Aspects of the present disclosure are related generally to the field of light manipulation and optical devices and systems.
Polarization manipulation across multiple wavelengths is a critical task for many applications such as ellipsometry or pulsed laser systems. However, there does not exist a method for dynamically tuning the polarization state of light across a large bandwidth. Current polarization solutions experience various dispersion effects such that the same polarization state at different wavelengths will map to different final polarization states. Such dispersion affects and restricts the usefulness of polarization optics to single wavelength operation, or requires that multiple wavelengths be scanned sequentially with the system being recalibrated between each such scan. Additionally, these solutions largely operate in the linear polarization basis, limiting the available polarization operations that can be performed. In contrast, arbitrary polarization axes allow for full manipulation of the polarization space.
These and other matters have presented challenges for a variety of applications.
Various examples/embodiments presented by the present disclosure are directed to issues such as those addressed above and/or others which may become apparent from the following disclosure. Certain example aspects of the present disclosure are directed to methods and/or apparatuses (e.g., systems, devices, waveplates, etc.) that use, leverage from and/or involve polarization manipulation involving use of optical elements to map different wavelengths (e.g., within a defined bandwidth) to a common polarization state and/or setting or tuning (e.g., dynamically) polarization state(s) of light across such a bandwidth. In more specific examples, the optical elements may be waveplates such as the type that integrate selected gratings (e.g., as may be implemented in one or more grating layers integrated as a single waveplate), and in certain applications the setting or tuning may be realized dynamically such as by moving one waveplate relative to the other waveplate and thereby causing a split light beam, between two such waveplates, to experience a displacement phase shift.
In certain example embodiments, aspects of the present disclosure involve or are directed to an apparatus and/or a method for tuning the polarization state of light achromatically and along arbitrary polarization axes. In more particular examples, devices that may be tuned as such would be extremely advantageous in a wide range of applications including commercial polarization instrumentation, experimental research, industrial machinery, etc.
In yet other related examples, aspects of the present disclosure are directed to an apparatus (e.g., one of two beamsplitters) and its use in an optical system having another beamsplitter acting to split incident light into multiple light beams along a particular polarization basis or to recombine the split light beams, and wherein the first and second beamsplitters are to be coupled and arranged relative to one another such that the incident light beam at one of the beamsplitters is split and then recombined by the other of the beamsplitters to provide a recombined light beam characterized as having at least one of the following attributes: a polarization state which maps to different wavelengths of the incident light; and a polarization tuning of the incident light.
Certain other examples according to the present disclosure may also build on the above-discussed aspects and embodiments. The following exemplifies such examples: the multiple wavelengths may be selected from within a light-spectrum wavelength band that is greater than 50 nanometers and less than or equal to 200 nanometers; and the polarization state may be set through polarization tuning of the incident light, and the polarization tuning may include at least one of: adjusting a displacement of the first beamsplitter relative to the second beamsplitter along a plane that is transverse to a direction of the incident light; and changing a grating effect provided by at least one of the first beamsplitter and the second beamsplitter. Further, the first beamsplitter and the second beamsplitter may be constructed to correspond to each other (e.g., oriented in parallel and/or constructed with the same materials), and the particular polarization basis may correspond to at least one set of orthogonal polarizations at equal and opposite angles, appreciating that orthogonal polarizations includes pairs of elliptical or circular polarizations that do not have well defined “angles”. In yet further such examples: at least one of the first and second beamsplitters may be mounted on a stage for travelling in the optical plane orthogonal to the beamline, and as the first and second beamsplitters are displaced relative to each other, the two split beams experience a displacement phase shift; and in a further specific example, at least one of the first beamsplitter and the second beamsplitter includes a waveplate including a grating material wherein the waveplate is characterized by or includes one or more of the following: being movable along at least one linear direction relative another of the at least one of the first beamsplitter and the second beamsplitter; and being rotatable or spinnable relative another of the at least one of the first beamsplitter and the second beamsplitter, and wherein movement of the grating material is to cause the multiple light beams to experience a displacement phase shift.
The above discussion is not intended to describe each aspect, embodiment or every implementation of the present disclosure. The figures and detailed description that follow also exemplify various embodiments.
Various example embodiments, including experimental examples, may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, each in accordance with the present disclosure, in which:
While various embodiments discussed herein are amenable to modifications and alternative forms, aspects thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure including aspects defined in the claims. In addition, the term “example” as used throughout this application is only by way of illustration, and not limitation.
Certain aspects of the present disclosure are believed to be applicable to a variety of different types of apparatuses, systems and methods directed to or involving uses of optical elements for the manipulation of light, for realizing certain polarization outcomes. While the present disclosure is not necessarily limited to such aspects, an understanding of specific examples in the following description may be understood from discussion in such specific contexts including but not limited to the contexts presented in connection with the figures.
Accordingly, in the following description various specific details are set forth to describe specific examples presented herein. It should be apparent to one skilled in the art, however, that one or more other examples and/or variations of these examples may be practiced without all the specific details given below. In other instances, well known features have not been described in detail so as not to obscure the description of the examples herein. For ease of illustration, the same connotation and/or reference numerals may be used in different diagrams to refer to the same elements or additional instances of the same element. Also, although aspects and features may in some cases be described in individual figures, it will be appreciated that features from one figure or embodiment can be combined with features of another figure or embodiment even though the combination is not explicitly shown or explicitly described as a combination. Further, it would be is appreciated that certain aspects presented herein are described in U.S. Provisional Application Ser. No. 63/172,548 filed on Apr. 8, 2021 (STFD.430P1) with Appendices A, B and C, to which priority is claimed (to the extent permitted, such subject matter is incorporated by reference in its entirety) and that one or various combinations of the structures, optical elements and features disclosed in the Appendices may be modified and/or used in combination with the exemplary aspects disclosed herein.
Exemplary aspects of the present disclosure are believed to be applicable to a variety of different types of apparatuses, systems and methods involving manipulation of light, applicable to multiple wavelengths, for realizing a certain polarization state common to each wavelength. In more specific aspects, the multiple wavelengths may refer to individual wavelengths and/or wavelengths across a band. In more specific examples, realizing such polarization state may involve or include certain polarization tuning achieved, for example, using operations that are manual, automated, dynamic, and wherein the common polarization state is applicable across a wide bandwidth (e.g., significantly greater than 50 nanometers). Further, multiple waveplate modules may be arranged in series to provide manipulation of the incident light beam, wherein one of the multiple waveplate module is a tunable waveplate module that includes the first beamsplitter and the second beamsplitter, and at least one other of the multiple waveplate modules has a polarization basis different from the particular polarization basis of the first beamsplitter.
In other specific examples according to the present disclosure, certain embodiments are directed to methods and systems in which optical processing involves polarization manipulation across multiple wavelengths and/or tuning of the polarization state of light across a large bandwidth such as by setting and/or tuning the polarization state of light achromatically and along arbitrary polarization axes.
In connection with more-specific/experimental aspects of the present disclosure, certain embodiments are directed to a method of using an apparatus or to the apparatus, in which two (identical or otherwise) polarizing beamsplitting elements (aka beamsplitters) are arranged parallel and mirrored relative to one another. The first element may be arranged to split the incident light along a chosen arbitrary polarization basis, with orthogonal polarizations deflected at equal and opposite angles. The second element is set up in reverse to recombine and interfere the two split beams. At least one of the beamsplitting elements is mounted and/or aligned on a stage travelling in the optical plane perpendicular to the beamline. As the beamsplitting elements are moved or displaced relative to each other in one (e.g., z-axis) direction, the two split beams (traveling largely along the x-y axis) will experience a displacement phase shift. In some examples, at least one of the waveplates is configured so that such movement can be easily adjusted to provide dynamic polarization tuning of the incident light.
Turning now to the figures,
In other specific examples, such a 4F optical system may be configured to perform filtering in the Fourier plane to affect a light path between the first beamsplitter and the second beamsplitter by blocking undesired diffraction orders: and for obtaining measurements of light in path between the first beamsplitter and the second beamsplitter. In these examples, filtering may be performed in the Fourier plane, including but not limited to blocking the 0th order, blocking higher undesired (2nd and above) diffraction orders, balancing power in the desired diffraction orders (−1st vs+1st), etc. Such filtering may be used for improving the system performance, selectivity, or other metric, or to introduce new functionality.
Alternative example embodiments according to the present disclosure do not involve optical processing between such waveplates, as shown in
The beamsplitter elements may consist of, be based in and/or include gratings of various materials including dielectrics (silicon, glass, polymers), metals (gold, silver), or liquid crystals. These gratings can be designed for a single wavelength or over a wider bandwidth. The overall bandwidth of the system may be directly related to the bandwidth of the individual gratings. The gratings may be designed to operate in a wide range of wavelength regimes, such as ultraviolet, visible, infrared, terahertz and radiofrequencies, and with the system scaled accordingly. Such gratings can rely on geometric phase, propagation phase or other design techniques such as freeform topology optimization.
In various examples and without restriction, the widths of such shaped structures may range from one third of a micron to several microns wide, and any one or a combination of such shapes may be used together with positioning of the shaped structures to effect the desired rotation of the light beam during the splitting and/or combining. This is perhaps shown in
When using gratings as the beamsplitting elements, a relative displacement of Δx between the two gratings leads to a phase difference of Δφ=2nπ/ΔxΛ between the two orthogonal polarization states, where A is the grating period and n is the diffraction order that the polarization state is split into. For an arbitrary waveplate 410,
Alternatively, various combinations of higher diffraction orders and/or the zeroth order may be used in order to adjust the desired sensitivity of the device to displacements. The diffraction need not be symmetric, i.e., the +1 and +2 orders may be used.
As another alternative approach, bulk polarization optics such as Wollaston prisms may be used as the beamsplitting elements. In this type of case, the polarization basis is limited to linear polarizations and the accumulated phase difference is instead dependent on the geometry of the Wollaston prism. Using a similar optics architecture as shown in
As shown in
In yet further example embodiments related to the above aspects, multiple waveplate setups may be mounted in series in order to access fully arbitrary transformations of the Poincare sphere. As one example in this regard, three waveplates in series may be used to provide the necessary degrees of freedom to describe an arbitrary transformation of the Poincare sphere. An example of this type of serialized arrangement is shown in
In this example, two linear waveplate modules 710, 720 and a circular waveplate module 730 are arranged in series. In the example system shown in
An alternative design with the capability for higher polarization modulation rates involves patterning the beamsplitting element continuously in a ring on the edge of a disk. The incident beam passes through the edge of the disk where the grating is patterned. The disk is then spun at high speeds relative to the second fixed element providing ultra-fast polarization modulation. Locally, the edge of the rotating disk may act as an ultra-fast continuous linear displacement, replicating the effect of translation stages without the need for resetting after movement. In this manner, at least one of the first beamsplitter and the second beamsplitter may include a patterned grating to set an optical bandwidth in which the recombined light beam is characterized.
This ultra-fast polarization modulation can be paired with fixed polarizer in order to provide ultra-fast beam chopping. In more specific example embodiments, aspects or embodiments of this disclosure are used in systems and methodology involving or including ellipsometry, spectro-polarimetric imaging and ultra-fast laser polarization optics. Both ellipsometry and spectro-polarimetry use the measurement of the polarization of light at different wavelengths. Since there are no restrictions on the polarization of light that may need to be measured, the ability to access arbitrary polarization basis at different wavelengths may improve the speed at which these instruments can take their measurements.
For ultra-fast laser polarization optics, these short pulses are necessarily comprised of a large bandwidth. Aspects of this disclosure may be used to transform the polarization state of the pulse uniformly across all wavelengths.
Ultra-fast polarization modulation has many applications for low-noise polarimetry applications. A lock-in detector combined with the high-speed capabilities create a system with very low 1/f noise. This approach and/or structure could be used for high-performance sensors in the infrared regime.
In a particular experimental example using the structures and shapes as in
Also in accordance with certain exemplary aspects of the present disclosure,
In connection with the above embodiments and variations thereof, a micro-electrical mechanical system (MEMS) may be used to control the movement and ultimately the related displacement phase shift. Consider a specific example embodiment, also according to the present disclosure, in which the metasurfaces and/or gratings of one or more layers are integrated to include microscaled structures of at least one shape to perform translations of light beam polarization. The MEMS is configured to control movement or set position of at least one of at least one of the first beamsplitter and the second beamsplitter, and thereby provide control over a displacement phase shift to be experienced in the multiple light beams. The MEMS may also be configured to provide self-alignment between the metasurfaces and electrical control over movement of the metasurfaces and/or gratings at microscale levels, for example, dynamically at high or low speeds (in linear, reciprocating or rotating directions) for setting or tuning the polarization state of a light beam across different wavelengths such as spanning a relatively wide bandwidth as discussed hereinabove.
According to these and other examples consistent with aspects of the present disclosure, such apparatuses and/or methods involving fast light modulation may involve optical-imaging shutter systems and/or characterizing (or identifying) certain materials, biological samples, etc. from among a plethora of possibilities.
It is recognized and appreciated that as specific examples, the above-characterized figures and discussion are provided to help illustrate certain aspects (and advantages in some instances) which may be used in the manufacture of such structures and devices. These structures and devices include the exemplary structures and devices described in connection with each of the figures as well as other devices, as each such described embodiment has one or more related aspects which may be modified and/or combined with the other such devices and examples as described hereinabove may also be found in the Appendices of the above-referenced Provisional.
The skilled artisan would also recognize various terminology as used in the present disclosure by way of their plain meaning. As examples, the Specification may describe and/or illustrates aspects useful for implementing the examples by way of various semiconductor materials/circuits which may be illustrated as or using terms such as layer, block, module, element, device, system, unit, controller, and/or other schematic-directed depictions. Such terms describe one or more materials (e.g., layer), circuitry (e.g., as in a controller or imaging system) and one or more optical elements as discussed throughout. For Example, the three waveplate modules shown in
Based upon the above discussion and illustrations, those skilled in the art will readily recognize that various modifications and changes may be made to the various embodiments without strictly following the exemplary embodiments and applications illustrated and described herein. For example, methods as exemplified in the Figures may involve steps carried out in various orders, with one or more aspects of the embodiments herein retained and/or combined with other features, or may involve fewer or more steps. Such modifications do not depart from the true spirit and scope of various aspects of the disclosure, including aspects set forth in the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2022/023267 | 4/4/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63172548 | Apr 2021 | US |