The present disclosure generally relates to instrumented cutting elements for use on earth-boring tools such as drill bits, to earth-boring tools including such instrumented cutting elements, and methods of making and using such cutting elements and tools.
The oil and gas industry expends sizable sums to design cutting tools, such as downhole drill bits including roller cone rock bits and fixed cutter bits. Such drill bits may have relatively long service lives with relatively infrequent failure. In particular, considerable sums are expended to design and manufacture roller cone rock bits and fixed cutter bits in a manner that minimizes the probability of catastrophic drill bit failure during drilling operations. The loss of a roller cone or a polycrystalline diamond compact from a bit during drilling operations can impede the drilling operations and, at worst, necessitate rather expensive operations for retrieving the bit or components thereof from the wellbore.
Diagnostic information related to a drill bit and certain components of the drill bit may be linked to the durability, performance, and the potential failure of the drill bit. In addition, characteristic information regarding the rock formation may be used to estimate performance and other characteristics related to drilling operations. Logging while drilling (LWD) and measuring while drilling (MWD) measurements are conventionally obtained from measurements behind (e.g., several feet away from) the drill head. While a number of sensors and measurement systems may record information near the earth-boring drill bit, conventional polycrystalline diamond compact (PDC) cutting elements used in earth-boring drill bits do not provide measurements directly at the drill bit. The off-set from the earth-boring drill bit may contribute to errors for many types of measurements, especially those measurements that relate directly to the performance or the condition of the earth-boring drill bit itself.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof and, in which are shown by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the invention, and it is to be understood that other embodiments may be utilized, and changes may be made within the scope of the disclosure.
Referring in general to the following description and accompanying drawings, various embodiments of the present disclosure are illustrated to show its structure and method of operation. Common elements of the illustrated embodiments may be designated with similar reference numerals. It should be understood that the figures presented are not meant to be illustrative of actual views of any particular earth-boring tool or cutting element, but are merely idealized representations employed to more clearly and fully depict the present invention defined by the claims below. The illustrated figures may not be drawn to scale.
As used herein, “drill bit” means and includes any type of bit or tool used for drilling during the formation or enlargement of a wellbore in subterranean formations and includes, for example, fixed cutter bits, rotary drill bits, percussion bits, core bits, eccentric bits, bi-center bits, reamers, mills, drag bits, roller cone bits, hybrid bits and other drilling bits and tools known in the art.
As used herein, the term “polycrystalline material” means and includes any material comprising a plurality of grains or crystals of the material that are bonded directly together by inter-granular bonds. The crystal structures of the individual grains of the material may be randomly oriented in space within the polycrystalline material.
As used herein, the term “polycrystalline compact” means and includes any structure comprising a polycrystalline material formed by a process that involves application of pressure (e.g., compaction) to the precursor material or materials used to form the polycrystalline material.
As used herein, the term “hard material” means and includes any material having a Knoop hardness value of about 3,000 Kgf/mm2 (29,420 MPa) or more. Hard materials include, for example, diamond and cubic boron nitride.
Embodiments of the present disclosure include instrumented cutting elements for earth-boring drill bits, and methods for forming such instrumented cutting elements. The instrumented cutting elements may provide measurements obtained directly from locations at the drill bit to which they are mounted and used. The instrumented cutting elements may be used to identify formation characteristics, which may be used to improve identification of chemicals and pay zones within the formation. The instrumented cutting elements also may be used to improve (e.g., optimize) drilling parameters. In addition, at-bit measurements and real-time formation evaluation obtained using the instrumented cutting elements may reduce risk of loss or damage to the cutting elements and/or the earth-boring drill bit to which the cutting elements are mounted.
The earth-boring drill bit 100 includes a plurality of cutting elements 154 attached to a face 112 of the bit body 110, one or more of which may comprise an instrumented cutting element as described herein in further detail below. Generally, the cutting elements 154 of a fixed-cutter type drill bit have either a disk shape or a substantially cylindrical shape. Each cutting element 154 may include a cutting surface 155 located on a substantially circular end surface of the cutting element 154. The cutting surface 155 may be formed by disposing a hard, super-abrasive material, such as a polycrystalline diamond compact in the form of a “diamond table.” As known in the art, such a diamond table may be formed by subjecting diamond particles to high temperature, high pressure (HTHP) conditions in the presence of a metal solvent catalyst (e.g., one or more of cobalt, iron, and nickel). Such an HTHP sintering process results in the formation of direct inter-granular diamond-to-diamond atomic bonds between the diamond particles, which forms the diamond table comprising the polycrystalline diamond compact. In some embodiments, the diamond table may be formed on a supporting substrate during the HTHP sintering process. In other embodiments, the diamond table may be formed in an HTHP sintering process, and subsequently bonded to a separately formed supporting substrate. Such cutting elements 154 are often referred to as polycrystalline diamond compact (PDC) cutting elements 154. The cutting elements 154 may be provided along blades 150 on the face 112 of the bit body 110. Pockets 156 may be formed in the face 112 of the bit body 110, and the cutting elements 154 may be secured to the bit body 110 within the pockets 156 using a brazing process, for example. In some instances, the cutting elements 154 may be supported from behind by buttresses 158, which may be integrally formed with the crown 114 of the bit body 110.
The bit body 110 may further include junk slots 152 that separate the blades 150. Internal fluid passageways (not shown) extend between the face 112 of the bit body 110 and a longitudinal bore 140, which extends through the shank 120 and partially through the bit body 110. Nozzle inserts (not shown) also may be provided at the face 112 of the bit body 110 within the internal fluid passageways.
The earth-boring drill bit 100 may be secured to the end of a drill string (not shown), which may include tubular pipe and equipment segments (e.g., drill collars, a motor, a steering tool, stabilizers, etc.) coupled end to end between the earth-boring drill bit 100 and other drilling equipment at the surface of the formation to be drilled. As one example, a threaded connection portion 125 of the earth-boring drill bit 100 may be engaged with a complementary threaded connection portion of the drill string. An example of such a threaded connection portion is an American Petroleum Institute (API) threaded connection portion.
During drilling operations, the earth-boring drill bit 100 is positioned at the bottom of a wellbore such that the cutting elements 154 are adjacent the earth formation to be drilled. Equipment such as a rotary table or a top drive may be used for rotating the drill string and the earth-boring drill bit 100 within the wellbore hole. Alternatively, the shank 120 of the earth-boring drill bit 100 may be coupled to the drive shaft of a down-hole motor, which may be used to rotate the earth-boring drill bit 100. As the earth-boring drill bit 100 is rotated, drilling fluid is pumped to the face 112 of the bit body 110 through the longitudinal bore 140 and the internal fluid passageways (not shown). Rotation of the earth-boring drill bit 100 causes the cutting elements 154 to scrape across and shear away the surface of the underlying formation. The formation cuttings mix with, and are suspended within, the drilling fluid and pass through the junk slots 152 and the annular space between the wellbore hole and the drill string to the surface of the earth formation.
When the cutting elements 154 scrape across and shear away the surface of the underlying formation, a significant amount of heat and mechanical stress may be generated. Components of the earth-boring drill bit 100 (e.g., cutting elements 154) may be configured for detection of performance data during drilling operations, as will be discussed herein with respect to
As will be described below, various types of measurements may be made from one or more instrumented cutting elements 154, such as from a plurality of instrumented cutting elements 154 positioned at various locations on the earth-boring drill bit 100. In some embodiments, instrumented cutting elements 154 may be positioned in non-cutting orientations and locations for the purpose of enhancing measurements and/or providing redundancy. For example, if temperature is desired to be measured, instrumented cutting elements 154 may be provided, which are configured to measure temperature at or near the tip of the instrumented cutting element 154. In addition, a plurality of instrumented cutting elements 154 may be located at different locations, which may provide a temperature profile for the earth-boring drill bit 100 itself. Thus, in some embodiments, not all cutting elements 154 may be instrumented cutting elements 154, and the instrumented cutting elements 154 may be disposed at selected locations on the face 112 of the earth-boring drill bit 100.
Various instrumented cutting elements 154 described herein may be manufactured by using doped diamond grains in a portion of the polycrystalline diamond material in the diamond table comprising the polycrystalline diamond compact. For example, a portion of the polycrystalline diamond material may be diamond grains doped with materials, such as boron, phosphorous, sulfur, or other materials that are either shallow electron donors or electron acceptors capable of inducing significant charge carrier densities at temperatures below, 600° C., for example. By doping selected portions or regions of the polycrystalline diamond material, the conductivity of the doped portion of the polycrystalline diamond material may be increased relative to the remainder of the polycrystalline diamond material. Metal solvent catalyst, which may be present in the interstitial spaces between the inter-bonded diamond grains in the polycrystalline diamond table may be removed from the polycrystalline diamond table proximate the doped portions (e.g., surrounding the doped portions) to decrease the conductivity of those regions relative to the conductivity of the doped regions. As a result, the doped portions of the diamond material of the cutting elements 154 may exhibit properties of an electrical conductor, and the surrounding other regions of the diamond material of the cutting elements 154 may exhibit properties of an electrical insulator.
Embodiments of the present disclosure include cutting elements 154 that incorporate sensing elements as the first line of detection for certain parameters related to the cutting element 154, other components of the earth-boring drill bit 100, the formation, or combinations thereof. Calibrating resistance measurements by the instrumented cutting elements 154 during drilling may enable correlating wear condition, active depth of cut control, understanding the extent of formation engagement while drilling, pad-type formation resistivity measurements, and/or identifying where in the earth-boring drill bit 100 instabilities may originate. In other words, the resistance of the cutting element can be measured and used to determine wear. As a result, active bit control may be enabled. In other words, this information may be used as part of an active bit control system.
Additional instrumented components of the earth-boring drill bit 100 may perform secondary detection of performance data. The measurements described herein may also be used in conjunction with other sensor components in the wellbore assembly, such as thermocouples, thermistors, chemical sensors, acoustic transducers, gamma detectors, etc. Acoustic transducers may include time-of-flight measurements to detect wear of the cutting elements 154. Wear of the cutting element 154 may also be determined through electrical measurements. Examples of such other related sensors may be described in U.S. Patent Application Publication No. 2011/0266058, filed Apr. 25, 2011, and entitled “PDC Sensing Element Fabrication Process and Tool,” U.S. Patent Application Publication No. 2011/0266054, filed Apr. 25, 2011, and entitled “At-Bit Evaluation of Formation Parameters and Drilling Parameters,” U.S. Patent Application Publication No. 2011/0266055, filed Apr. 25, 2011, and entitled “Apparatus and Methods for Detecting Performance Data in an Earth-Boring Drilling Tool,” and U.S. patent application Ser. No. 13/159,164, filed Jun. 13, 2011, and entitled “Apparatuses and Methods for Determining Temperature Data of a Component of an Earth-Boring Drilling Tool,” the disclosure of each of the forgoing applications being incorporated herein by this reference in their entirety.
The cutting element 154 further includes one or more sensing elements 216. The sensing element 216 may be disposed within the diamond table 214, such as by being embedded or at least partially formed within the diamond table 214. As a result, the sensing element 216 may be located at or near the cutting surface 215 of the cutting element 154.
In some embodiments, the sensing element 216 may be formed during a HTHP sintering process used to form the cutting element 154. The HTHP process may include sintering diamond powder used to form the diamond table 214 of the cutting element 154 at a temperature of at least 1300° Celsius and a pressure of at least 5.0 GPa. In some embodiments, the diamond table 214 may be formed as a standalone object (e.g., a free-standing diamond table) to facilitate the addition of the sensing element 216, and the diamond table 214 may be attached to the substrate 212. Further details regarding various configurations of the cutting element 154, and formation thereof, will be discussed below.
In operation, the cutting element 154 may scrape across and shear away the surface of the formation. Cuttings 202 from the subterranean formation 201 may pass across the sensing element 216 as indicated by arrow 203. In some embodiments, the sensing element 216 may be configured to generate an electrical signal indicative of at least one parameter (e.g., temperature, load, etc.) of the cutting element 154. In some embodiments, the sensing element 216 may be configured to generate an electrical signal indicative of a parameter (e.g., resistivity) of the subterranean formation. For example, the sensing element 216 may be energized, causing current to flow through the subterranean formation 201 or the cuttings 202 in contact with the energized sensing element 216. As a result, resistivity measurements may be taken from a measured voltage and/or current detected by the sensing element 216, which may be aided by intimate contact of the sensing element 216 with the subterranean formation 201.
The sensing elements 316, 318 may be formed from and comprise an electrically conductive diamond-based material (e.g., doped polycrystalline diamond). Although diamond may be thermally conductive, polycrystalline diamond generally is not an electrically conductive material (although metal solvent catalyst present in interstitial spaces between the diamond grains may need to be removed from the polycrystalline diamond using, for example, a leaching process to prevent electrical conduction through the metal solvent catalyst material in the interstitial spaces). As a result, the diamond-based material may be a diamond material that is doped as previously mentioned to modify the electrical properties of the diamond material. Thus, the polycrystalline diamond of the diamond table 314 may be electrically insulating, while the polycrystalline diamond of the sensing elements 316, 318 may be electrically conductive. The diamond-based material that is electrically conductive may be referred to herein as a “doped diamond material.”
The doped diamond material may be disposed within the diamond table 314, and may be configured to generate an electrical signal in response to experiencing a load. For example, the doped diamond material may exhibit a piezoresistive effect in response to a change in a pressure or stress. As a result, the cutting element 300 may be used to measure the piezoresistive effect. Through appropriate calibration, various parameters (e.g., stress, pressure, temperature, resistivity, etc.) may be inferred from the change in the output (i.e., electrical signal) from the cutting element 300 as different loads are experienced during drilling. Calibration may occur in a laboratory environment with one or more known loads being applied to the instrumented cutting element 300 and measuring the electrical signal response from the sensing elements 316, 318. The known loads may be applied to the instrumented cutting element 300 at various different orientations. The electrical signal response from the sensing elements 316, 318 may be recorded and associated with the known load.
In some embodiments, the sensing elements 316, 318 may further be employed as an electrode. Such an electrode may be used to measure resistivity of the formation, such as is described by U.S. Provisional Patent Application No. 61/623,042, filed Apr. 11, 2012, and entitled “Apparatuses and Methods for At-Bit Resistivity Measurements for an Earth-Boring Drilling Tool,” the entire disclosure of which is incorporated herein by reference, as discussed above. Thus, for resistivity measurements of the rock formation, some sensing elements 316, 318 may be positive poles and negative poles for sending the electric stimulus into the formation and receiving the electric stimulus from the rock formation. The electric stimulus may also be referred to as an electric pulse. The electric stimulus may include a direct current (DC) signal or at such a low frequency that is in effect a DC measurement of resistance. In some embodiments, the electric stimulus may include spectral content. In other words, the electric stimulus may include a relatively high frequency signal propagation through the rock formation and providing a return path for the current to flow. Guard electrodes may be provided to enable resistivity measurements at different depths into the rock formation.
The information derived from the sensing elements 316, 318 may relate to drill bit characteristics, formation characteristics, as well as drill bit behavior. The cutting element 300 may provide passive data. The cutting element 300 may also be used to provide data for active bit control, such as to obtain information useful in intelligent control (e.g., active depth of cut control) of the drilling parameters or drilling system.
Referring specifically to
The conduits 320, 322 may include electrical conductors 324, 326 that couple with the sensing elements 316, 318. In some embodiments, the electrical conductors 324, 326 may be surrounded by a dielectric material (e.g., a ceramic sheath) to electrically isolate the electrical conductors 324, 326 from the substrate 314. In some embodiments, the electrical conductors 324, 326 may be formed from the same material as the sensing elements 316, 318 (e.g., a doped diamond material). Because the electrical conductors 324, 326 in the substrate 312 may be less exposed to the hostile drilling conditions that are experienced by the diamond table 314, the electrical conductors 324, 326 may be formed from materials that provide less abrasion resistance. For example, the electrical conductors 324, 326 may be formed from niobium, aluminum, copper, titanium, nickel, molybdenum, tantalum, tungsten, boron, phosphorous, and other similar materials. A two-part sensing device (i.e., sensing elements 316, 318 and electrical conductors 324, 326 being formed from different materials) may provide for a better coefficient of thermal expansion (CTE) match with the two-part structure of the cutting element 300 (i.e., diamond table 314 and the substrate 312 being formed from different materials).
The conduits 320, 322 may be configured to receive the electrical signal from the sensing elements 316, 318, and transmit the electrical signal away from the cutting element 300. For example, the electrical signal may be transmitted to a processor (not shown) that may be part of a data collection module located in the earth-boring drill bit 100 (
Having individual conduits 320, 322 for each sensing element 316, 318, may enable the electrical signal from each sensing element 316, 318 to be read by a processor individually. In addition, each sensing element 316, 318 may be enabled to have a signal sent therethrough in a configuration where the sensing elements 316, 318 are used as electrodes. In such an embodiment, the sensing elements 316, 318 may be energized with a voltage causing current to flow through the formation. For example, the voltage may be a bias voltage of approximately 1V with respect to a local ground potential. The current flowing between the sensing elements 316, 318 may be measured, such that a resistivity of the formation may be determined.
Referring specifically to
Referring specifically to
Referring specifically to
Referring specifically to
Referring to
In some embodiments, the diamond table 1114 may be formed as a standalone object. In other words, the diamond table 1114 may be sintered by itself as a free-standing diamond disk. As a result, in some embodiments, the formation of the cutting element 1100 may begin with the stand alone diamond table 1114 shown in
Referring to
Referring to
Forming the chambers 1102, 1104 in a sintered diamond table 1114 may enable the chambers 1102, 1104 to have the desired shape. During the HTHP process, the diamond table 1114 may undergo compaction and shrinkage. From a geometry and alignment standpoint, forming the chambers 1102, 1104 in a sintered diamond table 1114 may result in a more predictable shape and location for the sensing elements 1116, 1118 because the diamond table 1114 is already sintered, and may experience minimal shrinkage during the second HTHP process.
In addition, some embodiments may include the doped diamond material and/or the substrate 1114 being sintered separately, such that the sensing elements 1116, 1118 and/or the substrate may be bonded to the sintered diamond table 1114 through methods that do not involve use of an HTHP sintering process. Such a bonding process may include brazing, for example.
Referring to
Referring to
Additional non-limiting embodiments are described below.
An instrumented cutting element for use on an earth-boring tool, comprising: a substrate; a diamond table bonded to the substrate; and at least one sensing element disposed at least partially within the diamond table, the at least one sensing element comprising a doped diamond material.
The instrumented cutting element of Embodiment 1, wherein the doped diamond material includes polycrystalline diamond and a dopant selected from the group consisting of boron, phosphorus, and sulfur.
The instrumented cutting element of Embodiment 1 or Embodiment 2, wherein the doped diamond material is embedded within the diamond table.
The instrumented cutting element of Embodiment 1 or Embodiment 2, wherein the doped diamond material extends through a thickness of the diamond table.
The instrumented cutting element of any of Embodiments 1 through 4, wherein the substrate comprises at least one conduit coupled with the at least one sensing element, the at least one conduit configured to transmit an electrical signal away from the at least one sensing element.
The instrumented cutting element of Embodiment 5, wherein the at least one conduit comprises an electrical conductor.
The instrumented cutting element of any of Embodiments 1 through 6, further comprising an electrical contact coupled with the substrate on a surface opposite the diamond table.
The instrumented cutting element of any of Embodiments 1 through 7, wherein the doped diamond material is formed in one of an annular shape, a linear shape, and a rectangular shape.
The instrumented cutting element of any of the Embodiments 1 through 8, wherein the at least one sensing element includes a plurality of sensing elements each comprising a doped diamond material disposed at least partially within the diamond table.
The instrumented cutting element of Embodiment 9, wherein the sensing elements of the plurality of sensing elements are concentrically arranged.
The instrumented cutting element of any of the Embodiments 1 through 10, wherein the diamond table comprises polycrystalline diamond including inter-bonded diamond grains with interstitial spaces between the inter-bonded diamond grains, at least a portion of the interstitial spaces being at least substantially free of metal solvent catalyst material.
An earth-boring tool, comprising: a tool body; and an instrumented cutting element attached to the tool body, the instrumented cutting element including a substrate, a diamond table bonded to the substrate, and at least one sensing element disposed at least partially within the diamond table, the at least one sensing element comprising a doped diamond material.
The earth-boring tool of Embodiment 12, wherein the earth-boring tool comprises an earth-boring rotary drill bit.
The earth-boring tool of Embodiment 12 or Embodiment 13, wherein the doped diamond material includes polycrystalline diamond and a dopant selected from the group consisting of boron, phosphorus, and sulfur.
A method for obtaining a measurement at an earth-boring tool, the method comprising receiving an electrical signal from a doped diamond material disposed at least partially within a diamond table of an instrumented cutting element attached to the earth-boring tool.
The method of Embodiment 15, wherein receiving the electrical signal includes receiving the electrical signal through a conduit extending through a substrate of the instrumented cutting element.
The method of Embodiment 15 or Embodiment 16, further comprising correlating the electrical signal with at least one parameter during a drilling operation.
The method of Embodiment 17, wherein correlating the electrical signal with at least one parameter includes correlating a characteristic of a subterranean formation with the electrical signal.
The method of Embodiment 17 or Embodiment 18, wherein correlating the electrical signal with at least one parameter includes correlating a characteristic of the instrumented cutting element with the electrical signal.
The method of any of Embodiments 17 through 19, further comprising actively controlling the drilling operation responsive to data derived from the electrical signal.
Although the foregoing description contains many specifics, these are not to be construed as limiting the scope of the present disclosure, but merely as providing certain exemplary embodiments. Similarly, other embodiments of the disclosure may be devised which do not depart from the scope of the present invention. For example, features described herein with reference to one embodiment also may be provided in others of the embodiments described herein. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description.
This application is a divisional of U.S. patent application Ser. No. 15/450,775, filed Mar. 6, 2017, now U.S. Pat. No. 10,024,155, issued Jul. 17, 2018, which is a continuation of U.S. patent application Ser. No. 14/950,581, filed Nov. 24, 2015, now U.S. Pat. No. 9,598,948, issued Mar. 21, 2017, which application is a continuation of U.S. patent application Ser. No. 13/586,668, filed Aug. 15, 2012, now U.S. Pat. No. 9,212,546, issued Dec. 15, 2015, which is related to U.S. Provisional Patent Application No. 61/623,042, filed Apr. 11, 2012, and entitled “Apparatuses and Methods for At-Bit Resistivity Measurements for an Earth-Boring Drilling Tool,” U.S. patent application Ser. No. 13/586,650, filed Aug. 15, 2012, now U.S. Pat. No. 9,605,487, issued Mar. 28, 2017, and entitled “Methods for Forming Instrumented Cutting Elements of an Earth-Boring Drilling Tool,” and U.S. patent application Ser. No. 15/456,105, filed Mar. 10, 2017, now U.S. Pat. No. 10,443,314, issued Oct. 15, 2019, which application is a continuation of U.S. patent application Ser. No. 13/586,650, now U.S. Pat. No. 9,605,487, issued Mar. 28, 2017, the disclosure of each of which is hereby incorporated herein in its entirety by this reference. The subject matter of this application is also related to the subject matter of U.S. patent application Ser. No. 13/839,821, filed Mar. 15, 2013, now U.S. Pat. No. 9,394,782, issued Jul. 19, 2016, to the subject matter of U.S. patent application Ser. No. 15/209,155, filed Jul. 13, 2016, now U.S. Pat. No. 10,006,283, issued Jun. 26, 2018, to the subject matter of U.S. patent application Ser. No. 16/026,881, filed Jul. 3, 2018, now U.S. Pat. No. 10,584,581, issued Mar. 10, 2020, and to the subject matter of U.S. patent application Ser. No. 16/026,922, filed Jul. 3, 2018, pending.
Number | Name | Date | Kind |
---|---|---|---|
4122387 | Ajam et al. | Oct 1978 | A |
4268276 | Bovenkerk | May 1981 | A |
4858063 | Laue et al. | Aug 1989 | A |
6206108 | MacDonald et al. | Mar 2001 | B1 |
6233524 | Harrell et al. | May 2001 | B1 |
6359438 | Bittar | Mar 2002 | B1 |
6404003 | McMillan et al. | Jun 2002 | B1 |
6850068 | Chemali et al. | Feb 2005 | B2 |
7052215 | Fukano | May 2006 | B2 |
7109719 | Fabris et al. | Sep 2006 | B2 |
7256582 | Gorek et al. | Aug 2007 | B2 |
7388380 | Chen et al. | Jun 2008 | B2 |
7407566 | Jiang et al. | Aug 2008 | B2 |
7697375 | Reiderman et al. | Apr 2010 | B2 |
7758734 | Jiang et al. | Jul 2010 | B2 |
7849934 | Pastusek et al. | Dec 2010 | B2 |
7946357 | Trinh et al. | May 2011 | B2 |
8006781 | Teodorescu et al. | Aug 2011 | B2 |
8203134 | Liu | Jun 2012 | B2 |
8203344 | Gold et al. | Jun 2012 | B2 |
8440535 | Dennison | May 2013 | B2 |
8937292 | Bateman | Jan 2015 | B2 |
8997900 | Sue et al. | Apr 2015 | B2 |
9133668 | Cardellini et al. | Sep 2015 | B2 |
9212546 | Scott | Dec 2015 | B2 |
9406877 | Tada et al. | Aug 2016 | B2 |
9598948 | Scott | Mar 2017 | B2 |
20040069539 | Sullivan | Apr 2004 | A1 |
20050029095 | Hall | Feb 2005 | A1 |
20060243603 | Jiang et al. | Nov 2006 | A1 |
20070114061 | Hall et al. | May 2007 | A1 |
20080011521 | Hall et al. | Jan 2008 | A1 |
20080156534 | Clark et al. | Jul 2008 | A1 |
20080230280 | Keshavan et al. | Sep 2008 | A1 |
20080257730 | Jiang et al. | Oct 2008 | A1 |
20090205822 | DiFoggio et al. | Aug 2009 | A1 |
20090309600 | Seydoux et al. | Dec 2009 | A1 |
20100051292 | Trinh et al. | Mar 2010 | A1 |
20100139975 | Teodorescu et al. | Jun 2010 | A1 |
20100282510 | Sullivan et al. | Nov 2010 | A1 |
20100295548 | Georgi et al. | Nov 2010 | A1 |
20100314176 | Zhang et al. | Dec 2010 | A1 |
20110036641 | Lyons | Feb 2011 | A1 |
20110057656 | Tchakarov et al. | Mar 2011 | A1 |
20110240372 | Davis | Oct 2011 | A1 |
20110259642 | DiGiovanni et al. | Oct 2011 | A1 |
20110266054 | Kumar et al. | Nov 2011 | A1 |
20110266055 | DiGiovanni | Nov 2011 | A1 |
20110266058 | Kumar et al. | Nov 2011 | A1 |
20120031672 | Tien et al. | Feb 2012 | A1 |
20120132468 | Scott et al. | May 2012 | A1 |
20120152617 | Hunt et al. | Jun 2012 | A1 |
20120152622 | Sue et al. | Jun 2012 | A1 |
20120181900 | Puccio et al. | Jul 2012 | A1 |
20120303347 | DiFoggio | Nov 2012 | A1 |
20120312598 | Cheng | Dec 2012 | A1 |
20120325564 | Vaughn | Dec 2012 | A1 |
20130048381 | Habernal et al. | Feb 2013 | A1 |
20130088364 | Bittar et al. | Apr 2013 | A1 |
20130270007 | Scott et al. | Oct 2013 | A1 |
20130270008 | DiGiovanni et al. | Oct 2013 | A1 |
20140047776 | Scott et al. | Feb 2014 | A1 |
20160056208 | Pellizzer et al. | Feb 2016 | A1 |
20160076355 | Scott et al. | Mar 2016 | A1 |
20160097241 | Vaugh et al. | Apr 2016 | A1 |
20160133671 | Fantini et al. | May 2016 | A1 |
20160153244 | Humphrey et al. | Jun 2016 | A1 |
20170175520 | Scott et al. | Jun 2017 | A1 |
20170204674 | Russell et al. | Jul 2017 | A1 |
20170284161 | Zhang | Oct 2017 | A1 |
20180334858 | Can | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2848298 | Nov 2011 | CA |
1603576 | Apr 2005 | CN |
2483769 | Mar 2012 | GB |
2011090481 | Jul 2011 | WO |
2013191974 | Dec 2013 | WO |
Entry |
---|
Archie III: Electrical Conduction in Shaly Sands; Oct. 1989, Oilfield Review, vol. 1, Issue 3, pp. 43-53. |
Canadian Office Action for Canadian Application No. 2,882,110 dated Feb. 17, 2016, 5 pages. |
European Office Action for European Application No. 13829458.2 dated Apr. 4, 2017, 5 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/055053 dated Feb. 17, 2015, 9 pages. |
International Search Report for International Application No. PCT/US2013/055053 dated Nov. 25, 2013, 3 pages. |
International Written Opinion for International Application No. PCT/US2013/055053 dated Nov. 25, 2013, 8 pages. |
Kong et al., A Theoretical Calculation of the Piezoresistivity and Magnetoresistivity in P-Type Semiconducting Diamond Films, Journal of Physics: Condensed Matter, vol. 14, pp. 1765-1774 (2002). |
Supplementary European Search Report for European Application No. EP13829458, dated Jan. 22, 2016, 7 pages. |
European Office Action for EP Application No. 13829458.2 dated Feb. 1, 2018, 5 pages. |
Digiovanni et al., U.S. Appl. No. 61/623,042, filed Apr. 11, 2012, and entitled “Apparatuses and Methods for At-Bit Resistivity Measurements for an Earth-Boring Drilling Tool”. |
Number | Date | Country | |
---|---|---|---|
20180320513 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15450775 | Mar 2017 | US |
Child | 16031892 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14950581 | Nov 2015 | US |
Child | 15450775 | US | |
Parent | 13586668 | Aug 2012 | US |
Child | 14950581 | US |