
)









    • and the residual can be updated:

      Rj←Rj−μ:∀j∈custom character  (29)





To find the bias given the prescription form, a regularized bpref can be assumed as a Gaussian prior around 0 with N initial observations. The preferences bias is then:










b
pref

=


1




+
N





R
j






(
30
)









    • where Kpref is the subset of accepted leveling with a prescription form leveling preference, pref. Again, the residual is updated as:

      Rj←Rj−bpref(j):∀j∈custom character  (31)

    • where bpref (j) is the preference bias for the preference exhibited in case j.





Similarly, a regularized bc with a Gaussian prior around 0 with N initial observations can be found as:










b
c

=


1





+
N





R
j






(
32
)









    • where Kc is the subset of accepted leveling from country, c. Again, the residual is updated as:

      Rj←Rj−bc(j):∀j∈custom character  (33)

    • where bc (j) is the country bias for the country in which case j occurred.





A regularized bg is found as:










b
g

=


1





+
N





R
j






(
34
)









    • where Kg is the subset of accepted leveling for each gender, g. The residual is updated as:

      Rj←Rj−bg(j):∀j∈custom character  (35)

    • where bg (j) is the gender bias for case j.





The remaining biases can be found in a similar manner. Once the biases have been computed, the residual error remains which can be captured through a modified matrix factorization where the Dd is the doctor's preferences for the latent factors represented in the 3-dimensional tensor Ap which has dimensions L×P×32, where L is the number of latent factors, P is the number of patient types, and 32 represents the number of possible teeth in the leveling. In this scenario, the latent factors are per-patient class vectors of leveling deltas and a doctor's per-latent factor preference can be computed for this delta, so that the final prediction of the tooth leveling is as given in Equation 24, where apl represents the l-th latent factor for patient class p, and ddl is doctor d's preference for the l-th latent factor.


There is no learning involved in computing μ or the various biases, however, both apl and dld can be learned such as stochastic gradient descent, where the update rules are as follows:




















d
d





R
pd
T



R
pd


=


-
2



R
pd
T



a
p






(
36
)

















a
p





R
pd
T



R
pd


=


-
2



d
d



R
pd






(
37
)









    • resulting in:

      ddl←ddl+γRpdTap1  (38)
      ap1←ap1+γddlRpd  (39)





Having normalized the levelings in the dataset, the Anterior Leveling model and its individual subcomponents can be used to predict the doctor's accepted anterior leveling preferences based on the initial leveling, arch shape, and prescription form. As described in the previous sections, the initial arch shape is represented via the first principal components of a PCA of the Elliptic Fourier Descriptor representation of the arch points. The first 12 components of the normalized EFD can be used which captures essentially 100% of the explained variance in the data.


The input feature data can then be clustered into a plurality of patient types (e.g., 500 different patient types) using a batched K-means method. The model was then fit to the data, as described below.


Table 1 presents the results of running various portions of the anterior leveling model given in Equation 24. The metric used is the €2 norm of the difference between the prediction and the doctor's anterior leveling.









TABLE 1







Various models for anterior tooth leveling prediction


and their scores as compared to the doctor's accepted levelings.










Model
Score














Lpd = X1
788.41



Lpd = 0
75.41



Lpd = μ
70.35



Lpd = μ + bpref
6.84



Lpd = μ + bpref + bg
6.84



Lpd = μ + bpref + bg + bc
6.83



Lpd = μ + bpref + bg + bc + bp
6.82



Lpd = μ + bpref + bg + bc + bp + bdg
6.31



Lpd = μ + bpref + bg + bc + bp + bdg +
5.92



Σl=1L dd1ap1



Lpd = μ + bg
70.35



Lpd = μ + bc
69.78



Lpd = μ + bp
70.18



Lpd = μ + bdg
35.45



Lpd = μ + Σl=1L dd1ap1
16.89










As may be seen from the table able, when determining a final leveling dataset based on the patient's initial anterior leveling dataset using the methods described herein, it was surprisingly found that an average anterior leveling (μ) dataset derived from a plurality of patients provided a dramatic increase in the predictive score (e.g., line three in table 1, above). More surprisingly, the addition of the doctor's incisor preference (bpref) as received from the doctor regarding a leveling position of lateral incisors resulted in a much greater improvement in the predictive score (e.g., see line four in table 1, above). Other latent factors, including in particularly doctor/gender bias (bdg) were also significant, but the use of at least μ and bpref provides a substantial increase in predictive strength.


Arch Shape Recommendation Using Sparse-Matrix Factorization


The same techniques as described above with respect to the anterior leveling recommendation system can be applied for an arch shape recommendation system.


From the standpoint of a recommendation system, there are a number of challenges with recommending an arch shape:

    • 1) explicit set of training ratings does not exist, instead there is only an implicit rating of the final arch shape,
    • 2) each patient only sees a single doctor, so there is only one recommendation per patient, and
    • 3) the implicit rating is no longer a scalar value, but is instead a shape.


In the following disclosure, these issues are addressed and a new recommendation system is developed for arch shapes that considers both the initial arch shape and learned doctor preferences.


Arch shapes are generally parameterized. Both the initial and final (doctor-approved) arch positions can be parameterized for a patient using RI and RF respectively, where I and F are the number of basis vectors used to represent the initial and final arch shapes.


Having parameterized the initial and final arch shapes in RI and RF it can be seen how recommendations might be implemented.


A doctor can provide a function mapping the initial arch shape to the final:

f:custom characterIcustom characterF  (40)


In matrix notation, if it is assumed that the initial arch shape is a column vector, x, and the final arch shape is a column vector, y, then:

y=Mx  (41)


Where M is a F×I transform matrix provided implicitly by the doctor.


The goal becomes constructing M on a per-doctor/per-patient basis, Mdp. Unfortunately, while this addresses the issue of a rating being a shape, it does not address the issue of a patient only seeing a single doctor and only having one example of an initial and final arch for a given patient.


The solution to this problem is to identify groups of patient arches by clustering the data using K-Means, agglomerative clustering, Birch, or some other appropriate algorithm for mapping RI to one of a set of patient types, P. This mapping considers how a given doctor will approach a given type of patient as compared to a different doctor examining a similar patient. Note, for this to be effective, the representation of the initial arch shape should be made in a scale and rotation invariant feature space such as is provided by EFDs.


While the issue of having multiple representations of arch types has been addressed, there remains a need to consider which factors are doctor-specific preferences and which are global factors for a given arch shape. To achieve this, Mdp can be factored as

Mdp=DdAp  (42)


Where Ap is a F×I matrix that maps orthodontic practice for initial arch shape p to the final arch shape in RF and Dd is a F×F matrix representing doctor d's preferences with respect to the final arch parameters. With this factorization, the relationship between the initial and suggested final arch shapes can be written as:

ŷ=DdApx  (43)


As with any rating system, the system can be extended to remove biases to allow for multiple latent factors:











y
^

dp

=


(

μ
+

b
d

+

b
p

+




t
=
1

L




D
d
l



A
p
l




)



x
p






(
44
)







Where ddl and apl are 1-th latent factor matrices.


Note that the system no longer fits into the SVD model of a single rating matrix being factored into a matrix of items with respect to their latent factors and a matrix of users and their preferences for latent factors. That said, the same least-squares approach used to estimate the factorization from a sparse set of ratings can still be used to determine the parameters of the arch recommendation system by utilizing SGD and a set of K of (xp, ydp) vectors. Given that:

edp2=edpTedp=(ydp−ŷdp)T(ydp−ŷdp)  (45)

    • the goal is to minimize the error of the set by finding:










min

μ
,

b
d

,

b
p

,


D
d



A
p








e
dp
T



e
dp






(
46
)









    • which can be found by taking the partial derivative of Equation 45 with respect to μ, bd, bp, Dd, and Ap. When regularization is used to attempt to minimize the complexity of the parameters beyond the initial expectation that they be the identity matrix right padded with zero as necessary, I.





While the model above is mathematically very appealing, it has a large number of parameters which are not easy to learn (e.g., success is strongly dependent on the learning rate). In a second variant of the arch recommender, a clustering technique is again used to group the patients into a set of arch types, but instead of attempting to predict a transform matrix from the initial to accepted arch shape, the accepted arch shape is predicted directly based on latent factors. The model computes a bias, μ in RF by computing the average accepted arch shape in the first F dimensions of the PCA-computed space used above.









μ
=



1








y
j


-

x
j






(
47
)







Since μ is the average difference between all accepted arch shapes and the initial arch shapes, yj=xj+μ is not expected to be an accurate approximation of the accepted arch shape, but it may normalize the data. To better approximate the accepted arch shape, biases can be added for both the patient-class and the doctor. The patient-class bias can be defined as










b
p

=



1








y
j


-

x
j

-
μ





(
48
)









    • where Kp is the subset of the training arch shapes where the patient class is p. Note that this defines bp as the average residual of the accepted arches of class p and the average of all accepted arches, μ. Similarly, the doctor bias can be defined as:













b
d

=



1








y
j


-

x
j

-
μ
-

b
p






(
49
)









    • where Kd is the subset of the training arch shapes where the doctor is d. This defines the doctor bias as being the average of the residual of the accepted arches with the average arch and the patient-class bias removed.





Now that the biases have been computed, a set of L latent factors can be utilized to describe the remaining residual. In this scenario, the latent factors are per-patient class vectors of arch shape deltas and we compute a doctor's per-latent factor preference for this delta, so that our final prediction of the arch shape is:











y
^

dp

=


x
dp

+
μ
+

b
p

+

b
d

+




l
=
1

L




a
p
l



d
d
l








(
50
)









    • where apl represents the 1-th latent factor for patient class p, and ddl is doctor d's preference for the 1-th latent factor.





In both variants described above, it is possible to weight the importance of different components of the arch shape when learning. One approach to this weighting is to consider the amount explained by each basis vector of the PCA. If v is a vector containing the normalized explained variance of the components of the PCA, then









w
=


F




j
=
1

F



v
j




v





(
51
)









    • where F is the number of components of the PCA that are being used.





Both variants described above were tested, but the second variant performed better and the results below are from that model. The process of learning was as follows:

    • 1) Estimate initial arch shapes using the set of crown center x and y coordinates as a proxy for real information.
    • 2) Compute the 20th degree elliptic Fourier descriptors for the initial arch shapes, storing the results in X
    • 3) Compute the 20th degree elliptic Fourier descriptors for the accepted arch shapes, storing the results in Y
    • 4) Compute the normalized version of the initial arch shapes as Xn
    • 5) Cluster the normalized arch shapes, Xn into 1,000 patient types using mini-batch K-means, storing the classes in xclass
    • 6) Fit a PCA of X, computing the fit on X and Y as Xp and Yp respectively
    • 7) Truncate the number of columns of columns in Xp and Yp to capture 99% of the variance in the PCA
    • 8) Compute μ
    • 9) Compute bp and bd
    • 10) Learn the L=10 latent factors as described above


The learning process substantially reduces the difference between the predicted arch shape and the accepted arch shape as compared to the initial arch.


Posterior Leveling Recommendation System Using Classifier Theory


Unlike anterior leveling in which aesthetic preferences are a primary concern, posterior leveling is driven primarily by clinical factors. The only strong per-doctor factor in posterior leveling is whether the doctor provided any posterior leveling at all. Rather than building a collaborative filtering model as was created for the anterior teeth as described above, the posterior leveling model of the present disclosure will be based primarily on the clinical factors as learned from the data.


The model will be heavily based on classifier theory where the two classes of interest are the “initial” leveling and the doctor's “accepted” leveling. In classifier theory, the Naïve Bayes Classifier relies upon Bayes' Theorem to predict whether a given set of observed variables correspond most closely to one class or another. Consider a classification problem with N classes, C1, . . . , CN. Given a set of M observed variables, {X1, . . . , XM}, the goal is to predict the probability of each class Cn given X. From Bayes' Theorem, it is known that:










p


(


C
n

|
X

)


=



p


(

X
|

C
n


)




p


(

C
n

)




p


(
X
)







(
52
)







Since p(X) is a constant, it can be noted that:

p(Cn|X)∝p(X|Cn)p(Cn)  (53)

    • where p(Cn) is the prior probability of class n.


Considered in this way, an approach for comparing the probability that a given set of observed variables belongs to a given class as opposed to another class can be implemented by computing arg maxn p(Cn|X). The one remaining question is how to determine p(Cn|X), particularly when X has a large number of variables. Unless the variables have been chosen carefully, they are almost certainly dependent upon each other. However, the Naïve Bayes assumption is that they are all independent, so:







p


(

X
|

C
n


)


=




m
=
1

M



p


(


X
m

|

C
n


)







(54)


Substituting Equation 54 into Equation 53 gives the overall probability of a particular class given a set of observed values, X,










p


(


C
n

|
X

)





p


(

C
n

)







m
=
1

M



p


(


X
m

|

C
n


)








(
55
)









    • which can be represented as the graphical model in FIG. 2A.





To train the classifier, p(Cn|X) can be empirically computed for each variable, m, and each class, n. A number of approaches can be used for estimating the probability density function from a set of observed data, e.g., Gaussian Kernel Density Estimation. In this method










p


(
x
)


=


1
N






i
=
1

N



K


(

x
-

x
i


)








(
56
)









    • where K (⋅) is some kernel function, in this case Gaussian, xi is the set of observed values for x, and p(x) is the probability of some new point x given the observed values. The “width” of the Kernel function is generally estimated using either Scott's rule or Silverman's Rule.





One challenge of using Gaussian Kernel Density Estimation in practice is that each probability evaluation involves summing over a large number of Gaussian Kernels. In practice, it is more efficient to compute and store a piece-wise interpolation function that approximates the Gaussian KDE.


For scoring potential levelings, it is difficult to consider a leveling and determine whether it comes from the class of “accepted” levelings or “rejected” levelings in part because there exists no sample of considered, but rejected levelings. Instead, consideration must be based on “initial” levelings which may have significant overlap with the class of accepted levelings. Due to this constraint, the probability that a given leveling would be accepted must be determined.


One of the primary factors for consideration in the model is the absolute leveling of each tooth. FIG. 2B shows an example of the initial distribution of levelings for tooth 4 (line 202) and the accepted distribution of leveling (line 204). The Figure shows that, while the distributions overlap, the accepted position has a mean centered on 0, and has less variance around this value than does the initial position. The distributions of all 32 teeth follow this same pattern, though with some variation on the mean. If this histogram were converted to a probability density function, it would be more tightly peaked than a normal distribution with the same variance. This is different from the initial distribution which is very comparable to a normal distribution.


Another factor in the quality of the leveling is the distance between the upper posterior teeth and the lower. In most cases, this centered around 0, but in some cases the mean of both the initial and the accepted difference is non-zero. For this feature, the difference in leveling is computed between the upper posterior teeth and their corresponding lower teeth. Additionally, facial symmetry can be taken advantage of to reduce the number of factors by considering each posterior tooth on the left side of the mouth with its corresponding tooth on the right side of the mouth. An example of this can be seen in FIG. 3 where both the initial (line 302) and accepted (line 304 distributions are centered around 0, but the accepted distribution is more strongly peaked, indicating some movement by doctors toward this position. Note, the shading indicates the 95% confidence interval for the accepted leveling.


Symmetry is a very important factor when working with teeth. FIG. 4 considers the distribution around the symmetry of the accepted result. For any given patient, this considers the leveling of the teeth as compared to the leveling of the tooth on the opposite side of the mouth. In FIG. 4, this is seen in the change distribution line 406, which shows the change in symmetry after correction from the original distribution line 408 to the corrected distribution line 410.


In the previous section, left/right facial symmetry were considered. This feature considers the change in facial symmetry from the initial to the accepted distribution. In most cases, this is very tightly centered around 0, suggesting that the doctor is attempting to maintain the same facial symmetry differences as existed initially.


Finally, the total difference between the accepted and initial levelings of each tooth can be considered. By considering how much change is typically seen per-case for each tooth, it can be determined whether a potential leveling recommendation is probable or even possible given the initial leveling. FIG. 5 shows a sample distribution over the change in leveling seen from initial to accepted in tooth 5.


In a normal Naïve Bayes classifier, the probabilities of each factor would be multiplied together, along with the class probability, to obtain an overall probability of seeing the factors given the class. Alternatively, for a more stable evaluation, the logarithm of the probabilities of each factor could be summed. Whichever class had the higher product (or sum) would be the class best represented by the data.


In this disclosure, the main concern is the raw probability of the data given the accepted class, so strict conformance to the Naïve Bayes classifier is not necessary. Instead, a normalized score can be used which allows the comparison of different patients even when they don't have the same set of teeth (and therefore don't have the same set of factors available for calculation). The score for a proposed leveling Y, given an initial leveling X can be computed as:










score


(

Y
|
X

)


=



1


𝒫








i

𝒫




log






p


(

Y
i

)





+


1


𝒥








i
,

j

𝒥





log






p


(


Y
i

-

Y
j


)





+


1


𝒮








i
,

j

𝒮





log






p


(


Y
i

,


Y
j

|

X
i


,

X
j


)





+


1


𝒮








i
,

j

𝒮








log






p


(


Y
i

-

Y
j


)





+


1


𝒫








i

𝒫




log






p


(


Y
i

-

X
i


)










(
57
)









    • where P is the set of posterior teeth, J is a set of tuples of the posterior teeth in the upper jaw and their corresponding lower tooth, and S is a set of tuples of the right teeth and their corresponding, symmetric tooth on the left.





Equation 57 can be used to score any arbitrary posterior leveling recommendation, including the recommendation of leaving the leveling at its initial position, score(X|X), which has the scoring advantage of not having changed its values and so having high values for log p(Yi,Yj|Xi, Xj) and log p(Yi−Xi). This requires any changes that are made in the leveling to improve the other factors in the model.


Another possible leveling recommendation is to use the most probable leveling across the model, Yi, =arg maxi p(Yi); vi. While this model will score high in terms of log p(Yi), log p(Yi−Yj), and log p(Yi−Xi), it may incur a significant change penalty from the remaining terms, possibly setting the score to −inf. Ideally, a posterior leveling can be identified that maximizes the score. There are a number of optimization techniques can be used, including line search Newton Conjugate Gradient method, BFGS, Nelder-Mead, the Powell method, and Sequential Least Squares Quadratic Programming (SLSQP). All of these methods, with the exception of the Powell Method, make use of either the exact or an estimate of the Jacobian, and the Newton Conjugate Gradient method requires the Hessian. Experimentally it has been found that the SLSQP method performs best in terms of both speed and optimization.


As described above, the Naïve Bayes Classifier model assumes independence between all of the variables Xm in order to factor the conditional probability p(X|Cn). In practice, this assumption of independence works reasonably well, often outperforming other state of the art classification methods. However, the independence assumption is often a limiting factor in the accuracy, and therefore performance, of the model. A more principled approach would consider the complete set of conditional probabilities between all of the various observed random variables in X. However, with even a relatively small number of random variables, this becomes intractable. The tree augmented Naïve Bayes algorithm attempts to address these problems by identifying the random variables with the greatest degree of mutual information and then models each variable as being dependent on, at most, one other random variable. The dependence relationships for the new model can then be represented by a tree.


The TAN model begins by constructing an M×M matrix, I where the pair-wise mutual information of the random variables will be stored:

Ii,j=Mutual Information(Xi,Xj)=I(Xi,Xj)  (58)

    • where:











I


(

X
;
Y

)


=



Y





X




p


(

x
,
y

)




log


(


p


(

x
,
y

)




p


(
x
)








p


(
y
)




)



dx





dy




,




(
59
)









    • which can be approximated as:














I


(

X
;
Y

)


=




y

Y







x

X





p


(

x
,
y

)




log
(


p


(

x
,
y

)




p


(
x
)








p


(
y
)




)





,




(
60
)









    • when using the approximate Gaussian kernel density estimations.





I can then be used as the weights of a fully connected graph, G, which represents the degree of dependence between the variables. G can be converted into a tree, T, by finding the maximum-weighted spanning tree, using an algorithm such as Dijkstra's or Prim's, then selecting an arbitrary node to be the root node of the tree.


Once constructed, T can be used as a graphical model representing the dependency between variables. Consider the following example of a tree constructed from a subset of variables from the per-tooth change in leveling technique described above. With 20 posterior teeth, there are 20 factors in this model (M=20). The pairwise mutual information can be used to construct the tree shown in FIG. 6.


Since the data does not support the idea of doctor preferences, the posterior model was used to determine a best practice recommendation. For performance reasons, an approximation of the Gaussian KDE was used for probability density estimation. For each probability model of the form p(X|A), a 200-point piecewise linear interpolation function was used over the range of the function which resulted in a substantial performance improvement over computing the Gaussian KDE. To create “optimal” posterior levelings, the Sequential Least Squares Quadratic Programming optimizer built into Python's SciPy module was used with an initial solution of the initial teeth leveling.


As has been previously discussed, a doctor's decisions about posterior leveling appear to be based less on aesthetics and more on clinical factors. Overall, the model's score of the original levelings (which is of course not penalized by moving any teeth) indicated an average score of −1.30 which implies that the original levelings are relatively improbable as accepted final levelings. The doctor's accepted levelings had an average score of −0.87 which indicates a better fit with the model.


Using the Sequential Least Squares Quadratic Programming optimization, leveling were found with an average score of 0.45 which is a significant improvement in the fit with the model (recall that the scores are an average log of the probability of the features).


60% of the accepted levelings had a better score than the initial levelings and 89% of the optimal levelings were better than the accepted levelings. It is likely that more of the accepted levelings would have a better score except that the initial levelings received a bonus (of sorts) by not moving any of the teeth (high log p(Yi−Xi)).


To get a better sense of the strength of the Naive Bayes scorer, two scorers were trained, one using the initial data and one using the accepted data. To avoid having the initial scorer strongly penalize any movement, the features that considered the difference in position between the initial and accepted positions were removed. Once the two scorers were trained, a classification score was computed of the form:

Scoretotal=Scoreaccept(X,Y)−Scoreinit(X,Y).  (61)


This was then run against the initial and accepted positions to see if the accepted positions could be correctly identified from the model.


In a similar manner, the Tree Augmented Naïve Bayes model was also tested. In theory, this model which captures some of the dependencies, rather than assuming independence, should have better performance.


By separating the anterior and posterior leveling problems, the present disclosure has identified a pair of algorithms for making recommendations regarding tooth leveling. In general, these algorithms perform very well, capturing doctor's aesthetic preferences for anterior teeth and general clinical best practices for posterior teeth.


In considering the anterior teeth leveling model, a number of observations can be made. First, the model itself does not necessarily have enough information to capture all of the variance in teeth-types. For example, a patient with chipped teeth may have leveling needs that are different than a standard patient, even when the doctor's leveling preference is considered. Second, the simple model of predicting an anterior leveling based solely on the mean plus the doctor's indicated preference on the prescription form captures the almost all of the information regarding the doctor's accepted anterior leveling. Similarly, the latent model without knowledge of the doctor's preference captures a large fraction of the information with an error of 16.89. This suggests that the doctor's general preferences can be learned from the data alone and compares favorably to a model in which the mean is added to the doctor's stated generic preference for tooth leveling which has an error of 10.69.


In general, it is suggested to truncate the model to the mean plus the doctor's leveling preference as stated in the prescription form. Moreover, gender, country, and patient-type have little effect on the error of the model and while doctor preference per patient-type does have an effect, it is likely to be produced primarily by over fitting the parameters.


The posterior leveling model allows suggesting and scoring a variety of levelings.


The posterior leveling model currently relies on a Naïve Bayes assumption.



FIG. 7 is a simplified block diagram of a data processing system 500. Data processing system 500 typically includes at least one processor 502 which communicates with a number of peripheral devices over bus subsystem 504. These peripheral devices typically include a storage subsystem 506 (memory subsystem 508 and file storage subsystem 514), a set of user interface input and output devices 518, and an interface to outside networks 516, including the public switched telephone network. This interface is shown schematically as “Modems and Network Interface” block 516, and is coupled to corresponding interface devices in other data processing systems over communication network interface 524. Data processing system 500 may include a terminal or a low-end personal computer or a high-end personal computer, workstation or mainframe.


The user interface input devices typically include a keyboard and may further include a pointing device and a scanner. The pointing device may be an indirect pointing device such as a mouse, trackball, touchpad, or graphics tablet, or a direct pointing device such as a touchscreen incorporated into the display. Other types of user interface input devices, such as voice recognition systems, may be used.


User interface output devices may include a printer and a display subsystem, which includes a display controller and a display device coupled to the controller. The display device may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), or a projection device. The display subsystem may also provide nonvisual display such as audio output.


Storage subsystem 506 maintains the basic programming and data constructs that provide the functionality of the present invention. The software modules discussed above are typically stored in storage subsystem 506. Storage subsystem 506 typically comprises memory subsystem 508 and file storage subsystem 514.


Memory subsystem 508 typically includes a number of memories including a main random access memory (RAM) 510 for storage of instructions and data during program execution and a read only memory (ROM) 512 in which fixed instructions are stored. In the case of Macintosh-compatible personal computers the ROM would include portions of the operating system; in the case of IBM-compatible personal computers, this would include the BIOS (basic input/output system).


File storage subsystem 514 provides persistent (nonvolatile) storage for program and data files, and typically includes at least one hard disk drive and at least one floppy disk drive (with associated removable media). There may also be other devices such as a CD-ROM drive and optical drives (all with their associated removable media). Additionally, the system may include drives of the type with removable media cartridges. The removable media cartridges may, for example be hard disk cartridges, such as those marketed by Syquest and others, and flexible disk cartridges, such as those marketed by Iomega. One or more of the drives may be located at a remote location, such as in a server on a local area network or at a site on the Internet's World Wide Web.


In this context, the term “bus subsystem” is used generically so as to include any mechanism for letting the various components and subsystems communicate with each other as intended. With the exception of the input devices and the display, the other components need not be at the same physical location. Thus, for example, portions of the file storage system could be connected over various local-area or wide-area network media, including telephone lines. Similarly, the input devices and display need not be at the same location as the processor, although it is anticipated that the present invention will most often be implemented in the context of PCS and workstations.


Bus subsystem 504 is shown schematically as a single bus, but a typical system has a number of buses such as a local bus and one or more expansion buses (e.g., ADB, SCSI, ISA, EISA, MCA, NuBus, or PCI), as well as serial and parallel ports. Network connections are usually established through a device such as a network adapter on one of these expansion buses or a modem on a serial port. The client computer may be a desktop system or a portable system.


Scanner 520 is responsible for scanning casts of the patient's teeth obtained either from the patient or from an orthodontist and providing the scanned digital data set information to data processing system 500 for further processing. In a distributed environment, scanner 520 may be located at a remote location and communicate scanned digital data set information to data processing system 500 over network interface 524.


Fabrication machine 522 fabricates dental appliances based on intermediate and final data set information received from data processing system 500. In a distributed environment, fabrication machine 522 may be located at a remote location and receive data set information from data processing system 500 over network interface 524.



FIG. 8 shows the lower jaw 114 of a patient together with an orthodontic aligner 100, which can be designed according to the methods and techniques described above. The orthodontic aligner 100 is removable and replaceable over the teeth. In some embodiments, orthodontic aligner 100 is one of a plurality of incremental position adjustment appliances.


The orthodontic aligner 100 may comprise a polymeric concave trough 102 having an inner cavity 120, a proximal edge 116, and a distal edge 118. The inner cavity is shaped to receive and resiliently reposition teeth from one tooth arrangement to a successive tooth arrangement. In some embodiments, the polymeric concave trough 102 fits over all teeth present in the upper jaw (not depicted) or lower jaw 114.


Various alternatives, modifications, and equivalents may be used in lieu of the above components. Although the final position of the teeth may be determined using computer-aided techniques, a user may move the teeth into their final positions by independently manipulating one or more teeth while satisfying the constraints of the prescription.


Additionally, the techniques described here may be implemented in hardware or software, or a combination of the two. The techniques may be implemented in computer programs executing on programmable computers that each includes a processor, a storage medium readable by the processor (including volatile and nonvolatile memory and/or storage elements), and suitable input and output devices. Program code is applied to data entered using an input device to perform the functions described and to generate output information. The output information is applied to one or more output devices.


Each program can be implemented in a high level procedural or object-oriented programming language to operate in conjunction with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.


Each such computer program can be stored on a storage medium or device (e.g., CD-ROM, hard disk or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform the procedures described. The system also may be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner.


While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Numerous different combinations of embodiments described herein are possible, and such combinations are considered part of the present disclosure. In addition, all features discussed in connection with any one embodiment herein can be readily adapted for use in other embodiments herein. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.


In general, any of the apparatuses and methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. A computer-implemented method comprising: gathering an intraoral scan of dentition of a patient;obtaining a virtual model of the dentition using the intraoral scan;gathering patient data of the patient to receive orthodontic treatment in accordance with an orthodontic treatment plan;associating the patient data with a patient type identifier of a patient type related to the patient, the patient type representing a larger group of orthodontic treatment patients under which to group the patient;using a doctor identifier and the patient type identifier to identify a leveling recommendation, wherein the leveling recommendation comprises one or more recommendations to intrude or extrude the dentition relative to gums of the patient, wherein the leveling recommendation is based on one or more latent leveling factors, wherein the one or more latent leveling factors provide a latent statistical basis to associate a first set of an historic leveling parameters with a first set of doctors in a first dataset and further provide a basis to associate a second set of the historic leveling parameters with a first set of patient types in a second dataset;gathering the first dataset, the first dataset including the first set of the historic leveling parameters associated with the first set of doctors implementing a treatment plan;gathering the second dataset, the second dataset including the second set of historic leveling parameters associated with the first set of patient types of patients who have undergone the treatment plan;deriving from the first dataset and the second dataset the one or more latent leveling factors;identifying whether one or more of the latent leveling factors correspond to bias by seeing if the one or more latent leveling factors deviate from a known correlation between the first set of historic leveling parameters and the second set of historic leveling parameters;using the one or more latent leveling factors to derive a derived leveling recommendation for one or more combinations of doctors from the first set of doctors and patient types from one of the first set of patient types;creating the leveling recommendation using the derived leveling recommendation;providing instructions to display the leveling recommendation; anddisplaying the leveling recommendation on a three-dimensional (3D) virtual model of a jaw of the patient.
  • 2. The method of claim 1, further comprising providing instructions to design one or more orthodontic aligners to implement the leveling recommendation as part of the orthodontic treatment plan.
  • 3. The method of claim 1, wherein the patient type corresponds to one or more of a gender, a heritage, or other background of the patient.
  • 4. The method of claim 1, wherein the patient type corresponds to one or more of a jaw shape/size, an arch shape/size, a facial characteristic, or physical characteristic of the patient.
  • 5. The method of claim 1, wherein the leveling recommendation is displayed using a thirty-two (32) bit vector representation of a dentition of the patient.
  • 6. The method of claim 1, wherein deriving the one or more latent leveling factors comprises performing sparse matrix factorization of the first dataset against the second set.
  • 7. The method of claim 1, further comprising regularizing the set of the one or more latent leveling factors by determining whether one or more of the latent leveling factors exceeds a complexity threshold, and removing any latent leveling factors exceeding the complexity threshold.
  • 8. The method of claim 1, further comprising displaying the leveling recommendation on a three-dimensional (3D) virtual model of a jaw of the patient.
  • 9. The method of claim 1, further comprising providing instructions to design one or more orthodontic aligners to implement the leveling recommendation as part of the orthodontic treatment plan.
  • 10. The method of claim 1, wherein the patient type corresponds to one or more of a gender, a heritage, or other background of the patient.
  • 11. The method of claim 1, wherein the patient type corresponds to one or more of a jaw shape/size, an arch shape/size, a facial characteristic, or physical characteristic of the patient.
  • 12. The method of claim 1, wherein the leveling recommendation is displayed using a thirty-two (32) bit vector representation of a dentition of the patient.
  • 13. A system comprising: one or more processors;memory coupled to the one or more processors, the memory configured to store computer-program instructions, that, when executed by the one or more processors, implement a computer-implemented method, the computer-implemented method comprising:gathering an intraoral scan of dentition of a patient;obtaining a virtual model of the dentition using the intraoral scan;gathering patient data of the patient to receive orthodontic treatment in accordance with an orthodontic treatment plan;associating the patient data with a patient type identifier of a patient type related to the patient, the patient type representing a larger group of orthodontic treatment patients under which to group the patient;using a doctor identifier and the patient type identifier to identify a leveling recommendation, wherein the leveling recommendation comprises one or more recommendations to intrude or extrude the dentition relative to gums of the patient, wherein the leveling recommendation is derived from one or more latent leveling factors, wherein the one or more latent leveling factors provide a latent statistical basis to associate a first set of an historic leveling parameters with a first set of doctors in a first dataset and further providing a basis to associate a second set of the historic leveling parameters with a first set of patient types in a second dataset;gathering the first dataset, the first dataset including the first set of the historic leveling parameters associated with the first set of doctors implementing a treatment plangathering the second dataset, the second dataset including the second set of historic leveling parameters associated with the first set of patient types of patients who have undergone the treatment plan;deriving from the first dataset and the second dataset the one or more latent leveling factors;identifying whether one or more of the latent leveling factors correspond to bias by seeing if the one or more latent leveling factors deviate from a known correlation between the first set of historic leveling parameters and the second set of historic leveling parameters;using the one or more latent leveling factors to derive a derived leveling recommendation for one or more combinations of doctors from the first set of doctors and patient types from one of the first set of patient types;creating the leveling recommendation using the derived leveling recommendation;identifying whether one or more of the latent leveling factors correspond to bias by seeing if the one or more latent leveling factors deviate from a known correlation between the first set of historic leveling parameters and the second set of historic leveling parameters; andproviding instructions to display the leveling recommendation.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 62/477,389, filed Mar. 27, 2017, which is herein incorporated by reference in its entirety.

US Referenced Citations (1059)
Number Name Date Kind
2171695 Harper Sep 1939 A
2194790 Gluck Mar 1940 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
3089487 Enicks et al. May 1963 A
3092907 Traiger Jun 1963 A
3178820 Kesling Apr 1965 A
3211143 Grossberg Oct 1965 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Bohlmann Nov 1969 A
3496936 Gores Feb 1970 A
3533163 Kirschenbaum Oct 1970 A
3556093 Quick Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3724075 Kesling Apr 1973 A
3738005 Cohen et al. Jun 1973 A
3797115 Silverman et al. Mar 1974 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3949477 Cohen et al. Apr 1976 A
3950851 Bergersen Apr 1976 A
3955282 McNall May 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4055895 Huge Nov 1977 A
4094068 Schinhammer Jun 1978 A
4117596 Wallshein Oct 1978 A
4129946 Kennedy Dec 1978 A
4134208 Pearlman Jan 1979 A
4139944 Bergersen Feb 1979 A
4179811 Hinz Dec 1979 A
4179812 White Dec 1979 A
4183141 Dellinger Jan 1980 A
4195046 Kesling Mar 1980 A
4204325 Kaelble May 1980 A
4253828 Coles et al. Mar 1981 A
4255138 Frohn Mar 1981 A
4299568 Crowley Nov 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348178 Kurz Sep 1982 A
4368040 Weissman Jan 1983 A
4419992 Chorbajian Dec 1983 A
4433956 Witzig Feb 1984 A
4433960 Garito et al. Feb 1984 A
4439154 Mayclin Mar 1984 A
4449928 von Weissenfluh May 1984 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4505672 Kurz Mar 1985 A
4505673 Yoshii Mar 1985 A
4519386 Sullivan May 1985 A
4523908 Drisaldi et al. Jun 1985 A
4526540 Dellinger Jul 1985 A
4553936 Wang Nov 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann et al. Mar 1986 A
4591341 Andrews May 1986 A
4608021 Barrett Aug 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4629424 Lauks et al. Dec 1986 A
4638145 Sakuma et al. Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4665621 Ackerman et al. May 1987 A
4676747 Kesling Jun 1987 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4790752 Cheslak Dec 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4830612 Bergersen May 1989 A
4836778 Baumrind et al. Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4932866 Guis Jun 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler et al. Oct 1990 A
4971557 Martin Nov 1990 A
4975052 Spencer et al. Dec 1990 A
4983334 Adell Jan 1991 A
4997369 Shafir Mar 1991 A
5002485 Aagesen Mar 1991 A
5011405 Lemchen Apr 1991 A
5015183 Fenick May 1991 A
5017133 Miura May 1991 A
5018969 Andreiko et al. May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5055039 Abbatte et al. Oct 1991 A
5061839 Matsuno et al. Oct 1991 A
5083919 Quach Jan 1992 A
5094614 Wildman Mar 1992 A
5100316 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5114339 Guis May 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon et al. Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5194003 Garay et al. Mar 1993 A
5204670 Stinton Apr 1993 A
5222499 Allen et al. Jun 1993 A
5224049 Mushabac Jun 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5314335 Fung May 1994 A
5324186 Bakanowski Jun 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen et al. Dec 1994 A
D354355 Hilgers Jan 1995 S
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5415542 Kesling May 1995 A
5431562 Andreiko et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5449703 Mitra et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5474448 Andreiko et al. Dec 1995 A
5487662 Kipke et al. Jan 1996 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5522725 Jordan et al. Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5575655 Darnell Nov 1996 A
5583977 Seidl Dec 1996 A
5587912 Andersson et al. Dec 1996 A
5588098 Chen et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5636736 Jacobs et al. Jun 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5711665 Adam et al. Jan 1998 A
5711666 Hanson Jan 1998 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5730151 Summer et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5769631 Williams Jun 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800162 Shimodaira et al. Sep 1998 A
5800174 Andersson Sep 1998 A
5813854 Nikodem Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5876199 Bergersen Mar 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5882192 Bergersen Mar 1999 A
5886702 Migdal et al. Mar 1999 A
5890896 Padial Apr 1999 A
5904479 Staples May 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5975906 Knutson Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6002706 Staver et al. Dec 1999 A
6018713 Coli et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6068482 Snow May 2000 A
6070140 Tran May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6102701 Engeron Aug 2000 A
6120287 Chen Sep 2000 A
6123544 Cleary Sep 2000 A
6152731 Jordan et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6183249 Brennan et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6210162 Chishti et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6213767 Dixon et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6231338 de Josselin de Jong et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6283761 Joao Sep 2001 B1
6288138 Yamamoto Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6313432 Nagata et al. Nov 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6328745 Ascherman Dec 2001 B1
6332774 Chikami Dec 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6394802 Hahn May 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6409504 Jones et al. Jun 2002 B1
6413086 Womack Jul 2002 B1
6414264 von Falkenhausen Jul 2002 B1
6414708 Carmeli et al. Jul 2002 B1
6435871 Inman Aug 2002 B1
6436058 Krahner et al. Aug 2002 B1
6441354 Seghatol et al. Aug 2002 B1
6450167 David et al. Sep 2002 B1
6450807 Chishti et al. Sep 2002 B1
6462301 Scott et al. Oct 2002 B1
6470338 Rizzo et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6471970 Fanara et al. Oct 2002 B1
6482002 Jordan et al. Nov 2002 B2
6482298 Bhatnagar Nov 2002 B1
6496814 Busche Dec 2002 B1
6496816 Thiesson et al. Dec 2002 B1
6499026 Rivette et al. Dec 2002 B1
6499995 Schwartz Dec 2002 B1
6507832 Evans et al. Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6515593 Stark et al. Feb 2003 B1
6516288 Bagne Feb 2003 B2
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6523009 Wilkins Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6524101 Phan et al. Feb 2003 B1
6526168 Ornes et al. Feb 2003 B1
6526982 Strong Mar 2003 B1
6529891 Heckerman Mar 2003 B1
6529902 Kanevsky et al. Mar 2003 B1
6532455 Martin et al. Mar 2003 B1
6535865 Skaaning et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6540707 Stark et al. Apr 2003 B1
6542593 Amuah Apr 2003 B1
6542881 Meidan et al. Apr 2003 B1
6542894 Lee et al. Apr 2003 B1
6542903 Hull et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556659 Amuah Apr 2003 B1
6556977 Lapointe et al. Apr 2003 B1
6560592 Reid et al. May 2003 B1
6564209 Dempski et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571227 Agrafiotis et al. May 2003 B1
6572372 Phan et al. Jun 2003 B1
6573998 Sabban Jun 2003 B2
6574561 Alexander et al. Jun 2003 B2
6578003 Camarda et al. Jun 2003 B1
6580948 Haupert et al. Jun 2003 B2
6587529 Staszewski et al. Jul 2003 B1
6587828 Sachdeva Jul 2003 B1
6592368 Weathers Jul 2003 B1
6594539 Geng Jul 2003 B1
6595342 Maritzen et al. Jul 2003 B1
6597934 de Jong et al. Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6599250 Webb et al. Jul 2003 B2
6602070 Miller et al. Aug 2003 B2
6604527 Palmisano Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6607382 Kuo et al. Aug 2003 B1
6611783 Kelly et al. Aug 2003 B2
6611867 Amuah Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6615158 Wenzel et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6621491 Baumrind et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6626180 Kittelsen et al. Sep 2003 B1
6626569 Reinstein et al. Sep 2003 B2
6626669 Zegarelli Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6643646 Su et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6650944 Goedeke et al. Nov 2003 B2
6671818 Mikurak Dec 2003 B1
6675104 Paulse et al. Jan 2004 B2
6678669 Lapointe et al. Jan 2004 B2
6682346 Chishti et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6690761 Lang et al. Feb 2004 B2
6691110 Wang et al. Feb 2004 B2
6694234 Lockwood et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6697793 McGreevy Feb 2004 B2
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6729876 Chishti et al. May 2004 B2
6733289 Manemann et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6749414 Hanson et al. Jun 2004 B1
6769913 Hurson Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6790036 Graham Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6814574 Abolfathi et al. Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6832912 Mao Dec 2004 B2
6832914 Bonnet et al. Dec 2004 B1
6843370 Tuneberg Jan 2005 B2
6845175 Kopelman et al. Jan 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6951254 Morrison Oct 2005 B2
6976841 Osterwalder Dec 2005 B1
6978268 Thomas et al. Dec 2005 B2
6983752 Garabadian Jan 2006 B2
6984128 Breining et al. Jan 2006 B2
6988893 Haywood Jan 2006 B2
7016952 Mullen et al. Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7036514 Heck May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7138640 Delgado et al. Nov 2006 B1
7140877 Kaza Nov 2006 B2
7142312 Quadling et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156655 Sachdeva et al. Jan 2007 B2
7156661 Choi et al. Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7191451 Nakagawa Mar 2007 B2
7192273 McSurdy Mar 2007 B2
7217131 Vuillemot May 2007 B2
7220122 Chishti May 2007 B2
7220124 Taub et al. May 2007 B2
7229282 Andreiko et al. Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7244230 Duggirala et al. Jul 2007 B2
7245753 Squilla et al. Jul 2007 B2
7257136 Mori et al. Aug 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7294141 Bergersen Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7320592 Chishti et al. Jan 2008 B2
7328706 Barach et al. Feb 2008 B2
7329122 Scott Feb 2008 B1
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7354270 Abolfathi et al. Apr 2008 B2
7357637 Liechtung Apr 2008 B2
7435083 Chishti et al. Oct 2008 B2
7450231 Johs et al. Nov 2008 B2
7458810 Bergersen Dec 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7476100 Kuo Jan 2009 B2
7500851 Williams Mar 2009 B2
D594413 Palka et al. Jun 2009 S
7543511 Kimura et al. Jun 2009 B2
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7637740 Knopp Dec 2009 B2
7641473 Sporbert et al. Jan 2010 B2
7668355 Wong et al. Feb 2010 B2
7670179 Müller Mar 2010 B2
7695327 Bäuerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7711447 Lu et al. May 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7728848 Petrov et al. Jun 2010 B2
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7740476 Rubbert et al. Jun 2010 B2
7744369 Imgrund et al. Jun 2010 B2
7746339 Matov et al. Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Körner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith et al. Sep 2010 B2
7806687 Minagi et al. Oct 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 de Josselin de Jong et al. Oct 2010 B2
7824180 Abolfathi et al. Nov 2010 B2
7828601 Pyczak Nov 2010 B2
7841464 Cinader et al. Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7862336 Kopelman et al. Jan 2011 B2
7869983 Raby et al. Jan 2011 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy Jan 2011 B2
7874837 Chishti et al. Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7880751 Kuo et al. Feb 2011 B2
7892474 Shkolnik et al. Feb 2011 B2
7904308 Arnone et al. Mar 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7930189 Kuo Apr 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7963766 Cronauer Jun 2011 B2
7970627 Kuo et al. Jun 2011 B2
7985414 Knaack et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7987099 Kuo et al. Jul 2011 B2
7991485 Zakim Aug 2011 B2
8017891 Nevin Sep 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8029277 Imgrund et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8045772 Kosuge et al. Oct 2011 B2
8054556 Chen et al. Nov 2011 B2
8070490 Roetzer et al. Dec 2011 B1
8075306 Kitching et al. Dec 2011 B2
8077949 Liang et al. Dec 2011 B2
8083556 Stadler et al. Dec 2011 B2
D652799 Mueller Jan 2012 S
8092215 Stone-Collonge et al. Jan 2012 B2
8095383 Arnone et al. Jan 2012 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8118592 Tortorici Feb 2012 B2
8126025 Takeda Feb 2012 B2
8136529 Kelly Mar 2012 B2
8144954 Quadling et al. Mar 2012 B2
8160334 Thiel et al. Apr 2012 B2
8172569 Matty et al. May 2012 B2
8197252 Harrison Jun 2012 B1
8201560 Dembro Jun 2012 B2
8215312 Garabadian et al. Jul 2012 B2
8240018 Walter et al. Aug 2012 B2
8275180 Kuo Sep 2012 B2
8279450 Oota et al. Oct 2012 B2
8292617 Brandt et al. Oct 2012 B2
8294657 Kim et al. Oct 2012 B2
8296952 Greenberg Oct 2012 B2
8297286 Smernoff Oct 2012 B2
8306608 Mandelis et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Erti Dec 2012 B2
8354588 Sticker et al. Jan 2013 B2
8366479 Borst et al. Feb 2013 B2
8401826 Cheng et al. Mar 2013 B2
8419428 Lawrence Apr 2013 B2
8433083 Abolfathi et al. Apr 2013 B2
8439672 Matov et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8477320 Stock et al. Jul 2013 B2
8488113 Thiel et al. Jul 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8520922 Wang et al. Aug 2013 B2
8520925 Duret et al. Aug 2013 B2
8523565 Matty et al. Sep 2013 B2
8545221 Stone-Collonge et al. Oct 2013 B2
8556625 Lovely Oct 2013 B2
8570530 Liang Oct 2013 B2
8573224 Thornton Nov 2013 B2
8577212 Thiel Nov 2013 B2
8583586 Ebadollahi Nov 2013 B2
8601925 Coto Dec 2013 B1
8639477 Chelnokov et al. Jan 2014 B2
8650586 Lee et al. Feb 2014 B2
8675706 Seurin et al. Mar 2014 B2
8723029 Pyczak et al. May 2014 B2
8738394 Kuo May 2014 B2
8743923 Geske et al. Jun 2014 B2
8753114 Vuillemot Jun 2014 B2
8767270 Curry et al. Jul 2014 B2
8768016 Pan et al. Jul 2014 B2
8771149 Rahman et al. Jul 2014 B2
8839476 Adachi Sep 2014 B2
8843381 Kuo et al. Sep 2014 B2
8856053 Mah Oct 2014 B2
8870566 Bergersen Oct 2014 B2
8874452 Kuo Oct 2014 B2
8878905 Fisker et al. Nov 2014 B2
8899976 Chen et al. Dec 2014 B2
8936463 Mason et al. Jan 2015 B2
8944812 Kuo Feb 2015 B2
8948482 Levin Feb 2015 B2
8956058 Rösch Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022792 Sticker et al. May 2015 B2
9039418 Rubbert May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9084657 Matty et al. Jul 2015 B2
9108338 Sirovskiy et al. Aug 2015 B2
9144512 Wagner Sep 2015 B2
9192305 Levin Nov 2015 B2
9204952 Lampalzer Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9214014 Levin Dec 2015 B2
9220580 Borovinskih et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9242118 Brawn Jan 2016 B2
9261358 Atiya et al. Feb 2016 B2
9277972 Brandt et al. Mar 2016 B2
9336336 Deichmann et al. May 2016 B2
9351810 Moon May 2016 B2
9375300 Matov et al. Jun 2016 B2
9403238 Culp Aug 2016 B2
9408743 Wagner Aug 2016 B1
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9439568 Atiya et al. Sep 2016 B2
9444981 Bellis et al. Sep 2016 B2
9463287 Lorberbaum et al. Oct 2016 B1
9492243 Kuo Nov 2016 B2
9500635 Islam Nov 2016 B2
9506808 Jeon et al. Nov 2016 B2
9510918 Sanchez Dec 2016 B2
9545331 Ingemarsson-Matzen Jan 2017 B2
9566132 Stone-Collonge et al. Feb 2017 B2
9584771 Mandelis et al. Feb 2017 B2
9589329 Levin Mar 2017 B2
9675427 Kopelman Jun 2017 B2
9675430 Verker et al. Jun 2017 B2
9693839 Atiya et al. Jul 2017 B2
9744006 Ross Aug 2017 B2
9820829 Kuo Nov 2017 B2
9830688 Levin Nov 2017 B2
9844421 Moss et al. Dec 2017 B2
9848985 Yang et al. Dec 2017 B2
9861451 Davis Jan 2018 B1
9936186 Jesenko et al. Apr 2018 B2
10123853 Moss et al. Nov 2018 B2
10159541 Bindayel Dec 2018 B2
10172693 Brandt et al. Jan 2019 B2
10195690 Culp Feb 2019 B2
10231801 Korytov et al. Mar 2019 B2
10238472 Levin Mar 2019 B2
10258432 Webber Apr 2019 B2
11096763 Akopov Aug 2021 B2
20010002310 Chishti et al. May 2001 A1
20010032100 Mahmud et al. Oct 2001 A1
20010038705 Rubbert et al. Nov 2001 A1
20010041320 Phan et al. Nov 2001 A1
20020004727 Knaus et al. Jan 2002 A1
20020007284 Schurenberg et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020026105 Drazen Feb 2002 A1
20020028417 Chapoulaud et al. Mar 2002 A1
20020035572 Takatori et al. Mar 2002 A1
20020064752 Durbin et al. May 2002 A1
20020064759 Durbin et al. May 2002 A1
20020087551 Hickey et al. Jul 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020188478 Breeland et al. Dec 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030000927 Kanaya et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030019848 Nicholas et al. Jan 2003 A1
20030021453 Weise et al. Jan 2003 A1
20030035061 Iwaki et al. Feb 2003 A1
20030049581 Deluke Mar 2003 A1
20030057192 Patel Mar 2003 A1
20030059736 Lai et al. Mar 2003 A1
20030060532 Subelka et al. Mar 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030095697 Wood et al. May 2003 A1
20030101079 McLaughlin May 2003 A1
20030103060 Anderson et al. Jun 2003 A1
20030120517 Eida et al. Jun 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030144886 Taira Jul 2003 A1
20030172043 Guyon et al. Sep 2003 A1
20030190575 Hilliard Oct 2003 A1
20030192867 Yamazaki et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20030215764 Kopelman et al. Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20030224313 Bergersen Dec 2003 A1
20030224314 Bergersen Dec 2003 A1
20040002873 Sachdeva Jan 2004 A1
20040009449 Mah et al. Jan 2004 A1
20040013994 Goldberg et al. Jan 2004 A1
20040019262 Perelgut Jan 2004 A1
20040029078 Marshall Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040054304 Raby Mar 2004 A1
20040054358 Cox et al. Mar 2004 A1
20040058295 Bergersen Mar 2004 A1
20040068199 Echauz et al. Apr 2004 A1
20040078222 Khan et al. Apr 2004 A1
20040080621 Fisher et al. Apr 2004 A1
20040094165 Cook May 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040133083 Comaniciu et al. Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040158194 Wolff et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040167646 Jelonek et al. Aug 2004 A1
20040170941 Phan et al. Sep 2004 A1
20040193036 Zhou et al. Sep 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040214128 Sachdeva et al. Oct 2004 A1
20040219479 Malin et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040229185 Knopp Nov 2004 A1
20040259049 Kopelman et al. Dec 2004 A1
20050003318 Choi et al. Jan 2005 A1
20050023356 Wiklof et al. Feb 2005 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050037312 Uchida Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050040551 Biegler et al. Feb 2005 A1
20050042569 Plan et al. Feb 2005 A1
20050042577 Kvitrud et al. Feb 2005 A1
20050048433 Hilliard Mar 2005 A1
20050074717 Cleary et al. Apr 2005 A1
20050089822 Geng Apr 2005 A1
20050100333 Kerschbaumer et al. May 2005 A1
20050108052 Omaboe May 2005 A1
20050131738 Morris Jun 2005 A1
20050144150 Ramamurthy et al. Jun 2005 A1
20050171594 Machan et al. Aug 2005 A1
20050171630 Dinauer et al. Aug 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050186524 Abolfathi et al. Aug 2005 A1
20050186526 Stewart et al. Aug 2005 A1
20050216314 Secor Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050239013 Sachdeva Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244791 Davis et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060056670 Hamadeh Mar 2006 A1
20060057533 McGann Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060078842 Sachdeva et al. Apr 2006 A1
20060084024 Farrell Apr 2006 A1
20060093982 Wen May 2006 A1
20060098007 Rouet et al. May 2006 A1
20060099545 Lia et al. May 2006 A1
20060099546 Bergersen May 2006 A1
20060110698 Robson May 2006 A1
20060111631 Kelliher et al. May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060137813 Robrecht et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060154207 Kuo Jul 2006 A1
20060173715 Wang Aug 2006 A1
20060183082 Quadling et al. Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060188848 Tricca et al. Aug 2006 A1
20060194163 Tricca et al. Aug 2006 A1
20060199153 Liu et al. Sep 2006 A1
20060204078 Orth et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060257815 De Dominicis Nov 2006 A1
20060275729 Fornoff Dec 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060290693 Zhou et al. Dec 2006 A1
20060292520 Dillon et al. Dec 2006 A1
20070031775 Andreiko Feb 2007 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070054237 Neuschafer Mar 2007 A1
20070065768 Nadav Mar 2007 A1
20070087300 Willison et al. Apr 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070106138 Beiski et al. May 2007 A1
20070122592 Anderson et al. May 2007 A1
20070128574 Kuo et al. Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070141526 Eisenberg et al. Jun 2007 A1
20070143135 Lindquist et al. Jun 2007 A1
20070168152 Matov et al. Jul 2007 A1
20070172112 Paley et al. Jul 2007 A1
20070172291 Yokoyama Jul 2007 A1
20070178420 Keski-Nisula et al. Aug 2007 A1
20070183633 Hoffmann Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070185732 Hicks et al. Aug 2007 A1
20070192137 Ombrellaro Aug 2007 A1
20070199929 Rippl et al. Aug 2007 A1
20070215582 Roeper et al. Sep 2007 A1
20070218422 Ehrenfeld Sep 2007 A1
20070231765 Phan et al. Oct 2007 A1
20070238065 Sherwood Oct 2007 A1
20070239488 DeRosso Oct 2007 A1
20070263226 Kurtz et al. Nov 2007 A1
20080013727 Uemura Jan 2008 A1
20080020350 Matov et al. Jan 2008 A1
20080045053 Stadler et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057467 Gittelson Mar 2008 A1
20080057479 Grenness Mar 2008 A1
20080059238 Park et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080094389 Rouet et al. Apr 2008 A1
20080113317 Kemp et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118882 Su May 2008 A1
20080118886 Liang et al. May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080233530 Cinader Sep 2008 A1
20080242144 Dietz Oct 2008 A1
20080248443 Chishti et al. Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080306724 Kitching et al. Dec 2008 A1
20090029310 Pumphrey et al. Jan 2009 A1
20090030290 Kozuch et al. Jan 2009 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kumada et al. Mar 2009 A1
20090087050 Gandyra Apr 2009 A1
20090098502 Andreiko Apr 2009 A1
20090099445 Burger Apr 2009 A1
20090103579 Ushimaru et al. Apr 2009 A1
20090105523 Kassayan et al. Apr 2009 A1
20090130620 Yazdi et al. May 2009 A1
20090136890 Kang et al. May 2009 A1
20090136893 Zegarelli May 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090170050 Marcus Jul 2009 A1
20090181346 Orth Jul 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090246726 Chelnokov et al. Oct 2009 A1
20090281433 Saadat et al. Nov 2009 A1
20090286195 Sears et al. Nov 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20090305540 Stadler et al. Dec 2009 A1
20090316966 Marshall et al. Dec 2009 A1
20090317757 Lemchen Dec 2009 A1
20100015565 Carrillo Gonzalez et al. Jan 2010 A1
20100019170 Hart et al. Jan 2010 A1
20100028825 Lemchen Feb 2010 A1
20100045902 Ikeda et al. Feb 2010 A1
20100062394 Jones et al. Mar 2010 A1
20100068676 Mason et al. Mar 2010 A1
20100086890 Kuo Apr 2010 A1
20100106518 Kuo Apr 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100142789 Chang et al. Jun 2010 A1
20100145664 Hultgren et al. Jun 2010 A1
20100145898 Malfliet et al. Jun 2010 A1
20100152599 DuHamel et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100167225 Kuo Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193482 Ow et al. Aug 2010 A1
20100196837 Farrell Aug 2010 A1
20100216085 Kopelman Aug 2010 A1
20100217130 Weinlaender Aug 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100268363 Karim et al. Oct 2010 A1
20100268515 Vogt et al. Oct 2010 A1
20100279243 Cinader et al. Nov 2010 A1
20100280798 Pattijn Nov 2010 A1
20100281370 Rohaly et al. Nov 2010 A1
20100303316 Bullis et al. Dec 2010 A1
20100312484 DuHamel et al. Dec 2010 A1
20100327461 Co et al. Dec 2010 A1
20110007920 Abolfathi et al. Jan 2011 A1
20110012901 Kaplanyan Jan 2011 A1
20110045428 Boltunov et al. Feb 2011 A1
20110056350 Gale et al. Mar 2011 A1
20110081625 Fuh Apr 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110102549 Takahashi May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110104630 Matov et al. May 2011 A1
20110136072 Li et al. Jun 2011 A1
20110136090 Kazemi Jun 2011 A1
20110143300 Villaalba Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110159452 Huang Jun 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110207072 Schiemann Aug 2011 A1
20110212420 Vuillemot Sep 2011 A1
20110220623 Beutler Sep 2011 A1
20110235045 Koerner et al. Sep 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110282473 Pavlovskaia Nov 2011 A1
20110316994 Lemchen Dec 2011 A1
20120028210 Hegyi et al. Feb 2012 A1
20120029883 Heinz et al. Feb 2012 A1
20120040311 Nilsson Feb 2012 A1
20120047105 Saigal Feb 2012 A1
20120064477 Schmitt Mar 2012 A1
20120081786 Mizuyama et al. Apr 2012 A1
20120086681 Kim et al. Apr 2012 A1
20120115107 Adams May 2012 A1
20120129117 McCance May 2012 A1
20120147912 Moench et al. Jun 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120166213 Arnone et al. Jun 2012 A1
20120172678 Logan et al. Jul 2012 A1
20120281293 Gronenborn et al. Nov 2012 A1
20120295216 Dykes et al. Nov 2012 A1
20120322025 Ozawa et al. Dec 2012 A1
20130029284 Teasdale Jan 2013 A1
20130081272 Johnson et al. Apr 2013 A1
20130089828 Borovinskih et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130103176 Kopelman et al. Apr 2013 A1
20130110469 Kopelman May 2013 A1
20130163627 Seurin et al. Jun 2013 A1
20130201488 Ishihara Aug 2013 A1
20130204599 Matov et al. Aug 2013 A1
20130209952 Kuo et al. Aug 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130252195 Popat Sep 2013 A1
20130266326 Joseph et al. Oct 2013 A1
20130278396 Kimmel Oct 2013 A1
20130280671 Brawn et al. Oct 2013 A1
20130286174 Urakabe Oct 2013 A1
20130293824 Yoneyama et al. Nov 2013 A1
20130323664 Parker Dec 2013 A1
20130323671 Dillon et al. Dec 2013 A1
20130323674 Hakomori et al. Dec 2013 A1
20130325431 See et al. Dec 2013 A1
20130337412 Kwon Dec 2013 A1
20140061974 Tyler Mar 2014 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140093160 Porikli et al. Apr 2014 A1
20140106289 Kozlowski Apr 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140136222 Arnone et al. May 2014 A1
20140142902 Chelnokov et al. May 2014 A1
20140178829 Kim Jun 2014 A1
20140265034 Dudley Sep 2014 A1
20140272774 Dillon et al. Sep 2014 A1
20140280376 Kuo Sep 2014 A1
20140294273 Jaisson Oct 2014 A1
20140313299 Gebhardt et al. Oct 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140342301 Fleer et al. Nov 2014 A1
20140350354 Stenzler et al. Nov 2014 A1
20140363778 Parker Dec 2014 A1
20150002649 Nowak et al. Jan 2015 A1
20150004553 Li et al. Jan 2015 A1
20150021210 Kesling Jan 2015 A1
20150079531 Heine Mar 2015 A1
20150094564 Tashman et al. Apr 2015 A1
20150097315 DeSimone et al. Apr 2015 A1
20150097316 DeSimone et al. Apr 2015 A1
20150102532 DeSimone et al. Apr 2015 A1
20150132708 Kuo May 2015 A1
20150140502 Brawn et al. May 2015 A1
20150150501 George et al. Jun 2015 A1
20150164335 Van Der Poel et al. Jun 2015 A1
20150173856 Lowe et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150216716 Anitua Aldecoa Aug 2015 A1
20150230885 Wucher Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150306486 Logan et al. Oct 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20150325044 Lebovitz Nov 2015 A1
20150338209 Knüttel Nov 2015 A1
20150351638 Amato Dec 2015 A1
20150374469 Konno et al. Dec 2015 A1
20160000332 Atiya et al. Jan 2016 A1
20160003610 Lampert et al. Jan 2016 A1
20160042509 Andreiko et al. Feb 2016 A1
20160051345 Levin Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160081768 Kopelman et al. Mar 2016 A1
20160081769 Kimura et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160100924 Wilson et al. Apr 2016 A1
20160106520 Borovinskih et al. Apr 2016 A1
20160120621 Li et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160163115 Furst Jun 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160220105 Durent Aug 2016 A1
20160220200 Sandholm et al. Aug 2016 A1
20160225151 Cocco et al. Aug 2016 A1
20160228213 Tod et al. Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20160246936 Kahn Aug 2016 A1
20160287358 Nowak et al. Oct 2016 A1
20160296303 Parker Oct 2016 A1
20160302885 Matov et al. Oct 2016 A1
20160328843 Graham et al. Nov 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160346063 Schulhof et al. Dec 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007365 Kopelman et al. Jan 2017 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170020633 Stone-Collonge et al. Jan 2017 A1
20170049311 Borovinskih et al. Feb 2017 A1
20170049326 Alfano et al. Feb 2017 A1
20170056131 Alauddin et al. Mar 2017 A1
20170071705 Kuo Mar 2017 A1
20170086943 Mah Mar 2017 A1
20170100209 Wen Apr 2017 A1
20170100212 Sherwood et al. Apr 2017 A1
20170100213 Kuo Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170105815 Matov et al. Apr 2017 A1
20170135792 Webber May 2017 A1
20170135793 Webber et al. May 2017 A1
20170156821 Kopelman et al. Jun 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170215739 Miyasato Aug 2017 A1
20170251954 Lotan et al. Sep 2017 A1
20170258555 Kopelman Sep 2017 A1
20170265970 Verker Sep 2017 A1
20170319054 Miller et al. Nov 2017 A1
20170319296 Webber et al. Nov 2017 A1
20170325690 Salah et al. Nov 2017 A1
20170340411 Akselrod Nov 2017 A1
20170340415 Choi et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028063 Elbaz et al. Feb 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180055602 Kopelman et al. Mar 2018 A1
20180071054 Ha Mar 2018 A1
20180071055 Kuo Mar 2018 A1
20180085059 Lee Mar 2018 A1
20180096465 Levin Apr 2018 A1
20180125610 Carrier et al. May 2018 A1
20180153648 Shanjani et al. Jun 2018 A1
20180153649 Wu et al. Jun 2018 A1
20180153733 Kuo Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180192877 Atiya et al. Jul 2018 A1
20180228359 Meyer et al. Aug 2018 A1
20180318043 Li et al. Nov 2018 A1
20180368944 Sato et al. Dec 2018 A1
20190026599 Salah et al. Jan 2019 A1
20190046296 Kopelman et al. Feb 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190069975 Cam et al. Mar 2019 A1
20190076216 Moss et al. Mar 2019 A1
20190090983 Webber et al. Mar 2019 A1
Foreign Referenced Citations (128)
Number Date Country
517102 Nov 1977 AU
3031677 Nov 1977 AU
5598894 Jun 1994 AU
1121955 Apr 1982 CA
1655732 Aug 2005 CN
1655733 Aug 2005 CN
102017658 Apr 2011 CN
103889364 Jun 2014 CN
204092220 Jan 2015 CN
105496575 Apr 2016 CN
105997274 Oct 2016 CN
2749802 May 1978 DE
3526198 Feb 1986 DE
4207169 Sep 1993 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
202010017014 Mar 2011 DE
102011051443 Jan 2013 DE
202012011899 Jan 2013 DE
102014225457 Jun 2016 DE
0428152 May 1991 EP
490848 Jun 1992 EP
541500 May 1993 EP
714632 May 1997 EP
774933 Dec 2000 EP
731673 May 2001 EP
1941843 Jul 2008 EP
2437027 Apr 2012 EP
2447754 May 2012 EP
1989764 Jul 2012 EP
2332221 Nov 2012 EP
2596553 Dec 2013 EP
2612300 Feb 2015 EP
2848229 Mar 2015 EP
463897 Jan 1980 ES
2455066 Apr 2014 ES
2369828 Jun 1978 FR
2867377 Sep 2005 FR
2930334 Oct 2009 FR
1550777 Aug 1979 GB
53-058191 May 1978 JP
4028359 Jan 1992 JP
08-508174 Sep 1996 JP
09-19443 Jan 1997 JP
2003245289 Sep 2003 JP
2000339468 Sep 2004 JP
2005527320 Sep 2005 JP
2005527321 Sep 2005 JP
2006043121 Feb 2006 JP
2007151614 Jun 2007 JP
2007260158 Oct 2007 JP
2007537824 Dec 2007 JP
2008067732 Mar 2008 JP
2008523370 Jul 2008 JP
04184427 Nov 2008 JP
2009000412 Jan 2009 JP
2009018173 Jan 2009 JP
2009078133 Apr 2009 JP
2009101386 May 2009 JP
2009205330 Sep 2009 JP
2010017726 Jan 2010 JP
2011087733 May 2011 JP
2012045143 Mar 2012 JP
2013007645 Jan 2013 JP
2013192865 Sep 2013 JP
201735173 Feb 2017 JP
10-20020062793 Jul 2002 KR
10-20070108019 Nov 2007 KR
10-20090065778 Jun 2009 KR
10-1266966 May 2013 KR
10-2016-041632 Apr 2016 KR
10-2016-0071127 Jun 2016 KR
10-1675089 Nov 2016 KR
480166 Mar 2002 TW
WO91004713 Apr 1991 WO
WO9203102 Mar 1992 WO
WO94010935 May 1994 WO
WO9623452 Aug 1996 WO
WO98032394 Jul 1998 WO
WO98044865 Oct 1998 WO
WO0108592 Feb 2001 WO
WO0185047 Nov 2001 WO
WO2002017776 Mar 2002 WO
WO2002062252 Aug 2002 WO
WO02095475 Nov 2002 WO
WO03003932 Jan 2003 WO
WO2006096558 Sep 2006 WO
WO2006100700 Sep 2006 WO
WO2006133548 Dec 2006 WO
WO2007019709 Feb 2007 WO
WO2007071341 Jun 2007 WO
WO2007103377 Sep 2007 WO
WO2008115654 Sep 2008 WO
WO2009016645 Feb 2009 WO
WO2009085752 Jul 2009 WO
WO2009089129 Jul 2009 WO
WO2009146788 Dec 2009 WO
WO2009146789 Dec 2009 WO
WO2010059988 May 2010 WO
WO2010123892 Oct 2010 WO
WO2012007003 Jan 2012 WO
WO2012064684 May 2012 WO
WO2012074304 Jun 2012 WO
WO2012078980 Jun 2012 WO
WO2012083968 Jun 2012 WO
WO2012140021 Oct 2012 WO
WO2013058879 Apr 2013 WO
WO2014068107 May 2014 WO
WO2014091865 Jun 2014 WO
WO2014143911 Sep 2014 WO
WO2015015289 Feb 2015 WO
WO2015063032 May 2015 WO
WO2015112638 Jul 2015 WO
WO2015176004 Nov 2015 WO
WO2016004415 Jan 2016 WO
WO2016042393 Mar 2016 WO
WO2016061279 Apr 2016 WO
WO2016084066 Jun 2016 WO
WO2016099471 Jun 2016 WO
WO2016113745 Jul 2016 WO
WO2016116874 Jul 2016 WO
WO2016200177 Dec 2016 WO
WO2017006176 Jan 2017 WO
WO2017182654 Oct 2017 WO
WO2018057547 Mar 2018 WO
WO2018085718 May 2018 WO
WO2018232113 Dec 2018 WO
WO2019018784 Jan 2019 WO
Non-Patent Literature Citations (284)
Entry
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn)
Farooq et al.; Relationship between tooth dimensions and malocclusion; JPMA: The Journal of the Pakistan Medical Association; 64(6); pp. 670-674; Jun. 2014.
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011.
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019.
Video of DICOM to Surgical Guides; [Copy Not Enclosed], Can be viewed at <URL:https://youtu.be/47KtOmCEFQk; Published Apr. 4, 2016.
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses” filed Jan. 25, 2019.
Li et al.; U.S. Appl. No. 16/171,159 entitled “Alternative bite adjustment structures,” filed Oct. 25, 2018.
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018.
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019.
Arakawa et al; Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor; Biosensors and Bioelectronics; 84; pp. 106-111; Oct. 2016.
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018.
Shanjani et al., U.S. Appl. No. 16/206,894 entitled “Sensors for monitoring oral appliances,” filed Nov. 28, 2019.
Shanjani et al., U.S. Appl. No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners.” Dec. 24, 2018.
Kopleman et al., U.S. Appl. No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” Dec. 14, 2018.
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004.
Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech .; 32(1); pp. 81-85; (Abstract Only) Jan. 1999.
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007.
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011.
Nedelcu et al.; “Scanning Accuracy and Precision in 4 Intraoral Scanners: An In Vitro Comparison Based on 3-Dimensional Analysis”; J. Prosthet. Dent.; 112(6); pp. 1461-1471; Dec. 2014.
Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990.
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990.
Schafer et al.; “Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation”; Eur J Orthod.; 37(1)pp. 1-8; doi:10.1093/ejo/cju012; Jul. 3, 2014.
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018.
Wireless Sensor Networks Magazine; Embedded Teeth for Oral Activity Recognition; 2 pages; retrieved on Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/); Jul. 29, 2013.
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop .; 52(3); pp. 117-125; (Translation Included) Jun. 1991.
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
Grove et al.; U.S. Appl. No. 15/726,243 entitled “Interproximal reduction templates,” filed Oct. 5, 2017.
Cramer et al.; U.S. Appl. No. 15/942,341 entitled “Orthodontic appliances including at least partially un-erupted teeth and method of forming them,” filed Mar. 30, 2018.
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
Alves et al.; New trends in food allergens detection: toward biosensing strategies; Critical Reviews in Food Science and Nutrition; 56(14); pp. 2304-2319; doi: 10.1080/10408398.2013.831026; Oct. 2016.
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2012.
Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013.
Sirona Dental Systems GmbH, Cerec 3D, Manuel utilisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003.
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
Riley et al.; U.S. Appl. No. 16/003,841 entitled Palatal expander with skeletal anchorage devices, filed Jun. 8, 2018.
Shanjani et al.; U.S. Appl. No. 16/019,037 entitled “Biosensor performance indicator for intraoral appliances,” filed Jun. 26, 2018.
Sato et al.; U.S. Appl. No. 16/041,606 entitled “Palatal contour anchorage,” filed Jul. 20, 2018.
Xue et al.; U.S. Appl. No. 16/010,087 entitled “Automatic detection of tooth type and eruption status,” filed Jun. 15, 2018.
Sato et al.; U.S. Appl. No. 16/048,054 entitled “Optical coherence tomography for orthodontic aligners,” filed Jul. 27, 2018.
Miller et al.; U.S. Appl. No. 16/038,088 entitled “Method and apparatuses for interactive ordering of dental aligners,” filed Jul. 17, 2018.
Moalem et al.; U.S. Appl. No. 16/046,897 entitled Tooth shading, transparency and glazing, filed Jul. 26, 2018.
Nyukhtikov et al.; U.S. Appl. No. 15/998,883 entitled “Buccal corridor assessment and computation,” filed Aug. 15, 2018.
Bandodkar et al.; All-printed magnetically self-healing electrochemical devices; Science Advances; 2(11); 11 pages; e1601465; Nov. 2016.
Bandodkar et al.; Self-healing inks for autonomous repair of printable electrochemical devices; Advanced Electronic Materials; 1(12); 5 pages; 1500289; Dec. 2015.
Bandodkar et al.; Wearable biofuel cells: a review; Electroanalysis; 28 (6); pp. 1188-1200; Jun. 2016.
Bandodkar et al.; Wearable chemical sensors: present challenges and future prospects; Acs Sensors; 1(5); pp. 464-482; May 11, 2016.
Imani et al.; A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring; Nature Communications; 7; 11650. doi 1038/ncomms11650; 7 pages; May 23, 2016.
Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013.
Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); pp. 18184-18189; Oct. 14, 2014.
Jeerapan et al.; Stretchable biofuel cells as wearable textile-based self-powered sensors; Journal of Materials Chemistry A; 4(47); pp. 18342-18353; Dec. 21, 2016.
Kim et al.; Advanced materials for printed wearable electrochemical devices: A review; Advanced Electronic Materials; 3(1); 15 pages; 1600260; Jan. 2017.
Kim et al.; Noninvasive alcohol monitoring using a wearable tatto-based iontophoretic-biosensing system; Acs Sensors; 1(8); pp. 1011-1019; Jul. 22, 2016.
Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014.
Kim et al.; A wearable fingernail chemical sensing platform: pH sensing at your fingertips; Talanta; 150; pp. 622-628; Apr. 2016.
Kim et al.; Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics; Biosensors and Bioelectronics; 74; pp. 1061-1068; 19 pages; (Author Manuscript); Dec. 2015.
Kumar et al.; All-printed, stretchable Zn—Ag20 rechargeable battery via, hyperelastic binder for self-powering wearable electronics; Advanced Energy Materials; 7(8); 8 pages; 1602096; Apr. 2017.
Kumar et al.; Biomarkers in orthodontic tooth movement; Journal of Pharmacy Bioallied Sciences; 7(Suppl 2); pp. S325-S330; 12 pages; (Author Manuscript); Aug. 2015.
Parrilla et al.; A textile-based stretchable multi-ion potentiometric sensor; Advanced Healthcare Materials; 5(9); pp. 996-1001; May 2016.
Windmiller et al.; Wearable electrochemical sensors and biosensors: a review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013.
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011.
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012.
Kopelman et al.; U.S. Appl. No. 16/152,281 entitled “Intraoral appliances for sampling soft-tissue,” filed Oct. 4, 2018.
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018.
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018.
Elbaz et al.; U.S. Appl. No. 16/198,488 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 21, 2018.
Elbaz et al.; U.S. Appl. No. 16/188,262 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 12, 2018.
Bernabe et al.; Are the lower incisors the best predictors for the unerupted canine and premolars sums? An analysis of peruvian sample; The Angle Orthodontist; 75(2); pp. 202-207; Mar. 2005.
Collins English Dictionary; Teeth (definition); 9 pages; retrieved from the internet (https:www.collinsdictionary.com/us/dictionary/english/teeth) on May 13, 2019.
Dental Monitoring; Basics: How to put the cheek retractor ?; 1 page (Screenshot); retrieved from the interenet (https://www.youtube.com/watch?v=6K1HXw4Kq3c); May 27, 2016.
Dental Monitoring; Dental monitoring tutorial; 1 page (Screenshot); retrieved from the internet (https:www.youtube.com/watch?v=Dbe3udOf9_c); Mar. 18, 2015.
dictionary.com; Plural (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/plural#) on May 13, 2019.
dictionary.com; Quadrant (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/quadrant?s=t) on May 13, 2019.
Ecligner Selfie; Change your smile; 1 page (screenshot); retrieved from the internet (https:play.google.com/store/apps/details?id=parklict.ecligner); on Feb. 13, 2018.
Martinelli et al.; Prediction of lower permanent canine and premolars width by correlation methods; The Angle Orthodontist; 75(5); pp. 805-808; Sep. 2005.
Nourallah et al.; New regression equations for prediciting the size of unerupted canines and premolars in a contemporary population; The Angle Orthodontist; 72(3); pp. 216-221; Jun. 2002.
Paredes et al.; A new, accurate and fast digital method to predict unerupted tooth size; The Angle Orthodontist; 76(1); pp. 14-19; Jan. 2006.
Levin; U.S. Appl. No. 16/282,431 entitled “Estimating a surface texture of a tooth,” filed Feb. 2, 2019.
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Alcaniz et al.; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990.
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances-Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998.
Allesee Orthodontic Appliances: DuraClearTM; Porduct information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; p(roduct information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979.
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981.
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979.
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989.
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013.
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
Baumrind et al., “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972.
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978.
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975.
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001.
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981.
Bernard et al.; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988.
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984.
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972.
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970.
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive, Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/′ pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001.
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985.
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986.
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981.
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979.
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000.
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990.
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985.
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980.
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997.
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969.
Crawford; CAD/CAM in the Dental Office: Does It Work ?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991.
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret A Man With a Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites the Computer Moves From the Front Desk to the Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988.
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990.
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996.
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001.
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986.
DCS Dental AG; The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992.
Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976.
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991.
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Dent-x; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998.
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000.
Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010.
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1 (2); pp. 150-154; Apr. 1991.
Duret et al.; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988.
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986.
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985.
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979.
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978.
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987.
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987.
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98—Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.cz/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018.
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001.
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982.
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990.
Guess et al.; Computer Treatment Estimates In Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989.
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressp utonfa . . . ); on Nov. 5, 2004.
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Inclused); Feb. 1987.
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991.
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990.
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999.
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994.
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983.
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998.
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989.
Kamada et.al.; Case Reports on Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984.
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982.
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984.
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945.
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946.
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996.
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994.
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996.
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991.
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989.
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983.
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989.
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985.
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
Moermann et al., Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987.
Moles; Correcting Mild Malalignments—As Easy as One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Macine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985.
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964.
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990.
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989.
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990.
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971.
Procera Research Projects; Procera Research Projects 1993 Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993.
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993.
Raintree Essix & Ars Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997.
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000.
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992.
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992.
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987.
Rekow; Dental CAD-CAM Systems: What is the State of the Art ?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991.
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988.
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992.
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986.
Richmond; Recording The Dental Cast In Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987.
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981.
Sakuda et al.; Integrated Information-Processing System In Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992.
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988.
Schroeder et al.; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998.
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971.
Shimada et al.; Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations; Current Oral Health Reports; 2(2); pp. 73-80; Jun. 2015.
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992.
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
The Dental Company Sirona: Cerc omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014.
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992.
Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973.
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977.
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972.
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972.
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993.
Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013.
Varady et al.; Reverse Engineering of Geometric Models an Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997.
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989.
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23(10); pp. 694-700; Oct. 1989.
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970.
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987.
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987.
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990.
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988.
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990.
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980.
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004.
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribunne: Asia pacfic Edition; pp. 16-18; Mar. 29, 2006.
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989.
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005.
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005.
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000.
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008.
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005.
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003.
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008.
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); retieved from te internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019.
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008.
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003.
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998.
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006.
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005.
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002.
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008.
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006.
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983.
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003.
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995.
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008.
Smile-Vision_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008.
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005.
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002.
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005.
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd Vol.; pp. 0005-0008; (English Version Included); Apr. 2008.
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007.
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Knog Dental Journal; 3(2); pp. 107-115; Dec. 2006.
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008.
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002.
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018.
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019.
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018.
Kou; U.S. Appl. No. 16/270,891 entitled “Personal data file,” filed Feb. 8, 2019.
Related Publications (1)
Number Date Country
20180280118 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
62477389 Mar 2017 US