The present disclosure relates generally to semiconductor memory and methods, and more particularly, to apparatuses and methods related to memory alignment.
Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic systems. There are many different types of memory including volatile and non-volatile memory. Volatile memory can require power to maintain its data (e.g., host data, error data, etc.) and includes random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), synchronous dynamic random access memory (SDRAM), and thyristor random access memory (TRAM), among others. Non-volatile memory can provide persistent data by retaining stored data when not powered and can include NAND flash memory, NOR flash memory, and resistance variable memory such as phase change random access memory (PCRAM), resistive random access memory (RRAM), and magnetoresistive random access memory (MRAM), such as spin torque transfer random access memory (STT RAM), among others.
Electronic systems often include a number of processing resources (e.g., one or more processors), which may retrieve and execute instructions and store the results of the executed instructions to a suitable location. A processor can comprise a number of functional units such as arithmetic logic unit (ALU) circuitry, floating point unit (FPU) circuitry, and a combinatorial logic block, for example, which can be used to execute instructions by performing logical operations such as AND, OR, NOT, NAND, NOR, and XOR, and invert (e.g., inversion) logical operations on data (e.g., one or more operands). For example, functional unit circuitry may be used to perform arithmetic operations such as addition, subtraction, multiplication, and division on operands via a number of logical operations.
A number of components in an electronic system may be involved in providing instructions to the functional unit circuitry for execution. The instructions may be executed, for instance, by a processing resource such as a controller and/or host processor. Data (e.g., the operands on which the instructions will be executed) may be stored in a memory array that is accessible by the functional unit circuitry. The instructions and data may be retrieved from the memory array and sequenced and/or buffered before the functional unit circuitry begins to execute instructions on the data. Furthermore, as different types of operations may be executed in one or multiple clock cycles through the functional unit circuitry, intermediate results of the instructions and data may also be sequenced and/or buffered.
In many instances, the processing resources (e.g., processor and/or associated functional unit circuitry) may be external to the memory array, and data is accessed via a bus between the processing resources and the memory array to execute a set of instructions. Processing performance may be improved in a processing-in-memory (PIM) device, in which a processor may be implemented internal and/or near to a memory (e.g., directly on a same chip as the memory array), which may reduce time in processing and may also conserve power. Data movement between and within arrays and/or subarrays of various memory devices, such as processing-in-memory devices, can affect processing time and/or power consumption.
A number of embodiments include a method for aligning byte-based memory elements so that data bits corresponding to data values are logically adjacent prior to performing logical operations on the data values.
In some approaches to aligning memory, architectures and operating systems (OS) may export byte-based addressing constructs in an instruction set architecture (ISA) and an application binary interface (ABI). If a memory element is defined to have a quantity of data bits corresponding to a data value where the bit length of the memory element does not equal an integer quantity of bytes, then an OS may pad out the memory element by adding bits to the memory element such that the bit length is equal to an integer number of bytes. Thus, memory requests may be made based on byte-based alignment. However, in an expressive memory device, such as a PIM device, it can be useful to operate on data in a non-byte-based alignment. Such a non-byte-based alignment can improve overall processing performance and lessen data movement requirements. Additionally, a non-byte-based alignment can allow optimizing compilers and runtime systems to generate instructions to align data bits of non-byte-based aligned memory elements for subsequent arithmetic, logical, and combinatorial operations. Such operations can be performed internal to the memory while a host maintains a byte-based alignment of memory elements. According to a number of embodiments of the present disclosure, programmers can construct portable code for heterogeneous architectures using language extensions that a C or C++ compliant compiler may understand.
Embodiments disclosed herein can include a methodology that can utilize byte-based alignment combined with a series of arithmetic, shift, and/or rotate operations to align byte-based memory elements on their respective bit-addressing boundaries.
A number of embodiments of the present disclosure can provide improved parallelism, increased speed, and/or reduced power consumption in association with performing data movement operations as compared to some previous approaches such as previous PIM devices and systems having an external processor (e.g., a processing resource located external from a memory array, such as on a separate integrated circuit chip). For example, a number of embodiments can provide for moving data on a shift register while performing compute functions such as integer add, subtract, multiply, divide, and CAM (content addressable memory) functions without transferring data out of the memory array and sensing circuitry via a bus (e.g., data bus, address bus, control bus), for instance. Such compute functions can involve performing a number of logical operations (e.g., logical functions such as AND, OR, NOT, NOR, NAND, XOR, etc.). However, embodiments are not limited to these examples. For instance, performing logical operations can include performing a number of non-Boolean logic operations such as compare, destroy, etc.
In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of memory arrays can refer to one or more memory arrays). A “plurality of” is intended to refer to more than one of such things.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present invention, and should not be taken in a limiting sense.
The term “alignment operation” refers to an operation capable of moving bits within a memory allocation. Examples of alignment operations include shift operations and rotate operations. According to the present disclosure, a rotate operation can be performed on bits stored in an array of memory cells such that the bits remain on chip during the rotate operation.
A rotate operation of a byte-based memory element can move at least the most significant bit (MSB) or at least the least significant bit (LSB) from one end of the byte-based memory element to the other, as if the ends of the byte-based memory element are coupled together. The rotate operation can also move other bits of the byte-based memory element over so that at least the MSB or LSB can be moved to the other end. Thus, the rotate operation includes a shift operation for the “other bits” and includes a copy operation, a shift operation, and a copy-back operation for at least the MSB or LSB, as described in more detail below. A rotate operation can be described in terms of an orientation of the rotate operation (e.g., rotate left operation or rotate right operation). For example, a rotate left operation can include moving a bit logically located at the left end (e.g., the MSB or LSB) of a byte-based memory element to the right end of the byte-based memory element and shifting the remaining bits to the left. As an example, if a byte-based memory element that is one byte (e.g., eight bits) long is rotated left by two bits, then the two leftmost bits of the byte-based memory element become the two rightmost bits of the byte-based memory element. The remaining six bits are shifted to the left by two bits such that the byte-based memory element occupies the same logical space. In contrast, a rotate right operation can include moving a bit logically located at the right end (e.g., the MSB or LSB) of a byte-based memory element to the left end of the byte-based memory element and shifting the remaining bits to the right.
Performing a shift operation on a one byte long byte-based memory element by two bits to the left would result in the two leftmost bits being overwritten by the two bits logically adjacent thereto. The shift operation would also result in the two rightmost bits either remaining the same or being overwritten with other data. A benefit of performing a rotate operation can be that information is not lost because the bits are moved and not overwritten as they would otherwise be in a shift operation.
Although three byte-based memory elements are shown in
A non-byte-based alignment can be useful on a PIM device because the PIM device can be configured to perform logical operations on an amount of data that is not an integer number of bytes. The PIM device may operate on the data more efficiently if the data is stored in physically adjacent memory cells (e.g., without having to deal with padding bits separating data bits). Thus, logical operations can be performed on only the data bits of the byte-based memory elements. Therefore, according to a number of embodiments of the present disclosure, prior to a logical operation, a process of realigning a memory allocation having a byte-based alignment to a memory allocation having a non-byte-based alignment can be performed. Following the logical operation, a process of realigning a memory allocation having a non-byte-based alignment to a memory allocation having a byte-based alignment can be performed (e.g., the above-described process with respect to
In order to minimize a quantity of rotate operations used to realign a memory allocation (or portion thereof) from a byte-based alignment to a memory allocation (or portion thereof) having a non-byte-based alignment, a series of rotate left operations can be used in response to the memory elements being back-padded or a series of rotate right operations can be used in response to memory elements being front-padded. The correspondence between rotate operation direction and front- or back-padding of a memory allocation allows one fewer rotate operations to be performed (versus the alternative) because the padding portion of the last memory element are already at the end of the memory allocation. For example, in
A methodology for memory element alignment in accordance with a number of embodiments of the present disclosure can be expressed mathematically. For a given memory allocation, each data portion can include a same quantity of data bits (b), which is not equal to an integer quantity of bytes. Padding bits can be added to the data bits so that a total quantity of bits (B) in a byte-based memory element is equal to an integer quantity of bytes. The total quantity of bits (B) therefore includes data bits and padding bits. The quantity of padding bits added to the non-byte based memory element can be the fewest needed such that B is an integer number of bytes. For example, if b is thirty bits, then two padding bits can be added so that B is thirty-two bits. The memory elements that are subject to an alignment operation can be numbered sequentially, starting with zero, where N represents the number assigned to a memory element.
Referring back to
QN=(B−b)×N (1)
With reference to
A method for memory alignment in accordance with a number of embodiments of the present disclosure can include receiving, from a host (which can be analogous to the host 210 illustrated in
Translating the logical address can include adjusting the logical address by a value equivalent to the quantity of padding bits multiplied by the quantity of byte-based memory elements from the start of the memory allocation to the logical address. After performing the logical operation, the data can be padded with the quantity of padding bits and the padded data can be sent to the host. The memory allocation can be defined at run time. Defining the memory allocation can include receiving a user-defined quantity of data bits in each of the byte-based memory elements of the memory allocation. Defining the memory allocation can include receiving a user-defined length of the memory allocation.
The computing system 200 includes a host 210 coupled (e.g., connected) to the memory device 278, which includes a memory array 271. The host 210 can be a host system such as a personal laptop computer, a desktop computer, a digital camera, a smart phone, or a memory card reader, among various other types of hosts. The host 210 can include a system motherboard and/or backplane and can include a number of processing resources (e.g., one or more processors, microprocessors, or some other type of controlling circuitry). The system 200 can include separate integrated circuits or both the host 210 and the memory device 278 can be on the same integrated circuit. The system 200 can be, for instance, a server system and/or a high performance computing (HPC) system and/or a portion thereof. Although the example shown in
For clarity, the system 200 has been simplified to focus on features with particular relevance to the present disclosure. The memory array 271 can be a hybrid memory cube (HMC), computational memory such as a processing in memory random access memory (PIMRAM) array, which can include one or more of a DRAM array, SRAM array, STT RAM array, PCRAM array, TRAM array, RRAM array, NAND flash array, and/or NOR flash array, for instance. The memory array 271 can comprise memory cells arranged in rows coupled by access lines, which may be referred to herein as word lines or select lines, and columns coupled by sense lines, which may be referred to herein as data lines or digit lines. Although a single memory array 271 is shown in
The memory device 278 can include address circuitry 242 to latch address signals provided over an input/output “I/O” bus 275 (e.g., data bus and/or address bus) through I/O circuitry 244 (e.g., provided to external ALU circuitry and to DRAM DQs via local I/O lines and global I/O lines). Address signals can be received and decoded by a row decoder 246 and a column decoder 272 to access the memory array 271. Data can be read from the memory array 271 by sensing voltage and/or current changes on the sense lines using sensing circuitry 270. The sensing circuitry 270 can read and latch a page (e.g., row) of data from the memory array 271. The I/O circuitry 240 can be used for bi-directional data communication with host 210 over the I/O bus 275. The write circuitry 248 can be used to write data to the memory device 278. The controller 240 decodes signals provided by a control bus 274 from the host 210. These signals can include chip enable signals, write enable signals, and address latch signals that are used to control operations performed on the memory array 271, including data read, data write, and data erase operations. In various embodiments, the controller 240 is responsible for executing instructions from the host 210 and sequencing access to the memory array 271. The controller 240 can be a state machine (e.g., hardware and/or firmware in the form of an application specific integrated circuit (ASIC)), a sequencer, or some other type of controller. The controller 240 can control, for example generation of clock signals by controlling a location and/or time at which clock signals are initiated. For example, as described in more detail herein, the controller 240 can be in communication with a shift register, which may comprise a number of sense amplifiers and/or compute components to provide clock signals to shift data.
The sensing circuitry 270 can be formed on pitch with the sense lines of the memory array 271. For example, the cells of memory array may have a particular cell size (e.g., 4F2 or 6F2, where “F” is a feature size corresponding to the cells). In a number of embodiments, sensing components (e.g., respective sense amplifier and compute component pairs) corresponding to the sensing circuitry 270 are formed on a same pitch as sense lines of the array and can be operated to perform various compute functions. For instance, if the sense line pitch is 3F, the transistors of the sensing components can fit within the same 3F pitch. In contrast, the devices (e.g., logic gates) associated with ALU circuitry of various PIM systems may not be capable of being formed on pitch with the sense lines, which can increase chip size and/or memory density as compared to a number of embodiments of the present disclosure, for example.
As such, in a number of embodiments, circuitry external to the memory array 271 and sensing circuitry 270 is not needed to perform compute functions as the sensing circuitry 270 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. In a number of embodiments, the sensing circuitry 270 can be operated as a number of 1-bit processing resources, with the sensing components coupled to respective columns of the memory array 271 serving as respective 1-bit processing elements. Therefore, the sensing circuitry 270 may be used to complement and/or to replace, at least to some extent, an external processing resource such as ALU circuitry of the host 210.
An embodiment in accordance with the present disclosure can comprise performing the process of realigning a memory allocation having a byte-based alignment to a memory allocation having a non-byte-based alignment described with respect to
The sensing circuitry 270 can include a compute component that is on pitch with a pair of complementary sense lines of the memory array 271. The controller 240 can be configured to operate the compute component to perform a logical operation on the data bits stored in physically adjacent memory cells of the memory array 271.
The controller can cause the process of realigning a memory allocation to be performed without any additional action by the host 210. From the perspective of the host 210, the alignment of the byte-based memory elements is not changed. The controller 240 can cause alignment operations to be performed without input from the OS and/or without the OS being aware of the alignment operations happening internal to the memory. In accordance with the present disclosure, the controller 240, in response to an instruction to perform a logical operation on data that is stored in a plurality of byte-based memory elements, can cause an alignment operation to be performed on the plurality of byte-based memory elements in the memory array 271 such that the data bits of the plurality of byte-based memory elements are stored in physically adjacent memory cells. The controller 240 can cause the logical operation to be performed on the data bits stored in the memory array 271 following the alignment operation. The controller 240 can cause a realignment operation to be performed in the memory array 271 to return the data bits to a byte-based alignment after the logical operation is performed in the memory array 271.
The memory device 278 can be a PIM device. The sensing circuitry 270 can also comprise a compute component, which can be analogous to the compute component 331 as described below with respect to
In a number of embodiments, the sensing circuitry 270 can be used to perform logical operations using data stored in the memory array 271 as inputs and store the results of the logical operations back to the memory array 271 without transferring data via a sense line address access (e.g., without firing a column decode signal). As such, various compute functions can be performed using, and within, the sensing circuitry 270 rather than (or in association with) being performed by processing resources external to the sensing circuitry (e.g., by a processor associated with the host 210 and/or other processing circuitry, such as ALU circuitry, located on the memory device 278 (e.g., on controller 240 or elsewhere)).
In various previous approaches, data associated with an operand, for instance, would be read from memory via sensing circuitry and provided to external ALU circuitry via I/O lines (e.g., via local I/O lines and/or global I/O lines). The external ALU circuitry could include a number of registers and would perform compute functions using the operands, and the result would be transferred back to the array via the I/O lines. In contrast, in a number of embodiments of the present disclosure, the sensing circuitry 270 is configured to perform logical operations on data stored in the memory array 271 and store the result back to the memory array 271 without enabling an I/O line (e.g., a local I/O line) coupled to the sensing circuitry 270. The sensing circuitry 270 can be formed on pitch with a pair of complementary sense lines of the memory array 271.
As such, in a number of embodiments, circuitry external to the memory array 271 and the sensing circuitry 270 is not needed to perform compute functions as the sensing circuitry 270 can perform the appropriate logical operations to perform such compute functions without the use of an external processing resource. Therefore, the sensing circuitry 270 may be used to compliment and/or to replace, at least to some extent, such an external processing resource (or at least the bandwidth consumption of such an external processing resource).
However, in a number of embodiments, the sensing circuitry 270 may be used to perform logical operations (e.g., to execute instructions) in addition to logical operations performed by an external processing resource, such as the host 210). For instance, the host 210 and/or the sensing circuitry 270 may be limited to performing only certain logical operations and/or a certain number of logical operations.
Enabling an I/O line can include enabling (e.g., turning on) a transistor having a gate coupled to a decode signal (e.g., a column decode signal) and a source/drain coupled to the I/O line. However, embodiments are not limited to not enabling an I/O line. For instance, in a number of embodiments, the sensing circuitry 270 can be used to perform logical operations without enabling column decode lines of the array; however, the local I/O line(s) may be enabled in order to transfer a result to a suitable location other than back to the memory array 271 (e.g., to an external register).
According to the embodiment illustrated in
According to some embodiments and as illustrated in
A memory cell can be coupled to each of the pairs of complementary sense lines 305-1 and 305-2. The compute component 331 can be configured to perform a logical operation on data values stored in memory cells coupled to the pairs of complementary sense lines 305-1 and 305-2 after an alignment operation has been performed as described with respect to
The compute components 331 of the loadable shift register can comprise a first right-shift transistor 381 having a gate coupled to a first right-shift signal control line “PHASE 1R” 382, and a second right-shift transistor 386 having a gate coupled to a second right-shift signal control line “PHASE 2R” 383. The node “ST2” of each stage of the loadable shift register is coupled to an input of a first inverter 387. The output of the first inverter 387 at node “SF1” is coupled to one source/drain of the second right-shift transistor 386, and another source/drain of the second right-shift transistor 386 is coupled to an input of a second inverter 388 at node “SF2.” The output of the second inverter 388 at node “ST1” is coupled to one source/drain of the first right-shift transistor 381, and another source/drain of the first right-shift transistor 381 is coupled to an input of a first inverter at node “ST2” for an adjacent compute component 331.
Sense amplifiers 306 can be coupled to respective pairs of complementary sense lines 305-1 and 305-2, and corresponding compute components 331 coupled to the sense amplifiers 306 via respective pass gates 307-1 and 307-2. The gates of the pass gates 307-1 and 307-2 can be controlled by respective logical operation selection logic signals, “Passd” and “Passdb,” which can be output from logical operation selection logic (not shown for clarity).
A first left-shift transistor 389 is coupled between the node “SF2” of one loadable shift register to node “SF1” of a loadable shift register corresponding to an adjacent compute component 331. The channel of second left-shift transistor 390 is coupled from node “ST2” to node “ST1.” The gate of the first left-shift transistor 389 is coupled to a first left-shift signal control line “PHASE 1L” 391 and the gate of the second left-shift transistor 390 is coupled to a second left-shift signal control line “PHASE 2L” 392.
The logical operation selection logic 313 includes the swap gates 342, as well as logic to control the pass gates 307-1 and 307-2 and the swap gates 342. The logical operation selection logic 313 includes four logic selection transistors: logic selection transistor 362 coupled between the gates of the swap transistors 342 and a “TF” signal control line, logic selection transistor 352 coupled between the gates of the pass gates 307-1 and 307-2 and a “TT” signal control line, logic selection transistor 354 coupled between the gates of the pass gates 307-1 and 307-2 and a “FT” signal control line, and logic selection transistor 364 coupled between the gates of the swap transistors 342 and a “FF” signal control line. The gates of logic selection transistors 362 and 352 are coupled to the true sense line through isolation transistor 350-1 (having a gate coupled to an “ISO” signal control line). The gates of logic selection transistors 364 and 354 are coupled to the complementary sense line through isolation transistor 350-2 (also having a gate coupled to an “ISO” signal control line).
Data values on the respective pairs of complementary sense lines 305-1 and 305-2 can be loaded into the corresponding compute components 331 (e.g., loadable shift register) by causing the pass gates 307-1 and 307-2 to conduct, such as by causing the “Passd” (not shown) control signal to go high. The gates that are controlled to have continuity (e.g., electrical continuity through a channel) are conducting, and can be referred to herein as being OPEN. The gates that are controlled to not have continuity are said to be non-conducting, and can be referred to herein as being CLOSED. For instance, continuity refers to a low resistance condition in which a gate is conducting. The data values can be loaded into the respective compute components 331 by either the sense amplifier 306 overpowering the corresponding compute component 331 (e.g., to overwrite an existing data value in the compute component 331) and/or by disabling the signal control lines “PHASE 1R” 382 and “PHASE 2R” 383. A first latch (e.g., sense amplifier) can be configured to overpower a second latch (e.g., compute component) when the current provided by the first latch and presented to the second latch is sufficient to flip the second latch.
The sense amplifier 306 can be configured to overpower the compute component 331 by driving the voltage on the pair of complementary sense lines 305-1 and 305-2 to the maximum power supply voltage corresponding to a data value (e.g., driving the pair of complementary sense lines 305-1 and 305-2 to the rails), which can change the data value stored in the compute component 331. According to a number of embodiments, the compute component 331 can be configured to communicate a data value to the pair of complementary sense lines 305-1 and 305-2 without driving the voltages of the pair of complementary sense lines 305-1 and 305-2 to the rails. As such, the compute component 331 can be configured to not overpower the sense amplifier 306. For example, the data values on the pair of complementary sense lines 305-1 and 305-2 from the compute component 331 will not change the data values stored in the sense amplifier 306 until the sense amplifier is enabled.
Once a data value is loaded into a compute component 331 of the loadable shift register, the true data value is separated from the complement data value by the first inverter 387. The data value can be shifted to the right (e.g., to an adjacent compute component 331) by alternate operation of the first right-shift transistor 381 and the second right-shift transistor 386, which can be accomplished when the first right-shift signal control line “PHASE 1R” 382 and the second right-shift signal control line “PHASE 2R” 383 have periodic signals that go high out-of-phase from one another (e.g., non-overlapping alternating square waves 180 degrees out of phase with one another). The data value can be latched into a corresponding compute component 331 of the loadable shift register while signal “PHASE 1R” remains low and “PHASE 2R” remains high to maintain the data value latched in the compute component 331.
A rotate operation can be performed on a group of bits, such as a padding bit of a first byte-based memory element and a data bit of a second byte-based memory element. The bits of the first and second byte-based memory elements can be stored in memory cells coupled to the same access line (ROW X) of the memory array. For example, each byte-based memory element can be back-padded and comprise a padding bit and seven data bits. The padding bit can be analogous to the first padding portion 121 of the first byte-based memory element 130 illustrated in
The rotate operation can include copying the padding bit from a first memory cell in ROW X to a second memory cell that is coupled to a different access line (ROW Y), but coupled to the same sense line (in the same column) as the first memory cell. The padding bit can be copied from the first memory cell to the second memory cell as follows. A signal can be applied to the access line corresponding to ROW X to access (e.g., select) the first memory cell. Then the sense amplifier 306 is enabled, which drives the complementary sense lines 305-1 and 305-2 to the appropriate rail voltages (e.g., VDD and GND) responsive to the padding value stored in the first memory cell. The padding value is then latched in the sense amplifier 306. After the padding bit has been latched in the sense amplifier 306, it can be transferred to the second memory cell by enabling the sense amplifier 306 and applying a signal to the access line corresponding to ROW Y. As described above, a rotate operation can include a copy operation, a shift operation, and a copy-back operation for padding bits. Copying the padding bit from the first memory cell to the second memory cell comprises the first copy operation of a rotate operation.
After copying the padding bit from the first memory cell to the second memory cell, the padding bit can be shifted to the right seven times (corresponding to the seven data bits) and stored back into ROW Y in a third memory cell coupled to a different sense line than the sense line coupled to the first and the second memory cells. Signaling for performing a number of right shifts is described below. Also, after copying the padding bit from the first memory cell to the second memory cell, the seven data bits can be shifted to the left once (corresponding to the one padding bit) within ROW X. Signaling for performing a number of left shifts is described below. After shifting the seven data bits, the padding bit can be copied from the third memory cell in ROW Y to a fourth memory cell in ROW X coupled to the same sense line as the third memory cell (in the same column). Copying the padding bit from the third memory cell to the fourth memory cell comprises the copy-back operation of a rotate operation described above.
The example shown in
The above sequence (e.g., enabling/disabling the signal control line “PHASE 1L” 391 and subsequently enabling/disabling the signal control line “PHASE 2L” 392) can be repeated to achieve a desired number of left shifts. For instance, in this example, a second left shift is performed by enabling the signal control line “PHASE 1L” 391 at time T6 and disabling the signal control line “PHASE 1L” 391 at time T7. The signal control line “PHASE 2L” 392 is subsequently enabled at time T8 to complete the second left shift. Subsequent to the second left shift, the signal control line “PHASE 2L” 392 remains enabled and the signal control line “PHASE 2R” 383 is enabled at time T9 such that feedback is enabled to latch the values in the compute component 331 latches.
Although not shown in
The above sequence (e.g., enabling/disabling the signal control line “PHASE 1R” 382 and subsequently enabling/disabling the signal control line “PHASE 2R” 383) can be repeated to achieve a desired number of right shifts. For instance, in this example, a second right shift is performed by enabling the signal control line “PHASE 1R” 382 at time T6 and disabling the signal control line “PHASE 1R” 382 at time T7. The signal control line “PHASE 2R” 383 is subsequently enabled at time T8 to complete the second right shift. Subsequent to the second right shift, the signal control line “PHASE 1R” 382 remains disabled, the signal control line “PHASE 2R” 383 remains enabled, and the signal control line “PHASE 2L” 383 is enabled (e.g., at time T9) such that feedback is enabled to latch the values in the compute component 331 latches.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of one or more embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the one or more embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of one or more embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, some features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This application is a Divisional of U.S. application Ser. No. 15/349,492, filed Nov. 11, 2016, which issues as U.S. Pat. No. 10,423,353 on Sep. 24, 2019, the contents of which are included herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4380046 | Frosch | Apr 1983 | A |
4435792 | Bechtolsheim | Mar 1984 | A |
4435793 | Ochii | Mar 1984 | A |
4727474 | Batcher | Feb 1988 | A |
4843264 | Galbraith | Jun 1989 | A |
4958378 | Bell | Sep 1990 | A |
4977542 | Matsuda | Dec 1990 | A |
5023838 | Herbert | Jun 1991 | A |
5034636 | Reis | Jul 1991 | A |
5201039 | Sakamura | Apr 1993 | A |
5210850 | Kelly | May 1993 | A |
5253308 | Johnson | Oct 1993 | A |
5276643 | Hoffmann | Jan 1994 | A |
5325519 | Long | Jun 1994 | A |
5367488 | An | Nov 1994 | A |
5379257 | Matsumura | Jan 1995 | A |
5386379 | Ali-Yahia | Jan 1995 | A |
5398213 | Yeon | Mar 1995 | A |
5440482 | Davis | Aug 1995 | A |
5446690 | Tanaka | Aug 1995 | A |
5473576 | Matsui | Dec 1995 | A |
5481500 | Reohr | Jan 1996 | A |
5485373 | Davis | Jan 1996 | A |
5506811 | McLaury | Apr 1996 | A |
5615404 | Knoll | Mar 1997 | A |
5638128 | Hoogenboom | Jun 1997 | A |
5638317 | Tran | Jun 1997 | A |
5654936 | Cho | Aug 1997 | A |
5678021 | Pawate | Oct 1997 | A |
5724291 | Matano | Mar 1998 | A |
5724366 | Furutani | Mar 1998 | A |
5751987 | Mahant-Shetti | May 1998 | A |
5787458 | Miwa | Jul 1998 | A |
5854636 | Watanabe | Dec 1998 | A |
5867429 | Chen | Feb 1999 | A |
5870504 | Nemoto | Feb 1999 | A |
5915084 | Wendell | Jun 1999 | A |
5935263 | Keeth | Aug 1999 | A |
5986942 | Sugibayashi | Nov 1999 | A |
5991209 | Chow | Nov 1999 | A |
5991785 | Alidina | Nov 1999 | A |
6005799 | Rao | Dec 1999 | A |
6009020 | Nagata | Dec 1999 | A |
6092186 | Betker | Jul 2000 | A |
6122211 | Morgan | Sep 2000 | A |
6125071 | Kohno | Sep 2000 | A |
6134164 | Lattimore | Oct 2000 | A |
6147514 | Shiratake | Nov 2000 | A |
6151244 | Fujino | Nov 2000 | A |
6157578 | Brady | Dec 2000 | A |
6163862 | Adams | Dec 2000 | A |
6166942 | Vo | Dec 2000 | A |
6172918 | Hidaka | Jan 2001 | B1 |
6175514 | Henderson | Jan 2001 | B1 |
6181698 | Hariguchi | Jan 2001 | B1 |
6208544 | Beadle | Mar 2001 | B1 |
6226215 | Yoon | May 2001 | B1 |
6301153 | Takeuchi | Oct 2001 | B1 |
6301164 | Manning | Oct 2001 | B1 |
6304477 | Naji | Oct 2001 | B1 |
6389507 | Sherman | May 2002 | B1 |
6418498 | Martwick | Jul 2002 | B1 |
6466499 | Blodgett | Oct 2002 | B1 |
6510098 | Taylor | Jan 2003 | B1 |
6563754 | Lien | May 2003 | B1 |
6578058 | Nygaard, Jr. | Jun 2003 | B1 |
6731542 | Le | May 2004 | B1 |
6754746 | Leung | Jun 2004 | B1 |
6768679 | Le | Jul 2004 | B1 |
6807614 | Chung | Oct 2004 | B2 |
6816422 | Hamade | Nov 2004 | B2 |
6819612 | Achter | Nov 2004 | B1 |
6894549 | Eliason | May 2005 | B2 |
6943579 | Hazanchuk | Sep 2005 | B1 |
6948056 | Roth | Sep 2005 | B1 |
6950771 | Fan | Sep 2005 | B1 |
6950898 | Merritt | Sep 2005 | B2 |
6956770 | Khalid | Oct 2005 | B2 |
6961272 | Schreck | Nov 2005 | B2 |
6965648 | Smith | Nov 2005 | B1 |
6985394 | Kim | Jan 2006 | B2 |
6987693 | Cernea | Jan 2006 | B2 |
7020017 | Chen | Mar 2006 | B2 |
7028170 | Saulsbury | Apr 2006 | B2 |
7045834 | Tran | May 2006 | B2 |
7054178 | Shiah | May 2006 | B1 |
7061817 | Raad | Jun 2006 | B2 |
7079407 | Dimitrelis | Jul 2006 | B1 |
7173857 | Kato | Feb 2007 | B2 |
7187585 | Li | Mar 2007 | B2 |
7196928 | Chen | Mar 2007 | B2 |
7260565 | Lee | Aug 2007 | B2 |
7260672 | Garney | Aug 2007 | B2 |
7372715 | Han | May 2008 | B2 |
7400532 | Aritome | Jul 2008 | B2 |
7406494 | Magee | Jul 2008 | B2 |
7447720 | Beaumont | Nov 2008 | B2 |
7454451 | Beaumont | Nov 2008 | B2 |
7457181 | Lee | Nov 2008 | B2 |
7535769 | Cernea | May 2009 | B2 |
7546438 | Chung | Jun 2009 | B2 |
7562198 | Noda | Jul 2009 | B2 |
7574466 | Beaumont | Aug 2009 | B2 |
7602647 | Li | Oct 2009 | B2 |
7663928 | Tsai | Feb 2010 | B2 |
7685365 | Rajwar | Mar 2010 | B2 |
7692466 | Ahmadi | Apr 2010 | B2 |
7752417 | Manczak | Jul 2010 | B2 |
7791962 | Noda | Sep 2010 | B2 |
7796453 | Riho | Sep 2010 | B2 |
7805587 | Van Dyke | Sep 2010 | B1 |
7808854 | Takase | Oct 2010 | B2 |
7827372 | Bink | Nov 2010 | B2 |
7869273 | Lee | Jan 2011 | B2 |
7898864 | Dong | Mar 2011 | B2 |
7924628 | Danon | Apr 2011 | B2 |
7937535 | Ozer | May 2011 | B2 |
7957206 | Bauser | Jun 2011 | B2 |
7979667 | Allen | Jul 2011 | B2 |
7996749 | Ding | Aug 2011 | B2 |
8042082 | Solomon | Oct 2011 | B2 |
8045391 | Mokhlesi | Oct 2011 | B2 |
8059438 | Chang | Nov 2011 | B2 |
8095825 | Hirotsu | Jan 2012 | B2 |
8117462 | Snapp | Feb 2012 | B2 |
8164942 | Gebara | Apr 2012 | B2 |
8208328 | Hong | Jun 2012 | B2 |
8213248 | Moon | Jul 2012 | B2 |
8223568 | Seo | Jul 2012 | B2 |
8238173 | Akerib | Aug 2012 | B2 |
8274841 | Shimano | Sep 2012 | B2 |
8279683 | Klein | Oct 2012 | B2 |
8310884 | Iwai | Nov 2012 | B2 |
8332367 | Bhattacherjee | Dec 2012 | B2 |
8339824 | Cooke | Dec 2012 | B2 |
8339883 | Yu | Dec 2012 | B2 |
8347154 | Bahali | Jan 2013 | B2 |
8351292 | Matano | Jan 2013 | B2 |
8356144 | Hessel | Jan 2013 | B2 |
8417921 | Gonion | Apr 2013 | B2 |
8462532 | Argyres | Jun 2013 | B1 |
8484276 | Carlson | Jul 2013 | B2 |
8495438 | Roine | Jul 2013 | B2 |
8503250 | Demone | Aug 2013 | B2 |
8526239 | Kim | Sep 2013 | B2 |
8533245 | Cheung | Sep 2013 | B1 |
8555037 | Gonion | Oct 2013 | B2 |
8599613 | Abiko | Dec 2013 | B2 |
8605015 | Guttag | Dec 2013 | B2 |
8625376 | Jung | Jan 2014 | B2 |
8644101 | Jun | Feb 2014 | B2 |
8650232 | Stortz | Feb 2014 | B2 |
8873272 | Lee | Oct 2014 | B2 |
8964496 | Manning | Feb 2015 | B2 |
8971124 | Manning | Mar 2015 | B1 |
9015390 | Klein | Apr 2015 | B2 |
9047193 | Lin | Jun 2015 | B2 |
9165023 | Moskovich | Oct 2015 | B2 |
9478312 | Kelso | Oct 2016 | B1 |
20010007112 | Porterfield | Jul 2001 | A1 |
20010008492 | Higashiho | Jul 2001 | A1 |
20010010057 | Yamada | Jul 2001 | A1 |
20010028584 | Nakayama | Oct 2001 | A1 |
20010043089 | Forbes | Nov 2001 | A1 |
20020059355 | Peleg | May 2002 | A1 |
20020140000 | Watanabe | Oct 2002 | A1 |
20030014588 | Hu | Jan 2003 | A1 |
20030167426 | Slobodnik | Sep 2003 | A1 |
20030222879 | Lin | Dec 2003 | A1 |
20040073592 | Kim | Apr 2004 | A1 |
20040073773 | Demjanenko | Apr 2004 | A1 |
20040085840 | Vali | May 2004 | A1 |
20040095826 | Perner | May 2004 | A1 |
20040154002 | Ball | Aug 2004 | A1 |
20040205289 | Srinivasan | Oct 2004 | A1 |
20040240251 | Nozawa | Dec 2004 | A1 |
20050015557 | Wang | Jan 2005 | A1 |
20050071583 | Shepherd | Mar 2005 | A1 |
20050078514 | Scheuerlein | Apr 2005 | A1 |
20050097417 | Agrawal | May 2005 | A1 |
20060047937 | Selvaggi | Mar 2006 | A1 |
20060069849 | Rudelic | Mar 2006 | A1 |
20060146623 | Mizuno | Jul 2006 | A1 |
20060149804 | Luick | Jul 2006 | A1 |
20060181917 | Kang | Aug 2006 | A1 |
20060215432 | Wickeraad | Sep 2006 | A1 |
20060225072 | Lari | Oct 2006 | A1 |
20060291282 | Liu | Dec 2006 | A1 |
20070103986 | Chen | May 2007 | A1 |
20070171747 | Hunter | Jul 2007 | A1 |
20070180006 | Gyoten | Aug 2007 | A1 |
20070180184 | Sakashita | Aug 2007 | A1 |
20070195602 | Fong | Aug 2007 | A1 |
20070233767 | Anderson | Oct 2007 | A1 |
20070285131 | Sohn | Dec 2007 | A1 |
20070285979 | Turner | Dec 2007 | A1 |
20070291532 | Tsuji | Dec 2007 | A1 |
20080025073 | Arsovski | Jan 2008 | A1 |
20080028189 | Hoogerbrugge | Jan 2008 | A1 |
20080037333 | Kim | Feb 2008 | A1 |
20080052711 | Forin | Feb 2008 | A1 |
20080137388 | Krishnan | Jun 2008 | A1 |
20080165601 | Matick | Jul 2008 | A1 |
20080178053 | Gorman | Jul 2008 | A1 |
20080215937 | Dreibelbis | Sep 2008 | A1 |
20090067218 | Graber | Mar 2009 | A1 |
20090154238 | Lee | Jun 2009 | A1 |
20090154273 | Borot | Jun 2009 | A1 |
20090254697 | Akerib | Oct 2009 | A1 |
20100067296 | Li | Mar 2010 | A1 |
20100091582 | Vali | Apr 2010 | A1 |
20100172190 | Lavi | Jul 2010 | A1 |
20100210076 | Gruber | Aug 2010 | A1 |
20100226183 | Kim | Sep 2010 | A1 |
20100308858 | Noda | Dec 2010 | A1 |
20100332895 | Billing | Dec 2010 | A1 |
20110051523 | Manabe | Mar 2011 | A1 |
20110063919 | Chandrasekhar | Mar 2011 | A1 |
20110093662 | Walker | Apr 2011 | A1 |
20110103151 | Kim | May 2011 | A1 |
20110119467 | Cadambi | May 2011 | A1 |
20110122695 | Li | May 2011 | A1 |
20110140741 | Zerbe | Jun 2011 | A1 |
20110179242 | Ingle | Jul 2011 | A1 |
20110219260 | Nobunaga | Sep 2011 | A1 |
20110264819 | Srinivasan | Oct 2011 | A1 |
20110267883 | Lee | Nov 2011 | A1 |
20110317496 | Bunce | Dec 2011 | A1 |
20120005397 | Lim | Jan 2012 | A1 |
20120017039 | Margetts | Jan 2012 | A1 |
20120023281 | Kawasaki | Jan 2012 | A1 |
20120120705 | Mitsubori | May 2012 | A1 |
20120134216 | Singh | May 2012 | A1 |
20120134226 | Chow | May 2012 | A1 |
20120135225 | Colas | May 2012 | A1 |
20120140540 | Agam | Jun 2012 | A1 |
20120182798 | Hosono | Jul 2012 | A1 |
20120195146 | Jun | Aug 2012 | A1 |
20120198310 | Tran | Aug 2012 | A1 |
20120246380 | Akerib | Sep 2012 | A1 |
20120265964 | Murata | Oct 2012 | A1 |
20120281486 | Rao | Nov 2012 | A1 |
20120303627 | Keeton | Nov 2012 | A1 |
20130003467 | Klein | Jan 2013 | A1 |
20130061006 | Hein | Mar 2013 | A1 |
20130107623 | Kavalipurapu | May 2013 | A1 |
20130117541 | Choquette | May 2013 | A1 |
20130124783 | Yoon | May 2013 | A1 |
20130132702 | Patel | May 2013 | A1 |
20130138646 | Sirer | May 2013 | A1 |
20130151820 | Arekapudi | Jun 2013 | A1 |
20130163362 | Kim | Jun 2013 | A1 |
20130173888 | Hansen | Jul 2013 | A1 |
20130205114 | Badam | Aug 2013 | A1 |
20130219112 | Okin | Aug 2013 | A1 |
20130227361 | Bowers | Aug 2013 | A1 |
20130283122 | Anholt | Oct 2013 | A1 |
20130286705 | Grover | Oct 2013 | A1 |
20130326154 | Haswell | Dec 2013 | A1 |
20130332707 | Gueron | Dec 2013 | A1 |
20140185395 | Seo | Jul 2014 | A1 |
20140215185 | Danielsen | Jul 2014 | A1 |
20140250279 | Manning | Sep 2014 | A1 |
20140344934 | Jorgensen | Nov 2014 | A1 |
20150006809 | Harizopoulos | Jan 2015 | A1 |
20150029798 | Manning | Jan 2015 | A1 |
20150042380 | Manning | Feb 2015 | A1 |
20150046644 | Karp | Feb 2015 | A1 |
20150063052 | Manning | Mar 2015 | A1 |
20150078108 | Cowles | Mar 2015 | A1 |
20150279466 | Manning | Mar 2015 | A1 |
20150120987 | Wheeler | Apr 2015 | A1 |
20150134713 | Wheeler | May 2015 | A1 |
20150270015 | Murphy | Sep 2015 | A1 |
20150324290 | Leidel | Nov 2015 | A1 |
20150325272 | Murphy | Nov 2015 | A1 |
20150356009 | Wheeler | Dec 2015 | A1 |
20150356022 | Leidel | Dec 2015 | A1 |
20150357007 | Manning | Dec 2015 | A1 |
20150357008 | Manning | Dec 2015 | A1 |
20150357019 | Wheeler | Dec 2015 | A1 |
20150357020 | Manning | Dec 2015 | A1 |
20150357021 | Hush | Dec 2015 | A1 |
20150357022 | Hush | Dec 2015 | A1 |
20150357023 | Hush | Dec 2015 | A1 |
20150357024 | Hush | Dec 2015 | A1 |
20150357047 | Tiwari | Dec 2015 | A1 |
20160062672 | Wheeler | Mar 2016 | A1 |
20160062673 | Tiwari | Mar 2016 | A1 |
20160062692 | Finkbeiner | Mar 2016 | A1 |
20160062733 | Tiwari | Mar 2016 | A1 |
20160063284 | Tiwari | Mar 2016 | A1 |
20160064045 | La Fratta | Mar 2016 | A1 |
20160064047 | Tiwari | Mar 2016 | A1 |
20160098208 | Willcock | Apr 2016 | A1 |
20160098209 | Leidel | Apr 2016 | A1 |
20160110135 | Wheeler | Apr 2016 | A1 |
20160125919 | Hush | May 2016 | A1 |
20160154596 | Willcock | Jun 2016 | A1 |
20160155482 | La Fratta | Jun 2016 | A1 |
20160188250 | Wheeler | Jun 2016 | A1 |
20160196142 | Wheeler | Jul 2016 | A1 |
20160196856 | Tiwari | Jul 2016 | A1 |
20160225422 | Tiwari | Aug 2016 | A1 |
20160266873 | Tiwari | Sep 2016 | A1 |
20160266899 | Tiwari | Sep 2016 | A1 |
20160267951 | Tiwari | Sep 2016 | A1 |
20160292080 | Leidel | Oct 2016 | A1 |
20160306584 | Zawodny | Oct 2016 | A1 |
20160306614 | Leidel | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
102141905 | Aug 2011 | CN |
0214718 | Mar 1987 | EP |
2026209 | Feb 2009 | EP |
H0831168 | Feb 1996 | JP |
2009259193 | Mar 2015 | JP |
10-0211482 | Aug 1998 | KR |
10-2010-0134235 | Dec 2010 | KR |
10-2013-0049421 | May 2013 | KR |
2001065359 | Sep 2001 | WO |
WO-2001065359 | Sep 2001 | WO |
2005066792 | Jul 2005 | WO |
WO-2005066792 | Jul 2005 | WO |
2010079451 | Jul 2010 | WO |
WO-2010079451 | Jul 2010 | WO |
2013062596 | May 2013 | WO |
WO-2013062596 | May 2013 | WO |
2013081588 | Jun 2013 | WO |
2013095592 | Jun 2013 | WO |
WO-2013081588 | Jun 2013 | WO |
WO-2013095592 | Jun 2013 | WO |
2013130108 | Sep 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/796,189, entitled, “Performing Complex Arithmetic Functions in a Memory Device,” filed Mar. 12, 2013, (23 pgs.). |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/043702, dated Sep. 26, 2013, (11 pgs.). |
U.S. Appl. No. 13/774,553, entitled, “Nerual Network in a Memory Device,” filed Feb. 22, 2013, (63 pgs.). |
Debnath, Biplob, Bloomflash: Bloom Filter on Flash-Based Storage. 2011 31st Annual Conference on Distributed Computing Systems, Jun. 20-24, 2011, 10 pgs. |
Derby, et al., “A High-Performance Embedded DSP Core with Novel SIMD Features”, Apr. 6-10, 2003, (4 pgs), vol. 2, pp. 301-304, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. |
Pagiamtzis, Kostas, “Content-Addressable Memory Introduction”, Jun. 25, 2007, (6 pgs.), retrieved from: http://www.pagiamtzis.com/cam/camintro. |
U.S. Appl. No. 13/449,082, entitled, “Methods and Apparatus for Pattern Matching,” filed Apr. 17, 2012, (37 pgs.). |
Pagiamtzis, et al., “Content-Addressable Memory (CAM) Circuits and Architectures: a Tutorial and Survey”, Mar. 2006, (16 pgs.), vol. 41. No. 3, IEEE Journal of Solid-State Circuits. |
Kogge, et al., “Processing in Memory: Chips to Petaflops,” May 23, 1997, (8 pgs.), retrieved from: http://www.cs.ucf.edu/courses/cda5106/summer02/papers/kogge97PIM.pdf. |
Adibi, et al., “Processing-In-Memory Technology for Knowledge Discovery Algorithms,” Jun. 25, 2006, (10 pgs.), Proceeding of the Second International Workshop on Data Management on New Hardware, retrieved from: http://www.cs.cmu.edu/˜damon2006/pdf/adibi06inmemory.pdf. |
Draper, et al., “The Architecture of the DIVA Processing-In-Memory Chip,” Jun. 22-26, 2002, (12 pgs.), ICS '02, retrieved from: http://www.isi.edu/˜draper/papers/ics02.pdf. |
U.S. Appl. No. 13/774,636, entitled, “Memory as a Programmable Logic Device,” filed Feb. 22, 2013, (30 pgs.). |
Dybdahl, et al., “Destructive-Read in Embedded DRAM, Impact on Power Consumption,” Apr. 2006, (10 pgs.), vol. 2, Issue 2, Journal of Embedded Computing-Issues in embedded single-chip multicore architectures. |
U.S. Appl. No. 13/743,686, entitled, “Weighted Search and Compare in a Memory Device,” filed Jan. 17, 2013. (25 pgs.). |
Boyd et al., “On the General Applicability of Instruction-Set Randomization”, Jul.-Sep. 2010, (14 pgs.), vol. 7, Issue 3, IEEE Transactions on Dependable and Secure Computing. |
Elliot, et al., “Computational RAM: Implementing Processors in Memory”, Jan.-Mar. 1999, (10 pgs.), vol. 16, Issue 1, IEEE Design and Test of Computers Magazine. |
“4.9.3 MINLOC and MAXLOC”, Jun. 12, 1995, (5pgs.), Message Passing Interface Forum 1.1, retrieved from http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node79.html. |
Stojmenovic. “Multiplicative Circulant Networks Topological Properties and Communication Algorithms”. (25 pgs.), Discrete Applied Mathematics 77 (1997) 281-305. |
International Search Report and Written Opinion for related PCT Application No. PCT/US2017/059659, dated Feb. 5, 2018, 14 pages. |
U.S. Appl. No. 13/774,553, entitled, “Neural Network in a Memory Device,” filed Feb. 22, 2013, (63 pgs.). |
Derby, et al., “A High-Performance Embedded DSP Core with Novel SIMD Features”, Apr. 6-10, 2003, (4 pgs), vol. 2, pp. 301-304, 2003 IEEE International Conference on Accoustics, Speech, and Signal Processing. |
Extended European Search Report and Written Opinion for related EP Application No. 17869496.4, dated May 26, 2020, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200012447 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15349492 | Nov 2016 | US |
Child | 16574847 | US |