Several healthcare facilities utilize convertible furniture in patient rooms that may be used for seating during visiting hours and for sleeping during overnight usage. In addition to providing this furniture, these facilities also need to regularly clean the patient rooms to provide a clean and safe environment for the patient. A conflict in meeting these needs arises in the amount of time and effort a facility can dedicate to disinfecting all of the surfaces and furniture in each patient room.
Existing convertible furniture in patient rooms may be converted from a seating to a sleeping surface in several ways, including by expanding the size of the seating device, unfolding the components of the seating device within itself, or removing components of the seating device to provide a sleeping surface. Each of these current methods has several inefficiencies. The first method requires too much floor space in the patient room and incorporation of additional structural elements. The second method allows for use of only a limited amount of bedding surface and cushioning that can be folded onto itself. The third method uses inefficient and hefty drawers and/or enclosed cavities in the seating device to store components of the device.
The above methods also present additional concerns while cleaning the patient room. All exposed surface area of the furniture in the room, as well as floor space underneath the furniture, must be cleaned and disinfected in a quick time-frame before another patient may be admitted into the room. However, the structure of existing convertible furniture presents several difficulties in performing this cleaning. For example, drawers and/or cavities in a seating device may accumulate dust, grime, and/or discarded trash, and therefore require constant cleaning and additional time spent performing this cleaning.
Methods and apparatuses are provided for seating construction, and in exemplary though non-limiting embodiments, to methods and apparatuses for converting a seating device, including an adjustable storage device located beneath the seating device, into a sleeping device.
In embodiments of the present disclosure, the storage device may be adjusted to at least one of two resting positions, a fully lowered position and fully raised position, via at least one raising-lowering device pivotally connected to the seating device and storage device. Placement of the storage device in the fully lowered position allows for removal and storage of components of the seating device within the storage device to convert the seating device into a sleeping device with a sleeping surface. Placement of the storage device in the fully raised position allows for easy floor surface access for cleaning.
Referring to
Seating device (200) includes a leg structure (208), a seat back (202) and seat base (212) integrated with or attached to the leg structure (208), a base cushion (204) mounted on the base (212), and at least one arm (206) mounted on the leg structure (208) at an end of the base cushion (204). See, e.g.,
Seating device (200) may further include a back support system (210). Back support system (210) may include any type of device that provides back support for a user sitting on seating device (200), including for example cushions, bolsters, and pillows. As shown in
In exemplary embodiments, leg structure (208) of seating device (200) may include four C-shaped cantilever legs (208) configured to support the seating device (200) and any user sitting on the seating device (200). Cantilever legs (208) may include beam portions made of metal or other suitable materials for supporting seating device (200). Cantilever legs (208) may include steel tubing mounted to seat base (212) or mounted directly to base cushion (204). In embodiments, each cantilever leg (208) may include at least a bottom beam portion sitting on a floor, an upper beam portion mounted to the seat base (212), and at least one upright beam connected between the bottom beam portion and the upper beam portion to support the seating device (200). See, e.g.,
In particular embodiments, adjustable storage device (300) may be a flat platform or rack (300) pivotally connected to the leg structure (208) at a proximate end (302) of the leg structure (208) adjacent to the seat back (202). See, e.g.,
In exemplary embodiments, storage device (300) may be adjusted to at least one of two resting positions, a fully lowered position (300A) and fully raised position (300B), via at least one raising-lowering device (400) pivotally connected to leg structure (208) and storage device (300). See, e.g.,
At least one raising-lowering device (400) may be attached to/integrated with storage device (300) to assist in supporting the weight of the storage device (300) in the raised position (300B) and allowing for smooth operation of the storage device (300) between the raised and lowered positions (300B, 300A). In exemplary embodiments, at least one raising-lowering device (400) may be a compression gas spring (402) or other type of conventional compression spring pivotally connected to a moment arm member/vertical framing member (404). See, e.g.,
Each gas spring (402) may be pivotally connected to the leg structure (208) at a first end (406) and to the moment arm member (404) at a second end (408). See, e.g.,
Storage device (300) may be easily lifted to fully raised position (300B) in an arcing motion by applying a gentle force on storage device (300) to overcome the force differential between the compression rating of the spring (402) and the weight of the storage device (300). During this arcing motion, the moment arm/vertical framing member (404) may be rotated via pivoting connections at proximate end (302), first end (406) and second end (408). Once in the fully raised position (300B), spring (402) is oriented at a rear-of-vertical position, i.e., oriented slanting rearward towards seat back (202), and at a greater than ninety degree angle relative to the floor space away from seat back (202). See, e.g.,
Connections at proximate end (302), first end (406) and second end (408) may include any type of pinned/hinge/pivoting connections allowing for at least one raising-lowering device (400) to adjust storage device (300) between the fully lowered position (300A) and fully raised position (300B) in a consistent arcing motion/movement, including for example, sealed live swivel pivot joints and other pivotable joints. Arcing motion of storage device (300) may be guided by a pivoting connection on proximate end (302) of the bottom beam portion of cantilever leg (208) adjacent to the seat back (202). For example, arcing motion of storage device (300) may be guided by a steel pin or similar connector that provides a pivoting point along the pin/connector's longitudinal axis. In this embodiment, the pin may be located symmetrically along the width of the storage device (300) so that lifting forces and loads are equal and balanced throughout the movement. Pins/connectors may be located at fixed locations within the structural framing of legs (208) so that a predictable and consistent arcing motion is achieved and so that the storage device (300) operates fluidly, with minimum resistance and without binding. Pins/connectors may be attached through various methods (e.g. welded, threaded bolt) to the primary structural frame of legs (208), but these attachments must also allow for the connection of the storage device (300) to be non-fixed so that the arcing motion can occur. In some embodiments, spacers may be utilized to provide adequate clearance between the structural framing of each leg (208) at the location of the pivoting connection at proximate end (302) and portion of the storage device (300) attached to leg (208) at proximate end (302), and to allow for fluid and minimal friction to occur between the storage device (300) and leg (208). In an exemplary embodiment, connection of gas spring (402) at first end (406) may be a knuckle joint connector allowing for a frictionless arcing movement.
Embodiments provide a method for converting a seating device (200) into a sleeping device (200′). Methods include using the seating apparatus (100) described herein, including seating device (200), sleeping device (200′), storage device (300), back support system (210), and raising-lowering device (400). In an exemplary embodiment, the method includes adjusting storage device (300) located beneath the seating device (200) from a fully raised position (300B) into a fully lowered position (300A) via at least one raising-lowering device (400), removing the back support system (210) and placing it within the storage device (300) to create the sleeping device (200′). Back support system (210) may be configured to fit within the storage device (300).
Embodiments of the present disclosure include convertible seating-to-sleeping furniture having a light-weight design that does not require a user to manipulate mechanisms or components that need to be further expanded, unfolded, or engaged while converting from a seating device to a sleeping device. Embodiments of the present disclosure require less material and surface area to be cleaned and disinfected prior to admission of new patients, thereby increasing cleaning time efficiencies and infection control benefits. Embodiments of the present disclosure also allow for easy cleaning of floor space underneath a seating device, without relocating the entire device to a different location in a room.
While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventions is not limited to them. Many variations, modifications, additions, and improvements are possible. Further still, any steps described herein may be carried out in any desired order, and any desired steps may be added or deleted.
This application claims the benefit of U.S. Provisional Patent Application No. 62/143,559, filed Apr. 6, 2015, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62143559 | Apr 2015 | US |