Toroidal phase shifters have been deployed for many decades. Toroidal phase shifters are formed by one or more portions of ferrite in a waveguide. Toroidal phase shifters may also be referred to as ferrite phase shifters. Phase shift is affected by the magnetized moments in the magnetized ferrite interacting with electromagnetic fields propagating through the waveguide. For latching ferrite phase shifters, latch wire(s) are placed through the center of the ferrite portion(s). Current flowing through the latch wire(s) is used to adjust the magnetized moments in the ferrite, and thus the amount of phase shift induced in electromagnetic fields propagating through the toroidal phase shifter.
Toroidal phase shifters formed in rectangular waveguide typically operate using an LSE10 electromagnetic mode. LSE is an acronym for longitudinally section electric. LSE electromagnetic modes occur in dielectrically loaded rectangular waveguides. Else, the modes are transverse electric (TE) modes. Electromagnetic mode may hereinafter be referred to a “mode”.
The transition between the rectangular waveguide and the ferrite portion(s) (and possibly other materials such as dielectric(s) in the core of the ferrite portion(s)) is designed to reduce reflections, and thus return loss, for the LSE10 mode. Depending upon design of the toroidal phase shifter, e.g. waveguide and ferrite portion(s) design, the number of undesirable modes above waveguide cutoff frequency may vary.
A narrow band toroidal phase shifter can be designed so that the cutoff frequencies of some or all of the undesirable higher order modes are higher than the frequency band of interest, thus eliminating the undesirable higher order modes below the cut off frequencies. This may not possible or practical when designing a toroidal phase shifter to operate over a very broad bandwidth, e.g. at least one half of an octave bandwidth. The rectangular waveguide of a broadband toroidal phase shifter supports the propagation of two or more higher order modes, e.g. at least the LSE11 and LSE01 modes, and possibly the LSE20 mode—where each of these modes typically has a successively higher cut off frequency.
Because the transition between the rectangular waveguide and the ferrite portion(s) (and possibly other materials such as dielectric(s) in the core of the ferrite portion(s)) can not readily be designed to reduce reflections for undesirable higher order modes, the electromagnetic waves of the undesirable higher order modes are reflected. The reflections of the undesirable higher order modes cause resonances in the operating bandwidth of the toroidal phase shifter. The insertion loss and phase shift of the toroidal phase shifter at the resonant frequencies are dramatically changed, e.g. increased. As a result, the insertion losses and phase shifts at the resonances no longer are within desired parameter ranges. Furthermore the phase characteristics at the resonant frequencies are significantly impacted in such a way that may be detrimental to the system performance.
Resistive film imbedded in a center dielectric inside or between the ferrite toroid(s), and/or a dielectric transformer may be used to suppress the first undesirable higher order mode, the LSE11 mode, in a toroidal phase shifter. However, the next undesirable higher order modes, such as the LSE01 and LSE20 modes, typically need to be suppressed in the very broad band toroidal phase shifter.
Therefore, there has been a need for many decades for an approach to suppress the next undesirable higher order modes, such as the LSE01 and LSE20 modes, in broad band toroidal phase shifters.
A rectangular waveguide device is provided. The rectangular waveguide device comprising: a first broad wall; a second broad wall parallel to the first broad wall; a first narrow wall perpendicular to and connected to the first broad wall and the second broad wall; a second narrow wall parallel to the first narrow wall and connected to the first broad wall and the second broad wall; and at least one slot in the first broad wall.
Embodiments of the present invention can be more easily understood and further advantages and uses thereof more readily apparent, when considered in view of the description of the preferred embodiments and the following figures in which:
In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize features relevant to the present invention. Reference characters denote like elements throughout figures and text.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.
Microwave and millimeter wave rectangular waveguides are formed from conductors such as metal. Embodiments of the invention suppress at least the LSE01 and LSE20 modes in rectangular waveguide devices, such as a toroidal phase shifter or a circulator, by including at least one slot substantially along the centerline of, and running substantially the length of, at least one broad wall of the rectangular waveguide. Optionally, a dielectric, which can include ferrite, is located in such a waveguide with at least one slot in at least one broad wall. Thus, their may be at least one slot in one broad wall, or in both broad walls of the rectangular waveguide. The slot may have a depth that is all or a portion of the thickness of the broad wall as will be further described. Although applicable to other rectangular waveguide devices, embodiments of the invention will be illustrated for toroidal phase shifters.
For example, another rectangular waveguide device could be a broad band rectangular waveguide having a lower frequency, e.g. implemented by larger broad wall and side wall dimensions, and the slots described herein to suppress higher order modes at higher frequencies so has to have an increased upper frequency. This technique thus can be used to increase the upper frequency limit of a rectangular waveguide. This technique may facilitate higher power operation than alternative techniques for implementing broad band waveguide such as using ridge waveguide. In this embodiment, no dielectric such as a ferrite is inserted in the waveguide.
In one embodiment, the slot has a substantially rectangular cross section parallel to the inner surface of the broad wall in which the slot is located. In another embodiment, as will be subsequently illustrated, the slot also has a substantially rectangular cross section perpendicular to the inner surface of the broad wall. Alternatively, the cross sections may be rectangles with rounded corners or rounded ends.
The broad wall of rectangular waveguide is a wall whose length is longer than the length of the narrow wall. For example, when viewing an opening (or port) of the rectangular waveguide, parallel to axis BB, the broad wall width is twice the narrow wall width. The absolute width of each wall depends upon the operating frequency range of the waveguide.
The first narrow wall 107a connects a first end of the first broad wall 109a to a first end of the second broad wall 109a. The second narrow wall 107b connects a second end of the first broad wall 109a to a second end of the second broad wall 109b. In the illustrated embodiment, two spaces 105a, 105b, e.g. filled by a vacuum or air, separate the first and second sides of the toroidal ferrite 104 respectively substantially abut, in a flush manner, the first narrow wall 107a and the second narrow wall 107b.
The toroidal ferrite 104 has an opening filled with dielectric 106. The dielectric 106 may be a vacuum, air, or a solid material, e.g. Trans-tech D13 or D16 ceramic. A conductor 108, such as a metal wire, runs through the dielectric 106. The conductor 108 is the latch wire through which current flows to adjust the magnetized moments in the ferrite, and thus the amount of phase shift induced in electromagnetic fields propagating through the single toroidal phase shifter 100A.
The first broad wall 109a has at least one first slot 101 substantially along the centerline of, and substantially along the full length of, the first broad wall 109a. Optionally, the second broad wall 109b has at least one second slot 103 substantially along the centerline of, and substantially along the full length of, the second broad wall 109b. The centerlines are parallel to axis AA illustrated in
The first broad wall 109a has at least one first slot 101 substantially along the centerline of, and substantially along the full length of, the first broad wall 109a. Optionally, the second broad wall 109b has at least one second slot 103 substantially along the centerline of, and substantially along the full length of, the second broad wall 109b. The centerlines are parallel to axis AA illustrated in
The slots 101, 103 may penetrate all or partially through the broad walls 109a, 109b of the rectangular waveguide 102. Slot(s) in the rectangular waveguide 102 will be described now in further detail. The subsequent discussion of slot(s) in rectangular waveguide 102 also applies to toroidal phase shifters that are made in rectangular waveguide 102.
The cross sections slots illustrated in
Various embodiments of slots which can be implemented in rectangular waveguide 102 will now be illustrated.
In the embodiment illustrated in
The shorted slot(s) 301a reflect energy which can cause resonances in return loss and insertion loss of the waveguide device. In one embodiment, as illustrated in
In one embodiment, at least one of the broad walls comprises three or more shorted slots 301a. Two or more of the shorted slots have different lengths along the corresponding broad wall. The spacings, along the corresponding broad wall, between two or more sets of two of the shorted slots have different lengths.
In the embodiment illustrated in
The ends of the non-shorted slot(s) 301b proximate to each end of the rectangular waveguide 102 are displaced from each end respectively by distances d3 and d4 where d3 and d4 can be equal or not equal. In one embodiment, d3 and d4 are less than one half of a wavelength of the lowest wavelength of an operating band of the LSE01 and LSE20 modes in the toroidal phase shifter.
The length of each non-shorted slot 301b needs to be about or above the cutoff frequency of the fundamental, LSE10, mode of the toroidal phase shifter so that the electromagnetic energy is converted to a fundamental, LSE10, mode of the corresponding non-shorted slot 301b. Because the broadband electromagnetic absorber 222 absorbs energy that would otherwise be converted to the undesirable higher order modes, e.g. the LSE01 and LSE20 modes, reflections are not created and the length and spacing of the non-shorted slots 301b need not be random or of a specific design to diminish reflections. The spacings between pairs of non-shorted slots 301b can be as short as possible without detrimentally undermining the structural integrity and the thermal dissipation property of the rectangular waveguide 102.
In block 440, create at least one slot in at least one broad wall of, e.g. a first portion of, a rectangular waveguide. The at least one slot may be one shorted slot and/or non-shorted slot. The at least one slot in the broad wall of a first portion is configured to suppress undesirable higher order modes. In one embodiment, the rectangular waveguide is a unitary piece, and non-shorted slots are made in each broad wall. In another embodiment, the rectangular waveguide is comprised of a first portion and a second portion, e.g. respectively a tub having a U shaped cross section and a lid. For example, the sides and bottom of the tub are respectively the first narrow wall 107a, the second narrow wall 107b, and the second broad wall 109b, and the lid is the first broad wall 109a. However, the rectangular waveguide may be otherwise segregated into two portions, including by having two U shaped portions each formed by one broad wall and portions of each narrow wall.
In one embodiment, at least one shorted slot and/or non-shorted slot are made in each broad wall of the rectangular waveguide, e.g. in the broad wall of each portion of the rectangular waveguide. The at least one slot in each broad wall is configured to suppress undesirable higher order modes. In a further embodiment, the slots are made in the broad walls by mechanical milling or laser milling.
Optionally, in block 442, add broadband electromagnetic absorber. In one embodiment, the broadband electromagnetic absorber is wholly or partially deposit, e.g. using injection techniques, within the non-shorted slots or shorted slots. In another embodiment, the broadband electromagnetic absorber is deposited over the exterior surface of at least one broad wall and over non-shorted slots, e.g. as described above for broadband electromagnetic absorber using an adhesive; the interior surface is within the rectangular waveguide and the exterior surface is opposite the interior surface.
Optionally, in block 444, add ferrite portion(s) to the rectangular waveguide. In one embodiment, the ferrite portion(s) are inserted into a tub portion of the rectangular waveguide. In another embodiment, the ferrite portion(s) are inserted, e.g. slid, into rectangular waveguide.
Optionally, in block 446, if the rectangular waveguide is formed by two portions, the two portions are attached. For example the portions can be attached by brazing, soldering, or welding.
Advantageously, embodiments of the present invention facilitate broad band waveguides and toroidal phase shifters having substantially flat insertion and return loss over a wide bandwidth.
Example 1 includes a rectangular waveguide device, comprising: a first broad wall; a second broad wall parallel to the first broad wall; a first narrow wall perpendicular to and connected to the first broad wall and the second broad wall; a second narrow wall parallel to the first narrow wall and connected to the first broad wall and the second broad wall; and at least one slot in the first broad wall.
Example 2 includes the rectangular waveguide device of Example 1, wherein the at least one slot comprises at least one non-shorted slot that is at least one of: covered by a first broadband electromagnetic absorber and at least partially filled with a second broadband electromagnetic absorber.
Example 3 includes the rectangular waveguide device of Example 2, wherein the first broadband electromagnetic absorber and the second broadband electromagnetic absorber comprise the same material.
Example 4 includes the rectangular waveguide device of any of Examples 1-3, wherein the at least one slot comprises at least one shorted slot.
Example 5 includes the rectangular waveguide device of Example 4, wherein the at least one shorted slot is at least partially filled with a first broadband electromagnetic absorber.
Example 6 includes the rectangular waveguide device of any of Examples 1-5, wherein the at least one shorted slot comprises three or more shorted slots; wherein two or more of the shorted slots have a different lengths, and wherein spacings between two or more sets of two of the shorted slots have different lengths.
Example 7 includes the rectangular waveguide device of any of Examples 1-6, wherein the end of each slot proximate to an end of the rectangular waveguide device is displaced by less than one half of a wavelength of the lowest wavelength of an operating band of a fundamental mode in the rectangular waveguide device.
Example 8 includes the rectangular waveguide device of any of Examples 1-7, further comprising at least one slot in the second broad wall.
Example 9 includes the rectangular waveguide device of Example 8, wherein the at least one slot of the second broad wall is identical to the at least one slot of the first broad wall; and if the at least one slot of the first broad wall is at least one of: covered by a first broadband electromagnetic absorber and at least partially filled with a second broadband electromagnetic absorber, the second broad wall is also at least one of: covered by the first broadband electromagnetic absorber and at least partially filled with the second broadband electromagnetic absorber.
Example 10 includes the rectangular waveguide device of Example 9, wherein the first broadband electromagnetic absorber and the second broadband electromagnetic absorber comprise the same material.
Example 11 includes a phase shifter, comprising: a first broad wall having a first surface; a second broad wall parallel to the first broad wall and having a second surface; a first narrow wall perpendicular to and connected to the first broad wall and the second broad wall; a second narrow wall parallel to the first narrow wall and connected to the first broad wall and the second broad wall; at least one ferrite portion having a third surface and a fourth surface; wherein the first surface substantially contacts the third surface; wherein the second surface substantially contacts the fourth surface; and at least one slot in the first broad wall.
Example 12 includes the rectangular waveguide device of Example 11, wherein the at least one slot comprises at least one non-shorted slot that is at least one of: covered by a first broadband electromagnetic absorber and at least partially filled with a second broadband electromagnetic absorber.
Example 13 includes the rectangular waveguide device of Example 12, wherein the first broadband electromagnetic absorber and the second broadband electromagnetic absorber comprise the same material.
Example 14 includes the rectangular waveguide device of any of Examples 11-13, wherein the at least one slot comprises at least one shorted slot.
Example 15 includes the rectangular waveguide device of Example 14, wherein the at least one shorted slot is at least partially filled with a first broadband electromagnetic absorber.
Example 16 includes the rectangular waveguide device of any of Examples 11-15, wherein the at least one shorted slot comprises three or more shorted slots; wherein two or more of the shorted slots have a different lengths, and wherein spacings between two or more sets of two of the shorted slots have different lengths.
Example 17 includes the rectangular waveguide device of any of Examples 11-16, wherein the end of each slot proximate to an end of the rectangular waveguide device is displaced by less than one half of a wavelength of the lowest wavelength of an operating band of a fundamental mode in the rectangular waveguide device.
Example 18 includes the rectangular waveguide device of any of Examples 11-17, further comprising at least one slot in the second broad wall.
Example 19 includes the rectangular waveguide device of Example 18, wherein the at least one slot of the second broad wall is identical to the at least one slot of the first broad wall; and if the at least one slot of the first broad wall is at least one of: covered by a first broadband electromagnetic absorber and at least partially filled with a second broadband electromagnetic absorber, the second broad wall is also at least one of: covered by the first broadband electromagnetic absorber and at least partially filled with the second broadband electromagnetic absorber.
Example 20 includes the rectangular waveguide device of Example 19, wherein the first broadband electromagnetic absorber and the second broadband electromagnetic absorber comprise the same material.
Example 21 includes a method, comprising: create at least one slot in a broad wall of a first portion of a rectangular waveguide, where the at least one slot in the broad wall of a first portion is configured to suppress undesirable higher order modes; and attaching the first portion to the second portion.
Example 22 includes the method of Example 21, further comprising creating at least one slot in a broad wall of a second portion of the rectangular waveguide, where the at least one slot in the broad wall of a first portion and the at least one slot in the broad wall of the second portion are configured to suppress undesirable higher order modes
Example 23 includes the method of any of Examples 21-22, further comprising adding broadband electromagnetic absorber at least one of over or at least partially in at least one of (a) the at least one slot in the broad wall of the first portion and (b) at least one slot in the broad wall of the second portion.
Example 24 includes the method of any of Examples 21-23, further comprising mounting at least one ferrite portion in the at least first portion.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
This invention was made with Government support under Government Contract Number 11500699N awarded by the United States Air Force. The Government has certain rights in this invention.