The present disclosure relates to methods for manufacturing absorbent articles, and more particularly, to apparatuses and methods for making elastomeric laminates that may be used as components of absorbent articles.
Along an assembly line, various types of articles, such as for example, diapers and other absorbent articles, may be assembled by adding components to and/or otherwise modifying an advancing, continuous web of material. For example, in some processes, advancing webs of material are combined with other advancing webs of material. In other examples, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. In some cases, individual components created from advancing web or webs are combined with other individual components created from other advancing web or webs. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheets, leg cuffs, waist bands, absorbent core components, front and/or back ears, fastening components, and various types of elastic webs and components such as leg elastics, barrier leg cuff elastics, stretch side panels, and waist elastics. Once the desired component parts are assembled, the advancing web(s) and component parts are subjected to a final knife cut to separate the web(s) into discrete diapers or other absorbent articles.
Some absorbent articles have components that include elastomeric laminates. Such elastomeric laminates may include an elastic material bonded to one or more nonwovens. The elastic material may include an elastic film and/or elastic strands. In some laminates, a plurality of elastic strands are joined to a nonwoven while the plurality of strands are in a stretched condition so that when the elastic strands relax, the nonwoven gathers between the locations where the nonwoven is bonded to the elastic strands forming corrugations. The resulting elastomeric laminate is stretchable to the extent that the corrugations allow the elastic strands to elongate.
During the manufacture of elastic laminates, problems can be encountered in the manufacturing process when bonding elastic strands to substrates. For example, tensioned elastic strands may break during the assembly process. If a strand breaks under tension, a loose end of the strand may tend to snap back a significant distance toward an upstream portion of the manufacturing process. As such, the loose end may become entangled in other upstream manufacturing components, which in turn, may necessitate stopping the process in order to properly rethread the elastic strand to the intended position on the production machinery.
Consequently, it would be beneficial to provide a method and apparatus for producing an elastomeric laminate that is capable of automatically capturing and rethreading elastic material that breaks during the production process.
The present disclosure relates to methods for manufacturing absorbent articles, and in particular, to methods for making elastomeric laminates that may be used as components of absorbent articles. The methods and apparatuses according to the present disclosure may be configured to automatically rethread elastic materials that may break during the assembly process. The apparatuses and methods herein may also utilize various types of inspection systems and methods that detect breaks in the elastic material during the manufacturing process. Such systems and methods may report on the broken elastic material, and in some instances, may stop the manufacturing process if the broken elastic material is not automatically rethreaded after a predetermined period of time. In addition, the inspection system may also track a length of the laminate containing the broken elastic material (referred to herein as a defect length) as the defect length advances through additional converting processes.
In one form, a method for making an elastomeric laminate includes the steps of: rotating a first roller about a first axis of rotation, the first roller having an outer circumferential surface; rotating a second roller about a second axis of rotation, the second roller having an outer circumferential surface, and wherein the first roller is adjacent the second roller to define a first nip between the first roller and the second roller; rotating a third roller about a third axis of rotation, the third roller having an outer circumferential surface; supplying a continuous length of a first substrate having a first surface and an opposing second surface; advancing the first substrate in a machine direction, wherein the first surface of the first substrate travels in an opposing direction to and in contact with the outer circumferential surface of the second roller, and wherein the second surface of the first substrate travels in the same direction as and in contact with the outer circumferential surface of the third roller; stretching an elastic material in the machine direction by advancing the elastic material through the first nip to the third roller; joining the elastic material with the first surface of the first substrate after the elastic material advances through the first nip; and detecting an end portion of the elastic material on the first substrate.
In another form, a method for making an elastomeric laminate includes the steps of: rotating a first roller about a first axis of rotation, the first roller having an outer circumferential surface; rotating a second roller about a second axis of rotation, the second roller having an outer circumferential surface, and wherein the first roller is adjacent the second roller to define a first nip between the first roller and the second roller; rotating a third roller about a third axis of rotation, the third roller having an outer circumferential surface; supplying a continuous length of a first substrate having a first surface and an opposing second surface; advancing the first substrate in a machine direction, wherein the first surface of the first substrate travels in an opposing direction to and in contact with the outer circumferential surface of the second roller, and wherein the second surface of the first substrate travels in the same direction as and in contact with the outer circumferential surface of the third roller; advancing an elastic material in the machine direction through the first nip and to the third roller; separating the elastic material in the machine direction between the first nip and the third roller to create an upstream end portion and a downstream end portion; joining the downstream end portion of the elastic material with the first surface of the first substrate; joining the upstream end portion of the elastic material with the first surface of the first substrate; detecting a defect length, LDEF, of the first substrate between the downstream end portion and the upstream end portion of the elastic material on the first substrate; advancing the first substrate in the machine direction from the third roller to a converting operation that manufactures absorbent articles incorporating the first substrate; and identifying absorbent articles that include portions of the length, L, of the first substrate
The following term explanations may be useful in understanding the present disclosure:
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes. “Diaper” is used herein to refer to an absorbent article generally worn by infants and incontinent persons about the lower torso. The term “disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after a single use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
An “elastic,” “elastomer” or “elastomeric” refers to materials exhibiting elastic properties, which include any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
“Longitudinal” means a direction running substantially perpendicular from a waist edge to a longitudinally opposing waist edge of an absorbent article when the article is in a flat out, uncontracted state, or from a waist edge to the bottom of the crotch, i.e. the fold line, in a bi-folded article. Directions within 45 degrees of the longitudinal direction are considered to be “longitudinal.” “Lateral” refers to a direction running from a longitudinally extending side edge to a laterally opposing longitudinally extending side edge of an article and generally at a right angle to the longitudinal direction. Directions within 45 degrees of the lateral direction are considered to be “lateral.”
The term “substrate” is used herein to describe a material which is primarily two-dimensional (i.e. in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e. 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a web, layer or layers or fibrous materials, nonwovens, films and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers laminated together. As such, a web is a substrate.
The term “nonwoven” refers herein to a material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as spunbonding, meltblowing, carding, and the like. Nonwovens do not have a woven or knitted filament pattern.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material can be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The term “cross direction” (CD) is used herein to refer to a direction that is generally perpendicular to the machine direction.
The term “pant” (also referred to as “training pant”, “pre-closed diaper”, “diaper pant”, “pant diaper”, and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer.
The present disclosure relates to methods for manufacturing absorbent articles, and in particular, to methods for making elastomeric laminates that may be used as components of absorbent articles. The elastomeric laminates may include a first substrate, a substrate, and an elastic material located between the first substrate and second substrate. During the process of making the elastomeric laminate, the elastic material may be advanced and stretched in a machine direction and may be joined with either or both the first and second substrates advancing the machine direction. The methods and apparatuses according to the present disclosure may be configured to automatically rethread elastic materials that may break during the assembly process. As discussed in more detail below, the apparatuses may include metering devices arranged along a process machine direction, wherein the metering devices may be configured to stretch the advancing elastic material and/or join stretch elastic material with one or more advancing substrates. In the event that the stretched elastic material breaks before being joined with a substrate, the apparatuses continuously advances substrates and elastic materials from upstream metering devices to downstream metering devices. The apparatuses also automatically guide the loose end of the broken elastic material to a downstream metering device, which in turn, reestablishes the stretched condition of the elastic material, without having to stop the manufacturing process.
The apparatuses and methods herein may also utilize various types of inspection systems and methods that detect breaks in the elastic material during the manufacturing process. Such systems and methods may report on the broken elastic material, and in some instances, may stop the manufacturing process if the broken elastic material is not automatically rethreaded after a predetermined period of time. In addition, the inspection system may also track a length of the laminate containing the broken elastic material (referred to herein as a defect length) as the defect length advances through additional converting processes. As discussed below, such additional converting processes may include the manufacture of discrete absorbent articles. As such, the inspection system may correlate the defect length with absorbent articles containing portions of the defect length and reject such absorbent articles from the converting system.
As previously mentioned, the elastomeric laminates made according to the processes and apparatuses discussed herein may be used as to construct various types of components used in the manufacture of different types of absorbent articles. To help provide additional context to the subsequent discussion of the process embodiments, the following provides a general description of absorbent articles in the form of diapers that include components including the elastomeric laminates that may be produced with the methods and apparatuses disclosed herein.
With continued reference to
As shown in
As shown in
It is to also be appreciated that a portion or the whole of the diaper 100 may also be made laterally extensible. The additional extensibility may help allow the diaper 100 to conform to the body of a wearer during movement by the wearer. The additional extensibility may also help, for example, allow the user of the diaper 100 including a chassis 102 having a particular size before extension to extend the front waist region 116, the back waist region 118, or both waist regions of the diaper 100 and/or chassis 102 to provide additional body coverage for wearers of differing size, i.e., to tailor the diaper to an individual wearer. Such extension of the waist region or regions may give the absorbent article a generally hourglass shape, so long as the crotch region is extended to a relatively lesser degree than the waist region or regions, and may impart a tailored appearance to the article when it is worn.
As previously mentioned, the diaper pant 100 may include a backsheet 136. The backsheet 136 may also define the outer surface 134 of the chassis 102. The backsheet 136 may be impervious to fluids (e.g., menses, urine, and/or runny feces) and may be manufactured from a thin plastic film, although other flexible liquid impervious materials may also be used. The backsheet 136 may prevent the exudates absorbed and contained in the absorbent core from wetting articles which contact the diaper 100, such as bedsheets, pajamas and undergarments. The backsheet 136 may also comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material (e.g., having an inner film layer and an outer nonwoven layer). The backsheet may also comprise an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Exemplary polyethylene films are manufactured by Clopay Corporation of Cincinnati, Ohio, under the designation BR-120 and BR-121 and by Tredegar Film Products of Terre Haute, Ind., under the designation XP-39385. The backsheet 136 may also be embossed and/or matte-finished to provide a more clothlike appearance. Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136. The size of the backsheet 136 may be dictated by the size of the absorbent core 142 and/or particular configuration or size of the diaper 100.
Also described above, the diaper pant 100 may include a topsheet 138. The topsheet 138 may also define all or part of the inner surface 132 of the chassis 102. The topsheet 138 may be compliant, soft feeling, and non-irritating to the wearer's skin. It may be elastically stretchable in one or two directions. Further, the topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art.
Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets and apertured nonwoven topsheets. Apertured film topsheets may be pervious to bodily exudates, yet substantially non-absorbent, and have a reduced tendency to allow fluids to pass back through and rewet the wearer's skin. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539.
As mentioned above, the diaper pant 100 may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprises primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core comprises a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 and 2004/0097895.
As previously mentioned, the diaper 100 may also include elasticized leg cuffs 156. It is to be appreciated that the leg cuffs 156 can be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; 4,909,803; and U.S. patent application Ser. No. 12/434,984.
As mentioned above, diaper pants may be manufactured with a ring-like elastic belt 104 and provided to consumers in a configuration wherein the front waist region 116 and the back waist region 118 are connected to each other as packaged, prior to being applied to the wearer. As such, diaper pants may have a continuous perimeter waist opening 110 and continuous perimeter leg openings 112 such as shown in
As previously mentioned, the ring-like elastic belt 104 is defined by a first elastic belt 106 connected with a second elastic belt 108. As shown in
The central region 106c of the first elastic belt is connected with the first waist region 116 of the chassis 102, and the central region 108c of the second elastic belt 108 is connected with the second waist region 116 of the chassis 102. As shown in
As shown in
The first and second elastic belts 106, 108 may also each include belt elastic material interposed between the outer layer 162 and the inner layer 164. The belt elastic material may include one or more elastic elements such as strands, ribbons, or panels extending along the lengths of the elastic belts. As shown in
It is to be appreciated that the chassis 102 and elastic belts 106, 108 side panels may be configured in different ways other than as depicted in
It is to be appreciated that various embodiments of diaper pants can be manufactured according the methods disclosed herein, such as for example, the absorbent articles disclosed in U.S. Pat. No. 7,569,039, filed on Nov. 10, 2004; U.S. Patent Publication No. 2005/0107764A1, filed on Nov. 10, 2004; U.S. patent application Ser. No. 13/221,127, filed on Aug. 30, 2011; and U.S. patent application Ser. No. 13/221,104, filed on Aug. 30, 2011, which are all hereby incorporated by reference herein.
As previously mentioned, apparatuses and methods according to the present disclosure may be utilized to produce elastomeric laminates that may be used to construct various components of diapers 100, such as elastic belts, leg cuffs, and the like. For example,
The elastomeric laminates 302 can be used to construct various types of diaper components. For example, the elastomeric laminates 302 may be used as a continuous length of elastomeric belt material that may be converted into the first and second elastic belts 106, 108 discussed above with reference to
As discussed in more detail below, the apparatuses 300 may include metering devices arranged along a process machine direction, wherein the metering devices may be configured to stretch the advancing elastic material and/or join stretch elastic material with one or more advancing substrates. In the event that the stretched elastic material breaks before being joined with a substrate, the apparatuses continuously advances substrates and elastic materials from upstream metering devices to downstream metering devices. The apparatuses also automatically guide the loose end of the broken elastic material to a downstream metering device, which in turn, reestablishes the stretched condition of the elastic material, without the necessity of having to stop the manufacturing process.
As shown in
It is to be appreciated that the metering devices of the apparatus 300 may be configured in various ways. For example, the first metering device 310 shown in
As shown in
With continued reference to
It is to be appreciated that adhesive may also be applied to the first surface 342 of the first substrate 306 before and/or while being joined with the elastic material 304 and/or the second substrate 308. In addition, it is to be appreciated that adhesive may be applied to the second surface 350 of the second substrate 308 before or while being joined with the elastic material 304 and first substrate 306.
As previously mentioned, the elastic material 304 may break while the apparatus 300 is producing an elastomeric laminate 302. As such, the apparatus 300 may be configured to automatically rethread elastic materials 304 that may break during the assembly process. More particularly, the apparatus 300 may be configured to automatically reincorporate upstream end portions of broken elastic materials into the elastomeric laminate being produced without having to stop the production process. For example,
As shown in
It is to be appreciated that components of the apparatus 300 may be positioned relative to one another so as help direct the placement of the upstream end portion 352 and downstream end portion 354 of the broken elastic material 304. For example, the apparatus 300 may be configured with the first roller 316 above the second roller 322 and wherein the first substrate 306 is located below the elastic material 304, such as shown in
As previously mentioned, the methods and apparatuses 300 herein may also utilize inspection systems and processes for detecting and monitoring broken elastic material 304 in the elastomeric laminate 302 during the manufacturing process. An embodiment of an inspection system 500 is schematically represented in
The elastomeric laminate 302 may also be subject to additional converting processes. For example, such an additional converting process 700 is schematically represented as a process that incorporates the elastomeric laminate 302 into discrete absorbent articles 100. As discussed below, in some embodiments, the inspection system 500 may detect and/or track a length of the elastomeric laminate 302 that includes the broken elastic material or is missing elastic material (referred to as a defect length). The inspection system 500 may also correlate inspection results and measurements from the defect length of the elastomeric laminate 302 to absorbent articles 100 made therefrom. In turn, the inspection system 500 may be used to control a reject system 702 on the converting process 700 of absorbent articles, wherein absorbent articles 100R manufactured with portions of the defect length of elastomeric laminate 302 are rejected. In some configurations, defective articles 100R may be subject to a rejection system 702 and removed from the process, such as shown in
As shown in
It is to be appreciated that various types of controller and sensor configurations may be utilized with the inspection system 500, such as for example, disclosed in U.S. Patent Publication No. 2010/0305740A1. For example, the controller 504 may include a computer system, which may, for example, include one or more types of programmable logic controller (PLC) and/or personal computer (PC) running software and adapted to communicate on an EthernetIP network. Some embodiments may utilize industrial programmable controllers such as the Siemens S7 series, Rockwell ControlLogix, SLC or PLC 5 series, or Mitsubishi Q series. The aforementioned embodiments may use a personal computer or server running a control algorithm such as Rockwell SoftLogix or National Instruments Labview or may be any other device capable of receiving inputs from sensors, performing calculations based on such inputs and generating control actions through servomotor controls, electrical actuators or electro-pneumatic, electrohydraulic, and other actuators.
It is to be appreciated that various different types of inspection sensors 502 may be used to monitor substrates and various components. For example, inspection sensors 502 may be configured as photo-optic sensors that receive either reflected or transmitted light and serve to determine the presence or absence of a specific material; metal-proximity sensors that use electromagnetic to determine the presence or absence of a ferromagnetic material; or capacitive or other proximity sensors using any of a number of varied technologies to determine the presence or absence materials. Inspection sensors 502 may also be configured as vision systems and other sub-processing devices to perform detection and, in some cases, logic to more accurately determine the status of an inspected product. Particular examples of such inspections sensors 502 may include Cognex Insight, DVT Legend or Keyence smart cameras, component vision systems such as National Instruments PXI or PC based vision system such as Cognex VisionPro or any other vision system software which can run on a PC platform.
As previously mentioned, the inspection sensors 504 may detect broken and/or missing elastic material 304 in the elastic laminate 302. It is also to be appreciated that the inspection sensors 502 may be configured to perform various functions in the inspection system 500. For example, the sensors may be configured to detect defects within substrates and/or components themselves, such as for example, damage, holes, tears, dirt, and the like, and may also detect defective assemblies and/or combinations of the substrates and components, such as for example, missing and/or misplaced elastic material and the like. As such, inspection sensors may be configured to detect the presence or absence of substrates and/or components, and may be configured to detect the relative placement of substrates and/or components. As discussed in more detail below, based on the detections of the inspection sensors 502, feedback signals from the inspection sensors in the form of inspection parameters 1000 are communicated to the controller 504.
It should also be appreciated that inspection parameters 1000 may be provided from inspection sensors 502 in various forms. In one embodiment, inspection parameters 1000 may be in the form of “results,” such as for example, provided from a sensor state change resulting in a binary input corresponding with the detected presence or absence of a defect, such as for example, the presence or absence of components and/or substrates. For example, inspection parameters 1000 may indicate the presence or absence of elastic material 304, a downstream end portion 354 of elastic material 304, and/or an upstream end portion of elastic material 302. In other examples, an inspection parameter 1000 may indicate the presence or absence of a tear, hole, splice tape, and/or contaminants in the first substrate 306, second substrate 308, and/or elastic material 304. In some embodiments, inspection parameters 1000 may be provided in the form of measurements and/or numerical indications of detected positions of elastic material and/or substrates; numerical indications of the positions of elastic material and/or substrates relative to other elastic materials and/or substrates; and/or numerical indications of the positions of elastic materials and/or substrates relative to another physical or virtual reference. For example, inspection parameters 1000 may indicate the relative position of one feature of an absorbent article, such as an outer lateral edge 107a, 109a of an elastic belt 106, 108, with respect to an elastic strand 168. In other embodiments, inspection parameters 1000 may be in the form of images transferred via a standard protocol such as ftp (File Transfer Protocol), DDE (Dynamic Data Exchange), or OPC (Object Linking and Embedding for Process Control), which are stored in a database or stored in a specified directory on an image server for the purpose of either operator visualization, offline image processing or claim support.
As shown in
As previously mentioned, the inspection system 500 may be utilized with the apparatuses and methods 300 herein to detect and monitor broken elastic material 304 in the elastomeric laminate 302 during the manufacturing process. For example, as shown in
As discussed above,
With reference to
For example, upon detection of the downstream end portion 354 of the broken elastic material 304, the controller 504 may begin calculating a time, T. The controller may also provide notification of a broken elastic material 304 upon the detection of the downstream end portion 354. In the event that the sensor 502 does not subsequently detect the upstream end portion 352 of the elastic material 302 before the time, T, is equal to a time limit, TLIM, the controller 504 may issue a stop command 1002 to the apparatus 300, thus stopping the manufacturing process to allow for manual repairs. For example, the controller 504 may stop rotation of the first and second rollers 316, 322 as well as the third and fourth rollers 330, 338. In yet another example, wherein the sensor the sensor 502 does subsequently detect the upstream end portion 352 of the elastic material 302 before the time, T, is equal to a time limit, TLIM, the controller 504 may reset the calculated time T to a value (such as zero) below the time limit, TLIM, and not issue a stop command 1002 to the apparatus 300.
In still other examples, with reference to
While various embodiments are separately described and illustrated, it is to be appreciated that various aspects of the different embodiments can be combined to produce yet further embodiments, which may not be described explicitly for the purpose of brevity.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.