The lung is the essential respiration organ in air-breathing vertebrates, including humans. Its principal function is to transport oxygen from the atmosphere into the bloodstream, and to excrete carbon dioxide from the bloodstream into the atmosphere. This exchange of gases is accomplished by a mosaic of specialized cells that form millions of tiny, thin-walled air sacs called alveoli. Beyond respiratory functions, the lungs also act as an efficient drug delivery mechanism. For example, the lungs have been used for centuries as a delivery mechanism for psychoactive drugs. One advantage of pulmonary drug delivery is that inhaled substances bypass the liver and the gastrointestinal tract and are therefore more readily absorbed into the bloodstream in comparison to orally-ingested medicines.
In recognition of the potential of pulmonary drug delivery, various efforts have been made toward developing effective pulmonary drug delivery devices. Current pulmonary drug delivery devices include metered dose inhalers (MDIs), dry powder inhalers (DPIs), and nebulizers. MDIs are pressurized hand-held devices that use propellants for delivering liquid medicines to the lungs. DPIs also use propellants, but deliver medicines in powder form. Nebulizers, also called “atomizers,” pump air or oxygen through a liquid medicine to create a vapor that is inhaled by the patient.
Each of the above-described devices suffer from disadvantages that decrease their attractiveness as a mechanism for pulmonary drug delivery. For example, when MDIs are used, medicine may be deposited at different levels of the pulmonary tree, and therefore may be absorbed to different degrees, depending on the timing of the delivery of the medicine in relation to the inhalation cycle. Accordingly, actual deposition of medicine in the lungs during patient use may differ from that measured in a controlled laboratory setting. Furthermore, a portion of the “metered dose” may be lost in the mouthpiece or the oropharynx.
Although DPIs reflect an effort to improve upon MDIs, small volume powder metering is not as precise as the metering of liquids. Therefore, the desired dosage of medicine may not actually be administered when a DPI is used. Furthermore, ambient environmental conditions, especially humidity, can adversely effect the likelihood of the medicine actually reaching the lungs.
Nebulizers may also exhibit unacceptable variability in delivered dosages, especially when they are of the inexpensive, imprecise variety that is common today. Although more expensive nebulizers are capable of delivering more precise dosages, the need for a compressed gas supply that significantly limits portability and the need for frequent cleaning to prevent bacterial colonization renders such nebulizers less desirable. Furthermore, the relatively high cost of such nebulizers also makes their use less attractive.
From the above, it can be appreciated that it would be desirable to have an improved pulmonary drug delivery system or device that avoids one or more of the above-described disadvantages.
Of the various applications in which such an improved pulmonary drug delivery system and device could be used, the delivery of nicotine as a method to achieve smoking cessation is one of the most compelling. The adverse health care consequences of smoking tobacco are enormous and incontrovertible. According the World Health Organization (WHO), tobacco is the second major cause of death in the world, currently accounting for one in ten deaths worldwide (5 million each year), and is the single largest preventable cause of disease and premature death. Of the 1.1 billion smokers in the world today, half will die from tobacco-related illness. For example, it is estimated that smoking will contribute to the death of one third of all Chinese males under 30 years old currently alive. In the United States, the 1999 National Health Interview Survey estimated that 46.5 million adults smoke and that 440,000 die each year from smoking related causes. In men, smoking is estimated to decrease life expectancy by 13.2 years and in women by 14.5 years.
Furthermore, it is now understood that cigarette smoke is not only harmful to the smoker, but also can affect the health of non-smokers when they passively inhale the smoke of other peoples' cigarettes. Such “secondhand smoke” is a risk factor for numerous types of adult ailments including lung cancer, breast cancer, and heart disease. Secondhand smoke exposure also increases the risk of various diseases in children and infants.
Despite recognizing the health risks associated with their habit, smokers continue to smoke. The primary reason for this phenomenon relates to the effect that nicotine has on the central nervous system (CNS). At low serum levels, nicotine provides stimulatory effects, primarily through activation of the locus ceruleus within the cerebral cortex. Such stimulatory effects include increased concentration, decreased anxiety, improved mood, decreased appetite, and improved memory. At high serum levels, nicotine activates the limbic system and produces a sense of euphoria, commonly referred to as a “buzz.” Cigarette smokers are accustomed to achieving both of these effects.
After inhaling cigarette smoke, nicotine is absorbed across the alveolar membrane in the lungs, leading to a rapid rise of serum nicotine levels within a few seconds. Within five minutes of smoking, the average maximum concentration of nicotine in arterial blood rises to 49 nanograms per milliliter (ng/ml), thereby providing the euphoric buzz. As nicotine levels fall, the stimulant effects predominate for the next 1-2 hours. Soon after, however, withdrawal symptoms begin to develop. These symptoms include irritability, anger, impatience, restlessness, difficulty concentrating, increased appetite, anxiety, and depressed mood. Such withdrawal symptoms are normally relieved by smoking the next cigarette, thereby creating a potentially endless cycle.
Over the years, many efforts have been made to develop effective means for assisting smokers in quitting. Currently, there are several Federal Drug Administration (FDA) approved nicotine replacement treatments (NRTs) intended for use in smoking cessation available both over-the-counter and as a prescription. Significantly, none of those NRTs deliver significant amounts of nicotine to the alveolar level of the lungs. Instead, they rely on the absorption of nicotine across the skin or across the nasal, buccal, or oropharyngeal mucosa. As a result, absorption is much slower and much less efficient than that typical of smoking and therefore leads to slower and much lower peak nicotine concentrations compared to that produced by cigarettes. Notably, this is true for existing nicotine inhalers, which are purported to have delivery characteristics most like cigarettes. Studies have confirmed that nicotine absorption resulting from use of such inhalers primarily occurs across the buccal mucosa, not the lungs, and that the arterial nicotine concentration spike that results from cigarette smoking does not occur with such inhalers.
The peak serum levels achieved with the current NRTs may be adequate to ameliorate or prevent withdrawal symptoms. However, they do little to satisfy the acute craving for the “buzz” created by the rapid onset and high peak serum nicotine levels typical of tobacco smoke. This may be the primary reason why so few habitual smokers that have used NRT have achieved long-term success. Instead, such persons typically give in to the persistent cravings, which currently can only be satisfied through smoking.
Given the enormity of the health problems caused by smoking, it is agreed upon by physicians and laypersons alike that the best thing that smokers can do is quit smoking. However, given the limited success that previous cessation solutions have had, it is clear that more effective alternatives are needed. It stands to reason that an alternative capable of providing nicotine to the user in ways analogous to smoking could save numerous lives.
The disclosed apparatuses and methods can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale.
As described above, it would be desirable have a pulmonary drug delivery system or device that is effective in enabling absorption of medicines, such as nicotine, via the lungs. Embodiments of a pulmonary drug delivery device are described in the following disclosure.
Disclosed herein are various embodiments of apparatuses and methods for pulmonary drug delivery. It is noted that those embodiments comprise mere implementations of the disclosed inventions and that alternative embodiments are both possible and intended to fall within the scope of the present disclosure.
Referring to the drawings, in which like numerals indicate corresponding parts throughout the several views,
Extending from the top side 18 of the housing 12 is a mouthpiece 34 that is used to deliver medicine to a patient who uses the device 10 (i.e., a “user”). In the embodiment of
Also provided within the interior space 42 is a fan 50 that is used to generate airflow within the drug delivery member 44. As indicated in
Further provided within the interior space 42 is a circuit board 60, which is more clearly shown in the exploded view of
With continued reference to
As is further indicated in
Turning to
The above-mentioned support structure will now be described with reference to
Referring next to
Adjacent the top end of the platform 122 is a seat 132 that is adapted to receive and support a head 136 of an electrical cable 138 that electrically couples the droplet ejection device 98 (
Example configurations for the pulmonary drug delivery device 10 having been described in the foregoing, examples of operation of the device will now be described. As explained above, the device 10 can be activated to deliver medicine to the respiratory system of the user upon detecting user inhalation as indicated by a drop in pressure within the upper tube 48 of the drug delivery member 44. The pressure drop can be detected by the pressure sensor 64 and an appropriate detection signal can then be sent from the sensor to the device microcontroller 62. The microcontroller 62 can then activate the fan 50 to cause it to draw in air from the environment, for example through the inlet 28 provided in the front cover 24, and exhaust the air through the opening 80 of the lower tube 46, as indicated by flow arrow 156 in
Due to the nature of the fan 50, the air is exhausted at a relatively precise angle relative to the lower tube 46. By way of example, the exhaust angle, a, is approximately 10 to 40 degrees relative to a horizontal direction that is parallel to the longitudinal axis of the lower tube 46. As mentioned above, a sharp angle is formed between the lower tube 46 and the upper tube 48. By way of example, that angle is approximately 70 to 120 degrees, for example approximately 90 degrees. Due to that sharp angle, the air exhausted by the fan 50 impinges upon the walls of the upper tube 48 and becomes highly turbulent within a turbulence zone 158 adjacent the intersection between the lower and upper tubes 46, 48 (i.e., at the sharp “bend” of the drug delivery tube). As is schematically indicated by flow arrows 160, the air vigorously circulates with the turbulence zone 158 before being forced up through the upper tube 48, as indicated by flow arrow 162.
Simultaneous to or soon after activation of the fan 50, the microcontroller 62 activates the droplet ejection device 98 to cause droplets of medicine to be ejected from the nozzles 154 of the ejection head 150. In some embodiments, the nozzles 154 are selectively activated to ensure a desired separation in terms of both distance and time. For example, the nozzles 154 can be activated such that only non-adjacent nozzles eject in sequence and a period of at least approximately 150 to 500 microseconds (ps) passes between firing of any two nozzles. Such an activation scheme ensures that the droplets are physically spaced to a degree at which evaporation of a droplet is not significantly influenced by the proximity of one or more other droplets.
Irrespective of the nozzle activation scheme that is implemented, the ejected droplets travel along the pathway 120 of the medicine injection tube 118 in the direction of arrow 164, which forms an angle, β, of approximately 30 to 60 degrees relative to the horizontal direction and which is generally opposite to the direction of the airflow generated by the fan 50. As indicated in
In order to achieve effective systemic absorption, it is normally desirable to deliver a medicine directly to the alveoli located deep within the lung structure where transport to the bloodstream is most quickly and efficiently accomplished. Lung deposition curves, such as those published by the International Commission on Radiological Protection (ICRP), indicate that the locations within the pulmonary tree in which inhaled particles are deposited depends to a substantial degree upon particle size. Specifically, lung deposition curves based on both theoretical modeling and experimental data typically show that particle deposition rates in the alveolar regions of the lung are greatest for particles having a diameter of approximately 1 to 3 μm. In view of this, the device 10 can be configured to deliver droplets having a diameter of approximately 1 to 3 μm from the opening 40 of the mouthpiece 34. In other embodiments, the droplets have even smaller exit diameters, for example approximately 0.1 to 1 μm, to enable hygroscopic growth of the droplets within the respiratory tract.
With further reference to
After the desired quantity of medicine has been injected into the airflow during the current inhalation cycle, ejection of medicine droplets ceases and the fan 50 is powered down. The process can then be repeated for further inhalation cycles of the user until a desired dosage of medicine has been administered. If desired, the entire process can be repeated at a later time, such as later that day or the next day. In some embodiments, appropriate controls can be integrated into the device 10 to limit the frequency with which the medicine can be administered. For example, the microcontroller 62 can be programmed to limit operation of the device 10 once every hour, once every few hours, once each day, and the like.
As mentioned above, it may be desirable to deliver droplets having a diameter of approximately 1 to 3 μm from the opening 40 of the mouthpiece 34. Notably, the size of the droplets that are ejected from the droplet ejection device 98 may be outside of that range. For example, environmental conditions, such as temperature, humidity, and pressure, can cause the ejected droplets to shrink or grow. In some embodiments, measures may be taken, substantially in real time, to control the size of the droplets relative to feedback that is collected by the device 10. Such feedback can comprise, for example, one or more of the current atmospheric temperature, humidity, and pressure, or the size of the droplets that are being delivered. In the former case, the device 10 comprises an open feedback loop and, in the latter case, the device comprises a closed feedback loop. Irrespective of which feedback scheme is used, the actions to be taken can be determined through reference to a look-up table or through application of an appropriate algorithm, either of which can be stored within memory provided on the circuit board 60. In cases in which the current atmospheric temperature, humidity, and pressure are to be measured (i.e., open-loop feedback), the circuit board 60 can also include appropriate sensors for detecting those conditions.
In cases in which the size of the droplets are to be measured (i.e., closed-loop feedback), the device 10 can comprise appropriate droplet size sensing apparatus.
The light source 210 and light detector 212 together comprise a droplet size sensing apparatus configured to capture light data regarding the droplets flowing through the upper tube 204. As indicated in
Generally speaking, the size of the droplets can be controlled during droplet formation, after droplet formation, or both. During droplet formation, certain parameters can be controlled to alter the size of the droplets that are ejected. In some cases, the droplet size may not necessarily be the same as the size of the nozzle orifice. For example, droplets that are smaller or larger than the nozzle orifice may be produced. After droplet formation, certain other parameters can be controlled to change the size of the generated droplets. For example, the droplets can be reduced in size downstream of the nozzle orifice through controlled evaporation. Using such processes, a droplet ejection device having relatively large (e.g., approximately 10 to 30 μm) orifices can still be used to deliver substantially smaller (e.g., approximately 1 to 3 μm) droplets.
Regarding droplet formation, it has been determined that relatively small droplets can be generated when the liquid from which the droplets are formed is maintained at an elevated temperature. Such elevated temperatures decrease both the viscosity and surface tension of the liquid, which translates into smaller droplets being ejected. Notably, the composition of the liquid (e.g., medication solution) can also affect droplet size. Therefore, results may vary depending upon the nature of the medication being administered.
As mentioned above, droplet size can be controlled after formation. The exercise of such control may generally be referred to as post-processing of the droplets. Such post processing can include controlling the rate at which the ejected droplets evaporate during their flight to the user's respiratory tract. As indicated above, factors or parameters that have an impact droplet evaporation include air temperature, humidity, and pressure. Therefore, the evaporation rate can be controlled through manipulation of one or more those parameters. For example, droplet size can be reduced by heating the air that flows through the system. As a further example, the size of the droplets can be reduced or increased by respectively decreasing or increasing the humidity of the air that delivers the droplets.
Appropriate apparatuses to control parameters such as liquid temperature, air temperature, and air humidity can be added to the delivery device 200, as desired.
Various modifications can be made to the embodiments described in the foregoing. For example, in one alternative embodiment, an extension tube can be connected to the mouthpiece of the device and used to increase the distance between the device housing and the point at which medicine enters the user's mouth. In another alternative embodiment, the cap to the medicine container can include a vent port that equalizes the pressure within the container with that of the surrounding environment. In a further alternative embodiment, a screen can be placed over the passage formed within the container to filter particulate matter that could clog the droplet ejection device and/or to reduce surface tension that could interfere with the flow of medicine to the drug ejection device.
It is further noted that appropriate regulatory measures can be taken to avoid abuse of the device or the medicine(s) that the device is intended to administer. For example, each medicine storage and delivery unit can be sold separately as one-time use component that comprises identification data that can be read by the pulmonary drug delivery device when the unit is installed on the drug delivery member. If the device microcontroller determines from the identification data that the medicine storage and delivery unit does not contain a medicine for which the device has been prescribed, for example by a doctor, operation of the device can be disabled.
Finally, it is noted that absolute spatial terms such as “horizontal” and “vertical” have been used herein relative to the orientations of the device components shown in the drawings. Therefore, it is to be understood that such terms may not strictly apply in cases in which the orientation of the device is changed from that shown in the figures.