The present invention, in some embodiments thereof, relates to drug delivery systems and, more particularly, but not exclusively, to apparatuses and methods for securing components of a drug delivery system during transport.
International Patent Application Publication No. WO 2011/090956, which is incorporated herein by reference, discloses a cartridge interface assembly characterized by a driving plunger including an outer shaft and a driver including an inner shaft movable telescopically with respect to the outer shaft, wherein rotation of the driver causes the driving plunger to advance in a direction away from the driver, and wherein the cartridge interface assembly is inserted in a cartridge in which a plunger is slidingly disposed, and rotation of the driver causes the driving plunger to advance distally in the cartridge until abutting against the plunger. To solve the problem of possible opening of telescoping shafts during transportation and handling before assembly, with the result that the position which is the desirable position for assembly with the cartridge plunger, is not maintained, a locking assembly is provided. The driver is formed with a recess, bounded by a wall. The proximal end of the body of the cartridge interface assembly is formed with a locking tooth. In the assembly configuration the locking tooth is received in the recess. The locking tooth is formed with a slanted wall. The slanted walls can glide over the edge of the recess. Thus, the locking assembly enables easy assembly of the telescoping shaft assembly with the plunger, and maintains the desired position of the driver. The locking assembly prevents the telescoping shaft assembly from opening during transportation and handling, and ensures a small opening torque during operation.
An aspect of some embodiments of the invention relates to providing resistance to linear motion of an assembly of a drug delivery system to secure the assembly during transport. In some embodiments of the invention, the drug delivery system is a patch injector. In some embodiments of the invention, the assembly is telescoping. In some embodiments of the invention, the assembly is threaded or at least two components of the assembly are operatively connected by threading.
In an exemplary embodiment of the invention, resistance is provided to the telescoping assembly by configuring at least a portion of the telescoping with an annular ring and a corresponding counterpart lip, wherein the annular ring (or a portion of a ring) is forced against the lip to create resistance to motion of the telescoping assembly.
In some embodiments of the invention, the torque required to overcome the resistance between the annular ring and the lip is approximately equal to or less than the torque required to stall the driving motor, but is still greater than the extending threes expected to be encountered by the telescoping assembly during transport. In some embodiments of the invention, the motor is selected based on its ability to supply sufficient torque to overcome the resistance. In some embodiments of the invention, circuitry is provided which allows for the torque applied by the motor to be varied such that a level of torque that is selected is sufficient to overcome the resistance.
In some embodiments of the invention, the annular ring is provided to a pushing nut screw of the telescoping assembly, and the corresponding lip is provided to a cartridge gear of the telescoping assembly. In some embodiments of the invention, the annular ring extends around the outer circumference of the pushing nut screw. In some embodiments of the invention, the annular ring extends only partially around the outer circumference of the pushing nut screw. In an exemplary embodiment of the invention, the lip is configured on the cartridge gear to correspond to the location of the annular ring on the pushing nut screw.
In an embodiment of the invention, the annular ring and/or the lip are made of the same material as the pushing nut screw and/or the cartridge gear, respectively. Optionally, the annular ring and/or lip are constructed of a different material than the pushing nut screw and/or cartridge gear, respectively.
In an embodiment of the invention, the annular ring and lip are located in the telescoping assembly such that they come into contact prior to the telescoping assembly encountering resistance from injecting the fluid of the drug delivery system in which the telescoping assembly is installed.
In some embodiments of the invention, resistance is provided to the telescoping assembly by increasing the friction of at least one of the first few threads, turns or parts of threads/turns of an internal screw of the telescoping assembly. In some embodiments of the invention, at least one of the first few threads is tighter and/or less deep. In some embodiments of the invention, the shape of the internal screw is not perfectly round. Additionally, alternatively and/or optionally, at least one of the first few threads is coated with an adhesive and/or abrasive material or is surface finished, like by, sandblasting, which increases friction
An aspect of some embodiments of the invention relates to a method for using a telescoping assembly including securing it for transport. In an embodiment of the invention, the telescoping assembly is provided (manufactured) with resistance to turning, thereby securing it for transport. Optionally, the telescoping assembly is closed for transport after manufacturing. Optionally, the telescoping assembly is manufactured in the closed, transport configuration. The closed telescoping assembly is placed into a drug delivery system, for example a patch injector. As the drug delivery system is activated, resistance is overcome within the first few twists of an internal screw of the telescoping assembly.
In some embodiments of the invention, resistance is provided by pushing an annular ring against a lip and using the friction between them and/or the force required to deform a portion of an assembly component. In some embodiments of the invention, resistance is provided by increasing the friction against twisting of at least one of the first few threads of a screw of the telescoping assembly. Optionally, the resistance is provided during manufacturing.
In some embodiments, after continued torque applied by a motor of the drug delivery system overcomes this initial and/or temporary resistance, further extension of the telescoping assembly discharges the fluid in a cartridge of the drug delivery system into a patient.
There is provided in accordance with an exemplary embodiment of the invention, an assembly of a drug delivery system, comprising: a first component; a second component which is configured to move linearly with respect to the first component; and, a resistance element configured to resist movement during transport of the first component with respect to the second component at a predetermined relative location between the first and second components but which is adapted to be overcome during nominal operation of the drug delivery system.
In an embodiment of the invention, the first component and the second component are threaded together and linear movement is achieved by rotation of at least one of the first component and the second component.
In an embodiment of the invention, the predetermined relative location is before the linear movement of the second component with respect to the first component effectuates pumping in the drug delivery system.
In an embodiment of the invention, the second component is a pushing element and the first component is a drive element.
In an embodiment of the invention, the resistance element is an annular ring and a counterpart lip.
In an embodiment of the invention, a pushing element is provided with the annular ring and a drive element is provided with the counterpart lip, which when the ring and the lip are forced together create the resistance to extension of the assembly.
In an embodiment of the invention, the first component is an internal screw.
In an embodiment of the invention, at least one of a first few threads of the internal screw are configured with increased friction in relation to the other threads of the internal screw. Optionally, the at least one of a first few threads of the internal screw is provided with increased friction by making a gap between the at least one thread and the next thread tighter. Optionally, the at least one of a first few threads of the internal screw is provided with increased friction by making the at least one thread less deep than the other threads of the internal screw. Optionally, the at least one of a first few threads of the internal screw is provided with increased friction by altering the shape of the screw to increase friction between threads as it turns. Optionally, the at least one of a first few threads is provided with increased friction by coating the thread with at least one of an abrasive material and an adhesive material. Optionally, the first few threads are located on the internal screw such that turning the internal screw through the first few threads do not activate the pressure exerting component of the telescoping assembly.
In an embodiment of the invention, the torque required to overcome the resistance element is equal or less than the nominal operative torque required to stall a driving motor of the drug delivery system.
In an embodiment of the invention, the required torque to overcome the resistance element is varied from 50-300 gr-cm.
In an embodiment of the invention, the resistance element is overcome by deformation of at least a portion of at least one of the first and second components.
In an embodiment of the invention, the deformation is at least one of elastic and plastic deformation.
In an embodiment of the invention, the resistance element includes a sloped contact surface.
There is provided in accordance with an exemplary embodiment of the invention, a method of using an assembly of a drug delivery system, comprising: providing resistance to linear extension of the assembly when the assembly is in a closed configuration; placing the closed assembly into the drug delivery system; activating the drug delivery system; applying torque to overcome the provided resistance; and, extending the assembly to exert pressure on a fluid in a cartridge of the drug delivery system.
In an embodiment of the invention, the method further comprises closing the assembly prior to the placing.
In an embodiment of the invention, providing resistance comprises abutting an annular ring of a pushing element of the assembly with a lip of a drive element of the telescoping assembly to distribute the resistance over a large area.
In an embodiment of the invention, providing resistance is distributed over a plurality of separate portions of an annular ring.
In an embodiment of the invention, providing resistance comprises heightening the friction against turning for at least one of a first few threads of an internal screw of the assembly. Optionally, heightening the friction comprises at least one of narrowing the gap between threads, making the threads less deep and shaping the internal screw irregularly. Optionally, heightening the friction comprises coating the at least one thread with at least one of an abrasive material and an adhesive material.
There is provided in accordance with an exemplary embodiment of the invention, a method of transporting an assembly of a drug delivery system, comprising: manufacturing the assembly to include at least one resistance element adapted to resist vibrations which cause unintentional extension of the assembly but which is overcome by a required torque during nominal operation of the drug delivery system; configuring the assembly for transport; and, transporting the telescoping assembly.
In an embodiment of the invention, the required torque to overcome the resistance element is at least 50 gr-cm.
In an embodiment of the invention, the required torque to overcome the resistance element is at least 100 gr-cm.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example, are not to scale, and are for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
The present invention, in some embodiments thereof, relates to drug delivery systems and, more particularly, but not exclusively, to apparatuses and methods for securing components of a drug delivery system during transport.
Failure to use a delivery device or system, such as an insulin pen or auto-injector, correctly could result in a life or death emergency, or impact a patient's or caregiver s ability to manage a medical condition effectively. For the pharmaceutical manufacturer, such a failure could result in a massive backlash that may cause loss of market share, costly product recalls or worse.
A primary goal of any drug delivery system is to ensure'that a patient receives a proper dose of a prescribed drug. In years past, if a device failed or was used incorrectly, patient or caregiver error was most often the culprit. While providing detailed instructions is important for any pharmaceutical manufacturer, failure to follow directions is no longer a viable excuse when a patient or caregiver is unable to operate a device or delivery system successfully.
Effective drug therapy and treatment often involves more than simply having an effective molecule. Rather, it is the combination of a safe drug within a suitable container and/or delivery system.
Historically, pharmaceutical manufacturers have focused, and rightly so, on the efficacy and safety of the drug product. However, if the drug is to achieve its therapeutic objective, then its primary container and delivery system must be both compatible with the drug and stable over time, as well as foster adherence from the patient. A drug can only truly have the desired patient benefit if it is taken as prescribed, delivered effectively (often by a patient or caregiver), and maintains performance over time
Today's injectable therapies can take many forms. Liquid drugs may use a traditional syringe and vial; a prefilled syringe; or a delivery system such as an auto-injector, pen device or patch injector. Lyophilized drug products (requiring reconstitution with water for injection) may require a kit containing a transfer device, syringe or needle, and containers of the drug and water.
The container format itself also should be considered. Vials may be necessary for initial use, but a syringe or cartridge system may provide the best solution for the patient when the system reaches the market. Once the primary container has been selected, efforts must be made to ensure that it works with the delivery system. Dimensional tolerances and functionality should be tested to ensure proper activation and gliding forces.
Recognizing how the patient or caregiver interacts with the delivery system is essential to ensuring success in the market. Even the most innovative drug can provide the appropriate therapeutic benefit to the patient only if it can be delivered effectively and the patient adheres to the necessary treatment regimen. Patients or caregivers may choose one product over another based on dose frequency, pain associated with dosing, or ease of use or mobility of the delivery system. Simply put, packaging can differentiate a product's market acceptance.
One potential issue associated with patch injectors is movement of the operative parts during transport. For, example, vibrations during transport may cause movements of screws causing a telescoping assembly of the delivery system to extend. As result, when a cartridge containing the unintentionally extended telescoping assembly is inserted by the user, it may be difficult to close the door of the delivery system, for example. Some users may interpret this as a malfunction and elect not use the unit.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the exemplary embodiments. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Referring now to the drawings,
In an embodiment of the invention, telescoping assembly 102 is comprised of at least one component 104, including at least a driving element 106 and a pushing element 108. In an embodiment of the invention, the pushing element is operatively attached to a plunger or stopper in a cartridge 110 of the drug delivery system 100, where the plunger provides a fluid-proof seal against the fluid (e.g. pharmaceutical) in the cartridge 110 and which pumps the, fluid out 112 of the cartridge and into the patient when the telescoping assembly 102 extends and activates/instigates the pushing of the pushing element by using the driving element to push/extend the pushing element. In an embodiment of the invention, the telescoping assembly 102 optionally has a plurality of components 104 which functionally act in concert to effectuate extension of the telescoping assembly. For example, telescoping assembly 102 could be constructed of 2, 3, or 4 or more components, such as rods and/or screws and/or those components described herein.
In an embodiment of the invention, at least one component 104 of the telescoping assembly 102 is provided with a resistance element to substantially prevent or entirely prevent unintended linear extension of the telescoping assembly 102. In some embodiments of the invention, unintentional extension of the telescoping assembly 102 includes extension as a result of vibration of the assembly 102 during transport. In an embodiment of the invention, the resistance element provides resistance to the linear extension of one component of the telescoping assembly 102 with respect to at least one other component of the telescoping assembly 102.
In an embodiment of the invention, the drug delivery system 100 is a patch injector system. Patch injectors are among new technologies for enabling self-administration of large molecule and viscous biologics. Patch injector systems that are tailored to the needs of the end user provide an excellent example of the balance between an effective drug containment system and a user-friendly delivery system. For example, with a patch injector system, the patient can take a large volume injection with just one needle stick, where one might need multiple needle sticks with a standard auto-injector, pen, or syringe. In spite of internal system complexity, patch injector systems can be designed for simplicity and patient comfort, while facilitating the delivery of drug products. In some embodiments of the invention, the telescoping assembly 102 is an operative component of a cartridge of a patch injector system, wherein the disposable and/or interchangeable cartridge contains a pre-measured dose of a drug to be administered to a patient using the drug delivery system.
It should be understood that in order to utilize a smaller, more economical motor, the torque required to screw the telescoping assembly 102 in order to linearly extend and retract it is minimized with low friction threading. This low friction threading allows for easier movement using the motor, but it is also what allows for easy unintended extension of the assembly 102 during transport.
In some exemplary embodiments of the invention, at least a portion of the telescoping assembly 102 is configured to secure the telescoping assembly 102 for transport. The telescoping assembly 102 is configured to secure for transport by providing at least some resistance to unintended extension of the telescoping assembly 102, in an exemplary embodiment of the invention.
In an embodiment of the invention, for at least a first few threads of the internal screw 208, the mid screw 206 and/or pushing nut screw 204 of the telescoping assembly have not yet encountered resistance due to exerting force on the pushing nut cover 210 which is in contact with the fluidized portion of the cartridge. In some embodiments resistance may be delayed until telescoping assembly 102 fills a “gap”. For example a gap 402 may occur between pushing nut screw 104 and pushing nut cover 110 as can be seen in more detail for example in
In some embodiments a “gap” may be behind cartridge gear 202. For example, when telescoping assembly begins to expand the rear end of cartridge gear 202 may be free to move backwards slightly until it fills the gap and is restrained. Movement of pushing nut cover 210 and associated resistance to movement of telescoping assembly 102 may be delayed until cartridge gear 202 fills the gap. Alternatively or additionally there be play in and/or in between elements which delay resistance to expansion of telescoping assembly 102.
In some embodiments of the invention, as the annular ring 404 passes over the lip 502, the cartridge gear 202 expands outward slightly from the longitudinal central axis of the assembly 102. Additionally or alternatively, in an embodiment of the invention, the pushing nut screw 204 deflects inward as the annular ring 404 passes over the lip 502. Additionally or alternatively, in an embodiment of the invention, the ring 404 and/or the lip 502 deform as the annular ring 404 passes over the lip 502. In some embodiments of the invention, the cartridge gear 202 expanding, the pushing nut screw 204 deflecting and/or the ring 404 and/or lip 502 deforming is elastic deformation. Optionally, it is plastic deformation. Optionally, there is a combination of elastic and plastic deformation. In some embodiments of the invention, there is no resistance and/or deformation induced in the telescoping assembly 102 during transport (prior to the annular ring 404 passing over the lip 502) and/or after the annular ring 404 passes over the lip 502 after the telescoping assembly 102 has been activated by the drug delivery system 100. In an embodiment of the invention, resistance and/or deformation occur for the short time that the annular ring 404 passes over the lip 502. In some embodiments of the invention, the ring 404 can pass over the lip 502 in the reverse direction, for example after use of the drug delivery system 100 by the patient. Optionally, a motor of the drug delivery system 100 drives the assembly 102 in reverse. Optionally, the patient or a caregiver manually drives the assembly 102 in reverse.
In some embodiments of the invention, the heights of the annular ring 404 and/or lip 502 are tailored to create a resistance which approximates the force required to push pushing nut screw cover 210 against the fluid in the cartridge. In some embodiments of the invention, the required torque to overcome the resistance provided by the annular ring 404 and the lip 502 is at least 50 gr-cm. Optionally, it is varied from 50-300 gr-cm. Optionally, the torque required is at least 100 gr-cm. Optionally, the torque required is varied from 100-250 gr-cm. The required torque level can be engineered in various ways, including using different materials, changing the diameters/thicknesses of the lip 502 and/or ring 404 and/or by altering the snap interference, in some embodiments of the invention. For example, in some embodiments, the snap interference may be between 0.01 and 1 mm.
In an exemplary embodiment of the invention, annular ring 404 extends around the entire outer circumference of the pushing nut screw 204, thereby spreading resistance over a “large” area. In an embodiment of the invention, by utilizing a substantial portion and/or the entire circumference of the pushing nut screw, partial manufacturing defects in portions of the ring and/or lip can be more easily overcome during nominal operation of the drug delivery system since resistance is spread over a wide area of the ring.
In some embodiments of the invention, the annular ring 404 extends around only a portion of the outer circumference of the pushing nut screw 204, thereby concentrating resistance over a “smaller” area, relative to the “large” embodiment described above. In some embodiments of the invention, a plurality of separate portions, each providing some resistance, form the “ring”. For example, the plurality of separate portions could be individual teeth which provide resistance against a lip or lips or which set into an indentation or indentations. In an embodiment of the invention, the plurality of separate portions resist movement of one component of the telescoping assembly relative to a second component of the telescoping assembly.
In an embodiment of the invention, the lip 502 is located on the cartridge gear 202 to match the ring portion.
In an additional and/or alternative and/or optional embodiment of the invention, telescoping assembly 102 is configured to resist unintended motion during transport by configuring the first few threads of the internal screw 208 in a way that increases friction. For example, the threads may be tighter and/or less deep and/or the shape of the screw 208 may not be perfectly round. As in other embodiments described herein, the higher friction threading (i.e. a resistance element) is found in the first few threads of the internal screw 208 before the mid screw 206 and pushing nut screw 204 are moved into a position to engage the pushing nut cover 210. In an embodiment of the invention, the closed transport configuration of the assembly is a configuration where the internal screw 208 before the mid screw 206 and pushing nut screw 204 have not yet been moved into a position to engage the pushing nut cover 210. This closed, transport configuration is in contrast to a nominal operative configuration, wherein the pushing nut cover 210 is supplied with operative force to advance the plunger in the drug delivery system to effectuate injection of a fluid pharmaceutical. Optionally, the pitch of the threading is varied.
Alternatively and/or additionally and/or optionally, the first few threads of the internal screw 208 are coated with an abrasive and/or adhesive material (i.e. a resistance element) which provides resistance to screwing, thereby securing telescoping assembly 102 for transport.
In an additional and/or alternative and/or optional embodiment of the invention, telescoping assembly 102 is configured to resist unintended motion during transport by providing a recess, a resistance element, in the pushing nut screw 204 which acts as a counterpart to lip 502, whereby when the lip 502 is positioned in the recess, linear movement of the telescoping assembly 102 is substantially or entirely prevented, securing the assembly 102 for transport.
In an additional and/or alternative and/or optional embodiment of the invention, telescoping assembly 102 is configured after manufacturing assembly to resist unintended motion during transport by crimping a portion of the cartridge gear 202 to temporarily impede motion of the pushing nut screw 204 until the motor of the drug delivery system 100 is activated thereby driving the pushing nut screw 204 through the crimp.
In an additional and/or alternative and/or optional embodiment of the invention, telescoping assembly 102 is configured after manufacturing assembly to resist unintended motion during transport by multiple interference elements. For example the resistance elements may include teeth that fit into indentations, for example in as illustrated in
In some embodiments of the invention, the required torque to overcome the resistance provided is at least 50 gr-cm. Optionally, it is varied from 50-300 gr-cm. Optionally, the torque required is at least 100 gr-cm. Optionally, the torque required is varied from 100-250 gr-cm. In an embodiment of the invention, such as any of those described herein, the resistance element provides sufficient resistance to ensure compliance under the ASTM D4169 performance testing of shipping containers and systems standards for combined air and rail transport. In some embodiments of the invention, the resistance element prevents unintended linear extension of the assembly while being subjected to extended vibrations up to 300 Hz. Optionally, extended vibration time is for hours, days or even weeks, for example in the case of cargo shipping overseas. In some embodiments of the invention, the resistance element prevents unintended linear extension of the assembly while being subjected to shocks up to 300 m/s2.
It should be understood that throughout the specification, where it is described that resistance is provided by a resistance element, for example by annular ring 404 and/or lip 502 and/or a recess, higher friction threading, abrasive/adhesive coatings, and/or crimping, the resistance that is provided is sufficient to prevent unintended extension of the telescoping assembly 102 during transport. In addition, it is also conceived that the resistance that is provided approximates the normal force required to inject the fluid in the cartridge into the patient (for example, in some embodiments the torque to overcome the resistance may ranging between 20% and 200% of the normal torque), or at the minimum is sufficient to prevent unintended extension of the telescoping assembly. It should also be understood that the “resistance element” can exist as an integral part of at least one of the components of the telescoping assembly 102 or exists independently of at least one of the components of the telescoping assembly 102. Further, at least one component of the assembly 102 can be configured with a resistance element during manufacturing, during assembly and/or after manufacturing and/or assembly. It should also be understood that various features described with respect to one embodiment of the invention are possibly applicable to other embodiments and that description of a feature with respect to one embodiment does not limit its application to only that embodiment.
Optionally, on one side, teeth 1032 have a vertical wall 1036 (as shown for example in close up view
It is expected that during the life of a patent maturing from this application many relevant motion resisting and/or securing technologies will be developed and the scope of the terms resisting and/or securing is intended to include all such new technologies a priori.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
The term “consisting of” means “including and limited to”.
The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
This application is a Continuation-in-Part of U.S. patent application Ser. No. 12/244,666, filed on Oct. 2, 2008, now U.S. Pat. No. 9,173,997, issued Nov. 3, 2015, which claims priority to U.S. Provisional patent application No. 60/997,459, filed Oct. 2, 2007. This application is also a Continuation-in-Part of U.S. application Ser. No. 13/521,181, filed on Jul. 9, 2012, now U.S. Pat. No. 9,259,532, issued Feb. 16, 2016, which is a 371 of International Patent Application No. PCT/US2011/21605, filed on Jan. 19, 2011, which is a Continuation of U.S. patent application Ser. No. 12/689,250, filed on Jan. 19, 2010, now U.S. Pat. No. 7,967,795, issued Jun. 28, 2011, the disclosures of all of which are incorporated by reference herein. This application is also related to U.S. patent application Ser. No. 13/874,085, filed on Apr. 30, 2013, now U.S. Pat. No. 9,345,836, issued May 24, 2016, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
232432 | Allison | Sep 1880 | A |
1795630 | Wilson | Mar 1931 | A |
2677373 | Barradas | May 1954 | A |
2702547 | Glass | Feb 1955 | A |
2860635 | Wilburn | Nov 1958 | A |
3203269 | Perrine | Aug 1965 | A |
3212685 | Swan | Oct 1965 | A |
3623474 | Heilman et al. | Nov 1971 | A |
3794028 | Mueller et al. | Feb 1974 | A |
3994295 | Wulff | Nov 1976 | A |
4195636 | Behnke | Apr 1980 | A |
4218724 | Kaufman | Aug 1980 | A |
4273122 | Whitney et al. | Jun 1981 | A |
4300554 | Hessberg et al. | Nov 1981 | A |
4403987 | Gottinger | Sep 1983 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4465478 | Sabelman et al. | Aug 1984 | A |
4564054 | Gustavsson | Jan 1986 | A |
4565543 | Bekkering et al. | Jan 1986 | A |
4585439 | Michel | Apr 1986 | A |
4599082 | Grimard | Jul 1986 | A |
4601702 | Hudson | Jul 1986 | A |
4664654 | Strauss | May 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4698055 | Sealfon | Oct 1987 | A |
4735311 | Lowe et al. | Apr 1988 | A |
4810215 | Kaneko | Mar 1989 | A |
4850966 | Grau et al. | Jul 1989 | A |
4867743 | Vaillancourt | Sep 1989 | A |
4886499 | Cirelli et al. | Dec 1989 | A |
4892521 | Laico et al. | Jan 1990 | A |
4919596 | Slate et al. | Apr 1990 | A |
4929241 | Kulli | May 1990 | A |
4950246 | Muller | Aug 1990 | A |
4964866 | Szwarc | Oct 1990 | A |
5051109 | Simon | Sep 1991 | A |
D322671 | Szwarc | Dec 1991 | S |
5109850 | Blanco et al. | May 1992 | A |
5112317 | Michel | May 1992 | A |
5131816 | Brown et al. | Jul 1992 | A |
5190521 | Hubbard et al. | Mar 1993 | A |
5254096 | Rondelet et al. | Oct 1993 | A |
5300045 | Plassche, Jr. | Apr 1994 | A |
5318522 | D'Antonio | Jun 1994 | A |
5342313 | Campbell et al. | Aug 1994 | A |
5348544 | Sweeney et al. | Sep 1994 | A |
5366498 | Brannan et al. | Nov 1994 | A |
5383865 | Michel | Jan 1995 | A |
5478315 | Brothers et al. | Dec 1995 | A |
5482446 | Williamson et al. | Jan 1996 | A |
5496274 | Graves et al. | Mar 1996 | A |
5501665 | Jhuboo et al. | Mar 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5562624 | Righi et al. | Oct 1996 | A |
5562686 | Sauer et al. | Oct 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5616132 | Newman | Apr 1997 | A |
5624400 | Firth et al. | Apr 1997 | A |
5643218 | Lynn et al. | Jul 1997 | A |
5645530 | Boukhny et al. | Jul 1997 | A |
5645955 | Maglica | Jul 1997 | A |
5647853 | Feldmann et al. | Jul 1997 | A |
5658256 | Shields | Aug 1997 | A |
5662678 | Macklin | Sep 1997 | A |
5672160 | Osterlind et al. | Sep 1997 | A |
5690618 | Smith et al. | Nov 1997 | A |
5728075 | Levander | Mar 1998 | A |
D393314 | Meisner et al. | Apr 1998 | S |
5766186 | Faraz et al. | Jun 1998 | A |
5795675 | Maglica | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5810784 | Tamaro | Sep 1998 | A |
5814020 | Gross | Sep 1998 | A |
5836920 | Robertson | Nov 1998 | A |
5848991 | Gross et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5858001 | Tsals | Jan 1999 | A |
5858008 | Capaccio | Jan 1999 | A |
5868710 | Battiato et al. | Feb 1999 | A |
5893842 | Imbert | Apr 1999 | A |
5894015 | Rechtin | Apr 1999 | A |
5926596 | Edwards et al. | Jul 1999 | A |
5931814 | Alex et al. | Aug 1999 | A |
5941850 | Shah et al. | Aug 1999 | A |
5944699 | Barrelle et al. | Aug 1999 | A |
5948392 | Haslwanter et al. | Sep 1999 | A |
5954697 | Srisathapat et al. | Sep 1999 | A |
5957895 | Sage et al. | Sep 1999 | A |
5968011 | Larsen et al. | Oct 1999 | A |
5993423 | Choi | Nov 1999 | A |
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6033245 | Yamkovoy | Mar 2000 | A |
6033377 | Rasmussen et al. | Mar 2000 | A |
6064797 | Crittendon et al. | May 2000 | A |
6074369 | Sage et al. | Jun 2000 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6200289 | Hochman et al. | Mar 2001 | B1 |
6200296 | Dibiasi et al. | Mar 2001 | B1 |
6224569 | Brimhall | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6270481 | Mason et al. | Aug 2001 | B1 |
6277095 | Kriesel et al. | Aug 2001 | B1 |
6277098 | Klitmose et al. | Aug 2001 | B1 |
6277099 | Strowe et al. | Aug 2001 | B1 |
6287283 | Ljunggreen et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6302633 | Poe | Oct 2001 | B1 |
6336729 | Pavelle et al. | Jan 2002 | B1 |
6345968 | Shupe | Feb 2002 | B1 |
6377848 | Garde et al. | Apr 2002 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6423029 | Elsberry | Jul 2002 | B1 |
D465026 | May et al. | Oct 2002 | S |
6458102 | Mann et al. | Oct 2002 | B1 |
6485461 | Mason et al. | Nov 2002 | B1 |
6485465 | Moberg et al. | Nov 2002 | B2 |
6500150 | Gross et al. | Dec 2002 | B1 |
6503231 | Prausnitz et al. | Jan 2003 | B1 |
6511336 | Turek et al. | Jan 2003 | B1 |
6517517 | Farrugia et al. | Feb 2003 | B1 |
D471274 | Diaz et al. | Mar 2003 | S |
D471983 | Hippolyte et al. | Mar 2003 | S |
6558351 | Steil et al. | May 2003 | B1 |
6565541 | Sharp | May 2003 | B2 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6595956 | Gross et al. | Jul 2003 | B1 |
6595960 | West et al. | Jul 2003 | B2 |
6645181 | Lavi et al. | Nov 2003 | B1 |
6652482 | Hochman | Nov 2003 | B2 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6679862 | Diaz et al. | Jan 2004 | B2 |
6689118 | Alchas et al. | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6722916 | Buccinna et al. | Apr 2004 | B2 |
6743211 | Prausnitz et al. | Jun 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6786890 | Preuthun et al. | Sep 2004 | B2 |
6800071 | McConnell et al. | Oct 2004 | B1 |
6805687 | Dextradeur et al. | Oct 2004 | B2 |
6824529 | Gross et al. | Nov 2004 | B2 |
6843782 | Gross et al. | Jan 2005 | B2 |
6854620 | Ramey | Feb 2005 | B2 |
6905298 | Haring | Jun 2005 | B1 |
6908452 | Diaz et al. | Jun 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6997727 | Legrady et al. | Feb 2006 | B1 |
7001360 | Veasey et al. | Feb 2006 | B2 |
7034223 | Fan et al. | Apr 2006 | B2 |
7048715 | Diaz et al. | May 2006 | B2 |
7060054 | Nissels | Jun 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7066909 | Peter et al. | Jun 2006 | B1 |
7097637 | Triplett et al. | Aug 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
D544092 | Lewis | Jun 2007 | S |
7225694 | Said | Jun 2007 | B2 |
7247149 | Beyerlein | Jul 2007 | B2 |
7250037 | Shermer et al. | Jul 2007 | B2 |
7267669 | Staunton et al. | Sep 2007 | B2 |
7291132 | DeRuntz et al. | Nov 2007 | B2 |
7291159 | Schmelzeisen-Redeker et al. | Nov 2007 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7344385 | Chen | Mar 2008 | B2 |
7364570 | Gerondale et al. | Apr 2008 | B2 |
7390314 | Stutz, Jr. et al. | Jun 2008 | B2 |
7407493 | Cane' | Aug 2008 | B2 |
D578210 | Muta et al. | Oct 2008 | S |
7455663 | Bikovsky | Nov 2008 | B2 |
7465290 | Reilly | Dec 2008 | B2 |
7488181 | van Haaster | Feb 2009 | B2 |
7497842 | Diaz et al. | Mar 2009 | B2 |
7501587 | English | Mar 2009 | B2 |
7503786 | Kato et al. | Mar 2009 | B2 |
7530964 | Lavi et al. | May 2009 | B2 |
7540858 | DiBiasi | Jun 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7565208 | Harris et al. | Jul 2009 | B2 |
7569050 | Moberg et al. | Aug 2009 | B2 |
D600341 | Loerwald | Sep 2009 | S |
7585287 | Bresina et al. | Sep 2009 | B2 |
7588559 | Aravena et al. | Sep 2009 | B2 |
7589974 | Grady et al. | Sep 2009 | B2 |
D602155 | Foley et al. | Oct 2009 | S |
D602586 | Foley et al. | Oct 2009 | S |
D604835 | Conley | Nov 2009 | S |
7628770 | Ethelfeld | Dec 2009 | B2 |
7628772 | McConnell et al. | Dec 2009 | B2 |
7628782 | Adair et al. | Dec 2009 | B2 |
7637891 | Wall | Dec 2009 | B2 |
7637899 | Woolston et al. | Dec 2009 | B2 |
7641649 | Moberg et al. | Jan 2010 | B2 |
7660627 | McNichols et al. | Feb 2010 | B2 |
7678079 | Shermer et al. | Mar 2010 | B2 |
7682338 | Griffin | Mar 2010 | B2 |
7686787 | Moberg et al. | Mar 2010 | B2 |
7699829 | Harris et al. | Apr 2010 | B2 |
7699833 | Moberg et al. | Apr 2010 | B2 |
7704088 | Sakamoto | Apr 2010 | B2 |
7704227 | Moberg et al. | Apr 2010 | B2 |
7704229 | Moberg et al. | Apr 2010 | B2 |
7704231 | Pongpairochana et al. | Apr 2010 | B2 |
7708717 | Estes et al. | May 2010 | B2 |
7713238 | Mernoe | May 2010 | B2 |
7713240 | Istoc et al. | May 2010 | B2 |
7717913 | Novak et al. | May 2010 | B2 |
7722574 | Toman et al. | May 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7744589 | Mounce et al. | Jun 2010 | B2 |
7749194 | Edwards et al. | Jul 2010 | B2 |
7776030 | Estes et al. | Aug 2010 | B2 |
7780637 | Jerde et al. | Aug 2010 | B2 |
7789857 | Moberg et al. | Sep 2010 | B2 |
7801599 | Young et al. | Sep 2010 | B2 |
7806868 | De Polo et al. | Oct 2010 | B2 |
7828528 | Estes et al. | Nov 2010 | B2 |
7837659 | Bush, Jr. et al. | Nov 2010 | B2 |
7846132 | Gravesen et al. | Dec 2010 | B2 |
7854723 | Hwang et al. | Dec 2010 | B2 |
7857131 | Vedrine | Dec 2010 | B2 |
7879025 | Jacobson et al. | Feb 2011 | B2 |
7918825 | O'Connor et al. | Apr 2011 | B2 |
7935104 | Yodfat et al. | May 2011 | B2 |
7935105 | Miller et al. | May 2011 | B2 |
7938803 | Mernoe et al. | May 2011 | B2 |
7955305 | Moberg et al. | Jun 2011 | B2 |
7967784 | Pongpairochana et al. | Jun 2011 | B2 |
7967795 | Cabiri | Jun 2011 | B1 |
7981105 | Adair et al. | Jul 2011 | B2 |
7988683 | Adair et al. | Aug 2011 | B2 |
7993300 | Nyholm et al. | Aug 2011 | B2 |
7993301 | Boyd et al. | Aug 2011 | B2 |
7998111 | Moberg et al. | Aug 2011 | B2 |
8021357 | Tanaka et al. | Sep 2011 | B2 |
8025658 | Chong et al. | Sep 2011 | B2 |
8029469 | Ethelfeld | Oct 2011 | B2 |
8034019 | Nair et al. | Oct 2011 | B2 |
8038666 | Triplett et al. | Oct 2011 | B2 |
8057431 | Woehr et al. | Nov 2011 | B2 |
8057436 | Causey et al. | Nov 2011 | B2 |
8062253 | Nielsen et al. | Nov 2011 | B2 |
8066694 | Wagener | Nov 2011 | B2 |
D650079 | Presta et al. | Dec 2011 | S |
D650903 | Kosinski et al. | Dec 2011 | S |
8086306 | Katzman et al. | Dec 2011 | B2 |
D652503 | Cameron et al. | Jan 2012 | S |
8105279 | Mernoe et al. | Jan 2012 | B2 |
8105293 | Pickhard | Jan 2012 | B2 |
8114046 | Covino et al. | Feb 2012 | B2 |
8114064 | Alferness et al. | Feb 2012 | B2 |
8114066 | Naef et al. | Feb 2012 | B2 |
D657462 | Siroky | Apr 2012 | S |
8147446 | Yodfat et al. | Apr 2012 | B2 |
8152764 | Istoc et al. | Apr 2012 | B2 |
8152770 | Reid | Apr 2012 | B2 |
8152779 | Cabiri | Apr 2012 | B2 |
8152793 | Keinanen et al. | Apr 2012 | B2 |
8157693 | Waksmundzki | Apr 2012 | B2 |
8157769 | Cabiri | Apr 2012 | B2 |
8162674 | Cho et al. | Apr 2012 | B2 |
8162923 | Adams et al. | Apr 2012 | B2 |
8167841 | Teisen-Simony et al. | May 2012 | B2 |
8172591 | Wertz | May 2012 | B2 |
8172804 | Bikovsky | May 2012 | B2 |
8177749 | Slate et al. | May 2012 | B2 |
8182462 | Istoc et al. | May 2012 | B2 |
8197444 | Bazargan et al. | Jun 2012 | B1 |
8206351 | Sugimoto et al. | Jun 2012 | B2 |
8221356 | Enggaard et al. | Jul 2012 | B2 |
8267921 | Yodfat et al. | Sep 2012 | B2 |
8287520 | Drew et al. | Oct 2012 | B2 |
8292647 | McGrath et al. | Oct 2012 | B1 |
8308679 | Hanson et al. | Nov 2012 | B2 |
8323250 | Chong et al. | Dec 2012 | B2 |
8372039 | Mernoe et al. | Feb 2013 | B2 |
8373421 | Lindegger et al. | Feb 2013 | B2 |
8409142 | Causey et al. | Apr 2013 | B2 |
8414557 | Istoc et al. | Apr 2013 | B2 |
8425468 | Weston | Apr 2013 | B2 |
8430847 | Mernoe et al. | Apr 2013 | B2 |
8465455 | Cabiri | Jun 2013 | B2 |
8469942 | Kow et al. | Jun 2013 | B2 |
8474332 | Bente, IV et al. | Jul 2013 | B2 |
8475408 | Mernoe et al. | Jul 2013 | B2 |
8479595 | Vazquez et al. | Jul 2013 | B2 |
8495918 | Bazargan et al. | Jul 2013 | B2 |
8496862 | Zelkovich et al. | Jul 2013 | B2 |
8512287 | Cindrich et al. | Aug 2013 | B2 |
8512295 | Evans et al. | Aug 2013 | B2 |
8517987 | Istoc et al. | Aug 2013 | B2 |
8523803 | Favreau | Sep 2013 | B1 |
8556856 | Bazargan et al. | Oct 2013 | B2 |
8562364 | Lin et al. | Oct 2013 | B2 |
8574216 | Istoc et al. | Nov 2013 | B2 |
8603026 | Favreau | Dec 2013 | B2 |
8603027 | Favreau | Dec 2013 | B2 |
8628510 | Bazargan et al. | Jan 2014 | B2 |
8674288 | Hanson et al. | Mar 2014 | B2 |
8679060 | Mernoe et al. | Mar 2014 | B2 |
8690855 | Alderete, Jr. et al. | Apr 2014 | B2 |
8708961 | Field et al. | Apr 2014 | B2 |
8751237 | Kubota | Jun 2014 | B2 |
8753326 | Chong et al. | Jun 2014 | B2 |
8753331 | Murphy | Jun 2014 | B2 |
8764707 | Moberg et al. | Jul 2014 | B2 |
8764723 | Chong et al. | Jul 2014 | B2 |
8771222 | Kanderian, Jr. et al. | Jul 2014 | B2 |
8777896 | Starkweather et al. | Jul 2014 | B2 |
8777924 | Kanderian, Jr. et al. | Jul 2014 | B2 |
8777925 | Patton | Jul 2014 | B2 |
8784369 | Starkweather et al. | Jul 2014 | B2 |
8784370 | Lebel et al. | Jul 2014 | B2 |
8790295 | Sigg et al. | Jul 2014 | B1 |
8795224 | Starkweather et al. | Aug 2014 | B2 |
8795231 | Chong et al. | Aug 2014 | B2 |
8795260 | Drew | Aug 2014 | B2 |
8801668 | Ali et al. | Aug 2014 | B2 |
8801679 | Iio et al. | Aug 2014 | B2 |
8810394 | Kalpin | Aug 2014 | B2 |
8814379 | Griffiths et al. | Aug 2014 | B2 |
8920374 | Bokelman et al. | Dec 2014 | B2 |
8979802 | Woehr | Mar 2015 | B2 |
9061104 | Daniel | Jun 2015 | B2 |
9061110 | Avery et al. | Jun 2015 | B2 |
9089475 | Fangrow | Jul 2015 | B2 |
9089641 | Kavazov | Jul 2015 | B2 |
20010018937 | Nemoto | Sep 2001 | A1 |
20010025168 | Gross et al. | Sep 2001 | A1 |
20010034502 | Moberg et al. | Oct 2001 | A1 |
20010041869 | Causey, III et al. | Nov 2001 | A1 |
20020010423 | Gross et al. | Jan 2002 | A1 |
20020029018 | Jeffrey | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020055711 | Lavi et al. | May 2002 | A1 |
20020065488 | Suzuki et al. | May 2002 | A1 |
20020107487 | Preuthun | Aug 2002 | A1 |
20020123740 | Flaherty et al. | Sep 2002 | A1 |
20020151855 | Douglas et al. | Oct 2002 | A1 |
20020161332 | Ramey | Oct 2002 | A1 |
20020169215 | Meng | Nov 2002 | A1 |
20030009133 | Ramey | Jan 2003 | A1 |
20030014018 | Giambattista et al. | Jan 2003 | A1 |
20030125671 | Aramata et al. | Jul 2003 | A1 |
20030135159 | Daily et al. | Jul 2003 | A1 |
20030160683 | Blomquist | Aug 2003 | A1 |
20030171717 | Farrugia et al. | Sep 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040049160 | Hsieh et al. | Mar 2004 | A1 |
20040049161 | Shearn | Mar 2004 | A1 |
20040082911 | Tiu et al. | Apr 2004 | A1 |
20040092873 | Moberg | May 2004 | A1 |
20040116866 | Gorman et al. | Jun 2004 | A1 |
20040127857 | Shemesh et al. | Jul 2004 | A1 |
20040158172 | Hancock | Aug 2004 | A1 |
20040186419 | Cho | Sep 2004 | A1 |
20040186441 | Graf et al. | Sep 2004 | A1 |
20040210196 | Bush, Jr. et al. | Oct 2004 | A1 |
20040260233 | Garibotto et al. | Dec 2004 | A1 |
20050033234 | Sadowski et al. | Feb 2005 | A1 |
20050038391 | Wittland et al. | Feb 2005 | A1 |
20050065466 | Vedrine | Mar 2005 | A1 |
20050065472 | Cindrich et al. | Mar 2005 | A1 |
20050071487 | Lu et al. | Mar 2005 | A1 |
20050113761 | Faust et al. | May 2005 | A1 |
20050124940 | Martin et al. | Jun 2005 | A1 |
20050159706 | Wilkinson et al. | Jul 2005 | A1 |
20050171476 | Judson et al. | Aug 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050177136 | Miller | Aug 2005 | A1 |
20050197650 | Sugimoto et al. | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050283114 | Bresina et al. | Dec 2005 | A1 |
20060013716 | Nason et al. | Jan 2006 | A1 |
20060030816 | Zubry | Feb 2006 | A1 |
20060095014 | Ethelfeld | May 2006 | A1 |
20060122577 | Poulsen et al. | Jun 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173439 | Thorne et al. | Aug 2006 | A1 |
20060195029 | Shults et al. | Aug 2006 | A1 |
20060211982 | Prestrelski et al. | Sep 2006 | A1 |
20060229569 | Lavi et al. | Oct 2006 | A1 |
20060264889 | Moberg et al. | Nov 2006 | A1 |
20060264890 | Moberg et al. | Nov 2006 | A1 |
20060264894 | Moberg et al. | Nov 2006 | A1 |
20060270987 | Peter | Nov 2006 | A1 |
20060283465 | Nickel et al. | Dec 2006 | A1 |
20060293722 | Slatkine et al. | Dec 2006 | A1 |
20070021733 | Hansen et al. | Jan 2007 | A1 |
20070049865 | Radmer et al. | Mar 2007 | A1 |
20070073228 | Mernoe et al. | Mar 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070167912 | Causey et al. | Jul 2007 | A1 |
20070185449 | Mernoe | Aug 2007 | A1 |
20070197954 | Keenan | Aug 2007 | A1 |
20070197968 | Pongpairochana et al. | Aug 2007 | A1 |
20070203454 | Shermer et al. | Aug 2007 | A1 |
20070233038 | Pruitt et al. | Oct 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20080021439 | Brittingham et al. | Jan 2008 | A1 |
20080033367 | Haury et al. | Feb 2008 | A1 |
20080033369 | Kohlbrenner et al. | Feb 2008 | A1 |
20080033393 | Edwards et al. | Feb 2008 | A1 |
20080051711 | Mounce et al. | Feb 2008 | A1 |
20080051730 | Bikovsky | Feb 2008 | A1 |
20080059133 | Edwards et al. | Mar 2008 | A1 |
20080097381 | Moberg et al. | Apr 2008 | A1 |
20080108951 | Jerde et al. | May 2008 | A1 |
20080140006 | Eskuri et al. | Jun 2008 | A1 |
20080140018 | Enggaard et al. | Jun 2008 | A1 |
20080147004 | Mann et al. | Jun 2008 | A1 |
20080167641 | Hansen et al. | Jul 2008 | A1 |
20080188813 | Miller et al. | Aug 2008 | A1 |
20080208138 | Lim et al. | Aug 2008 | A1 |
20080215006 | Thorkild | Sep 2008 | A1 |
20080215013 | Felix-Faure | Sep 2008 | A1 |
20080215015 | Cindrich et al. | Sep 2008 | A1 |
20080243087 | Enggaard et al. | Oct 2008 | A1 |
20080249473 | Rutti et al. | Oct 2008 | A1 |
20080262436 | Olson | Oct 2008 | A1 |
20080269687 | Chong et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080274630 | Shelton et al. | Nov 2008 | A1 |
20080294143 | Tanaka et al. | Nov 2008 | A1 |
20080306449 | Kristensen et al. | Dec 2008 | A1 |
20080312601 | Cane | Dec 2008 | A1 |
20080319416 | Yodfat et al. | Dec 2008 | A1 |
20090012478 | Weston | Jan 2009 | A1 |
20090041805 | Walker | Feb 2009 | A1 |
20090048347 | Cohen et al. | Feb 2009 | A1 |
20090054750 | Jennewine | Feb 2009 | A1 |
20090069784 | Estes et al. | Mar 2009 | A1 |
20090076453 | Mejlhede et al. | Mar 2009 | A1 |
20090088694 | Carter et al. | Apr 2009 | A1 |
20090088731 | Campbell et al. | Apr 2009 | A1 |
20090093792 | Gross et al. | Apr 2009 | A1 |
20090093793 | Gross et al. | Apr 2009 | A1 |
20090105650 | Wiegel et al. | Apr 2009 | A1 |
20090124977 | Jensen | May 2009 | A1 |
20090143730 | De Polo et al. | Jun 2009 | A1 |
20090143735 | De Polo et al. | Jun 2009 | A1 |
20090149830 | Spector | Jun 2009 | A1 |
20090182277 | Carter | Jul 2009 | A1 |
20090204076 | Liversidge | Aug 2009 | A1 |
20090209896 | Selevan | Aug 2009 | A1 |
20090234319 | Marksteiner | Sep 2009 | A1 |
20090240240 | Hines et al. | Sep 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090259176 | Yairi | Oct 2009 | A1 |
20090281585 | Katzman et al. | Nov 2009 | A1 |
20090299288 | Sie et al. | Dec 2009 | A1 |
20090299290 | Moberg | Dec 2009 | A1 |
20090299397 | Ruan et al. | Dec 2009 | A1 |
20090326459 | Shipway et al. | Dec 2009 | A1 |
20090326509 | Muse et al. | Dec 2009 | A1 |
20100030156 | Beebe et al. | Feb 2010 | A1 |
20100030198 | Beebe et al. | Feb 2010 | A1 |
20100049128 | McKenzie et al. | Feb 2010 | A1 |
20100049144 | McConnell et al. | Feb 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100076382 | Weston | Mar 2010 | A1 |
20100076412 | Rush et al. | Mar 2010 | A1 |
20100094255 | Nycz et al. | Apr 2010 | A1 |
20100100076 | Rush et al. | Apr 2010 | A1 |
20100100077 | Rush et al. | Apr 2010 | A1 |
20100106098 | Atterbury et al. | Apr 2010 | A1 |
20100121314 | Iobbi | May 2010 | A1 |
20100137790 | Yodfat | Jun 2010 | A1 |
20100137831 | Tsals | Jun 2010 | A1 |
20100145303 | Yodfat et al. | Jun 2010 | A1 |
20100145305 | Alon | Jun 2010 | A1 |
20100162548 | Leidig | Jul 2010 | A1 |
20100168607 | Miesel | Jul 2010 | A1 |
20100168683 | Cabiri | Jul 2010 | A1 |
20100198157 | Gyrn et al. | Aug 2010 | A1 |
20100204657 | Yodfat et al. | Aug 2010 | A1 |
20100234767 | Sarstedt | Sep 2010 | A1 |
20100234830 | Straessler et al. | Sep 2010 | A1 |
20100241065 | Moberg et al. | Sep 2010 | A1 |
20100264931 | Lindegger et al. | Oct 2010 | A1 |
20100274112 | Hoss et al. | Oct 2010 | A1 |
20100274192 | Mernoe | Oct 2010 | A1 |
20100280499 | Yodfat et al. | Nov 2010 | A1 |
20100331826 | Field et al. | Dec 2010 | A1 |
20110034900 | Yodfat et al. | Feb 2011 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110054400 | Chong et al. | Mar 2011 | A1 |
20110125056 | Merchant | May 2011 | A1 |
20110160654 | Hanson et al. | Jun 2011 | A1 |
20110160666 | Hanson et al. | Jun 2011 | A1 |
20110160669 | Gyrn et al. | Jun 2011 | A1 |
20110172645 | Moga et al. | Jul 2011 | A1 |
20110172745 | Na et al. | Jul 2011 | A1 |
20110178472 | Cabiri | Jul 2011 | A1 |
20110201998 | Pongpairochana et al. | Aug 2011 | A1 |
20110224616 | Slate et al. | Sep 2011 | A1 |
20110238031 | Adair et al. | Sep 2011 | A1 |
20110245773 | Estes et al. | Oct 2011 | A1 |
20110270160 | Mernoe | Nov 2011 | A1 |
20110282282 | Lorenzen et al. | Nov 2011 | A1 |
20110282296 | Harms et al. | Nov 2011 | A1 |
20110295205 | Kaufmann et al. | Dec 2011 | A1 |
20110313238 | Reichenbach et al. | Dec 2011 | A1 |
20110319861 | Wilk | Dec 2011 | A1 |
20110319919 | Curry et al. | Dec 2011 | A1 |
20120004602 | Hanson et al. | Jan 2012 | A1 |
20120010594 | Holt et al. | Jan 2012 | A1 |
20120022344 | Kube | Jan 2012 | A1 |
20120022499 | Anderson et al. | Jan 2012 | A1 |
20120029431 | Hwang et al. | Feb 2012 | A1 |
20120035546 | Cabiri | Feb 2012 | A1 |
20120041364 | Smith | Feb 2012 | A1 |
20120041414 | Estes et al. | Feb 2012 | A1 |
20120071828 | Tojo et al. | Mar 2012 | A1 |
20120096953 | Bente, IV et al. | Apr 2012 | A1 |
20120096954 | Vazquez et al. | Apr 2012 | A1 |
20120101436 | Bazargan et al. | Apr 2012 | A1 |
20120108933 | Liang et al. | May 2012 | A1 |
20120129362 | Hampo et al. | May 2012 | A1 |
20120160033 | Kow et al. | Jun 2012 | A1 |
20120165733 | Bazargan et al. | Jun 2012 | A1 |
20120165780 | Bazargan et al. | Jun 2012 | A1 |
20120172817 | Bruggemann | Jul 2012 | A1 |
20120226234 | Bazargan et al. | Sep 2012 | A1 |
20120259282 | Alderete, Jr. et al. | Oct 2012 | A1 |
20130012875 | Gross et al. | Jan 2013 | A1 |
20130068319 | Plumptre et al. | Mar 2013 | A1 |
20130085457 | Schiff et al. | Apr 2013 | A1 |
20130089992 | Yang | Apr 2013 | A1 |
20130096509 | Avery et al. | Apr 2013 | A1 |
20130110049 | Cronenberg et al. | May 2013 | A1 |
20130133438 | Kow et al. | May 2013 | A1 |
20130190693 | Ekman et al. | Jul 2013 | A1 |
20130237953 | Kow et al. | Sep 2013 | A1 |
20130245595 | Kow et al. | Sep 2013 | A1 |
20130245596 | Cabiri et al. | Sep 2013 | A1 |
20130253419 | Favreau | Sep 2013 | A1 |
20130253420 | Favreau | Sep 2013 | A1 |
20130253421 | Favreau | Sep 2013 | A1 |
20130296799 | Degtiar et al. | Nov 2013 | A1 |
20130304021 | Cabiri et al. | Nov 2013 | A1 |
20130323699 | Edwards et al. | Dec 2013 | A1 |
20130331791 | Gross et al. | Dec 2013 | A1 |
20130338584 | Mounce et al. | Dec 2013 | A1 |
20140055073 | Favreau | Feb 2014 | A1 |
20140055076 | Favreau | Feb 2014 | A1 |
20140058349 | Bazargan et al. | Feb 2014 | A1 |
20140083517 | Moia et al. | Mar 2014 | A1 |
20140094755 | Bazargan et al. | Apr 2014 | A1 |
20140128807 | Moberg et al. | May 2014 | A1 |
20140128835 | Moberg et al. | May 2014 | A1 |
20140135692 | Alderete, Jr. et al. | May 2014 | A1 |
20140135694 | Moberg et al. | May 2014 | A1 |
20140142499 | Moberg et al. | May 2014 | A1 |
20140148784 | Anderson et al. | May 2014 | A1 |
20140148785 | Moberg et al. | May 2014 | A1 |
20140163522 | Alderete, Jr. et al. | Jun 2014 | A1 |
20140194819 | Maule et al. | Jul 2014 | A1 |
20140194854 | Tsals | Jul 2014 | A1 |
20140207064 | Yavorsky | Jul 2014 | A1 |
20140207065 | Yavorsky | Jul 2014 | A1 |
20140207066 | Yavorsky | Jul 2014 | A1 |
20140213975 | Clemente et al. | Jul 2014 | A1 |
20140236087 | Alderete, Jr. et al. | Aug 2014 | A1 |
20140261758 | Wlodarczyk et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1747683 | Mar 2006 | CN |
1863566 | Nov 2006 | CN |
101090749 | Dec 2007 | CN |
101227943 | Jul 2008 | CN |
101448536 | Jun 2009 | CN |
101522235 | Sep 2009 | CN |
101541362 | Sep 2009 | CN |
201692438 | Jan 2011 | CN |
201941304 | Aug 2011 | CN |
102186733 | Sep 2011 | CN |
102378638 | Mar 2012 | CN |
1064693 | Sep 1959 | DE |
19717107 | Nov 1998 | DE |
0017412 | Oct 1980 | EP |
0222656 | May 1987 | EP |
0401179 | Dec 1990 | EP |
1530979 | May 2005 | EP |
1666080 | Jun 2006 | EP |
2060606 | May 2009 | EP |
2498589 | Sep 2012 | EP |
H07-194701 | Aug 1995 | JP |
H09-505758 | Jun 1997 | JP |
2001-512992 | Aug 2001 | JP |
2002-505601 | Feb 2002 | JP |
2002-507459 | Mar 2002 | JP |
2002-528676 | Sep 2002 | JP |
2003-501157 | Jan 2003 | JP |
2003-527138 | Sep 2003 | JP |
2003-534061 | Nov 2003 | JP |
2004-501721 | Jan 2004 | JP |
2004-512100 | Apr 2004 | JP |
2005-523127 | Aug 2005 | JP |
2005-270629 | Oct 2005 | JP |
2007-509661 | Apr 2007 | JP |
2008-534131 | Aug 2008 | JP |
2008-220961 | Sep 2008 | JP |
2009-502273 | Jan 2009 | JP |
9009202 | Aug 1990 | WO |
9307922 | Apr 1993 | WO |
9407553 | Apr 1994 | WO |
9513838 | May 1995 | WO |
9609083 | Mar 1996 | WO |
9632975 | Oct 1996 | WO |
9700091 | Jan 1997 | WO |
9710012 | Mar 1997 | WO |
9733638 | Sep 1997 | WO |
9857683 | Dec 1998 | WO |
9929151 | Jun 1999 | WO |
9959665 | Nov 1999 | WO |
0025844 | May 2000 | WO |
0187384 | Nov 2001 | WO |
0189607 | Nov 2001 | WO |
0189613 | Nov 2001 | WO |
0202165 | Jan 2002 | WO |
0234315 | May 2002 | WO |
0272182 | Sep 2002 | WO |
03090833 | Nov 2003 | WO |
2004032990 | Apr 2004 | WO |
2004105841 | Dec 2004 | WO |
2005018703 | Mar 2005 | WO |
2005037350 | Apr 2005 | WO |
2005072795 | Aug 2005 | WO |
2006037434 | Apr 2006 | WO |
2006069380 | Jun 2006 | WO |
2006102676 | Sep 2006 | WO |
2006104806 | Oct 2006 | WO |
2007017052 | Feb 2007 | WO |
2007051563 | May 2007 | WO |
2007056504 | May 2007 | WO |
2007073228 | Jun 2007 | WO |
2008001377 | Jan 2008 | WO |
2008014908 | Feb 2008 | WO |
2008057976 | May 2008 | WO |
2008072229 | Jun 2008 | WO |
2008076459 | Jun 2008 | WO |
2008078318 | Jul 2008 | WO |
2009044401 | Apr 2009 | WO |
2009046989 | Apr 2009 | WO |
2009125398 | Oct 2009 | WO |
2009144085 | Dec 2009 | WO |
2010078227 | Jul 2010 | WO |
2010078242 | Jul 2010 | WO |
2010089313 | Aug 2010 | WO |
2011075105 | Jun 2011 | WO |
2011090955 | Jul 2011 | WO |
2011090956 | Jul 2011 | WO |
2011156373 | Dec 2011 | WO |
2012032411 | Mar 2012 | WO |
2012040528 | Mar 2012 | WO |
2012160157 | Nov 2012 | WO |
2014179774 | Nov 2014 | WO |
Entry |
---|
Office Action issued Oct. 9, 2013 in IL Application No. 208634. |
Office Action issued Nov. 5, 2013 in JP Application No. 2010-527595. |
Office Action issued Sep. 29, 2013 in CN Application No. 201080040968.7. |
Office Action issued Nov. 4, 2013 in EP Application No. 11 709 234.6. |
Office Action issued Nov. 5, 2014 in U.S. Appl. No. 13/643,470 by Alon. |
U.S. Appl. No. 14/553,399 by Cabiri, filed Nov. 25, 2014. |
Office Action issued Nov. 2, 2014 in CN Application No. 201180006571.0. |
Office Action issued Nov. 21, 2014 in U.S. Appl. No. 13/472,112 by Cabiri. |
Office Action issued Nov. 21, 2014 in U.S. Appl. No. 13/429,840 by Cabiri. |
Int'l Preliminary Report on Patentability issued Nov. 27, 2014 in Int'l Application No. PCT/US2013/039465. |
Office Action issued Jul. 31, 2015 in U.S. Appl. No. 13/521,181 by Cabiri. |
Office Action issued Aug. 13, 2015 in U.S. Appl. No. 14/553,399 by Cabiri. |
Int'l Preliminary Report on Patentability issued Jul. 16, 2015 in Int'l Application No. PCT/US2013/078040. |
Notice of Allowance issued Aug. 24, 2015 in U.S. Appl. No. 29/479,307 by Norton. |
Extended European Search Report issued Aug. 7, 2014 in EP Application No. 1417477.4. |
Office Action issued Aug. 6, 2014 in EP Application No. 11 707 942.6. |
Office Action issued Sep. 2, 2014 in JP Application No. 2012-550069. |
Office Action issued Sep. 2, 2014 in JP Application No. 2012-550068. |
Office Action issued Aug. 26, 2014 in CN Application No. 201180006567.4. |
Int'l Preliminary Report on Patentability issued Oct. 9, 2014 in Int'l Application No. PCT/US2013/033118. |
Office Action issued Oct. 9, 2014 in U.S. Appl. No. 13/873,335. |
Extended European Search Report issued Mar. 8, 2016 in EP Application No. 14166592.7. |
U.S. Appl. No. 14/593,051 by Gross, filed Jan. 9, 2015. |
U.S. Appl. No. 14/683,193 by Cabiri, filed Apr. 10, 2015. |
Office Action issued Feb. 20, 2015 in U.S. Appl. No. 13/521,181 by Cabiri. |
Office Action issued Feb. 24, 2015 in U.S. Appl. No. 14/258,661 by Cabiri. |
U.S. Appl. No. 14/638,525 by Filman, filed Mar. 4, 2015. |
Extended European Search Report issued Feb. 23, 2015 in EP Application No. 14166596.8. |
Office Action issued Mar. 10, 2015 in U.S. Appl. No. 13/643,470 by Alon. |
Office Action issued Mar. 10, 2015 in U.S. Appl. No. 12/244,666 by Gross. |
Extended European Search Report issued Feb. 23, 2015 in EP Application No. 14166591.9. |
Office Action issued Mar. 10, 2015 in CN Application No. 201180006567.4. |
Office Action issued Mar. 31, 2015 in JP Application No. 2012-550068. |
Daikyo Crystal Zenith® polymer, Manufactured by Daikyo Seiko, Ltd. |
Copaxone® , Manufactured by Teva Pharmaceutical Industries Ltd. |
Int'l Search Report issued May 13, 2009 in Int'l Application No. PCT/IL2008/001312. |
Int'l Preliminary Report on Patentability issued Apr. 7, 2010 in Int'l Application No. PCT/IL2008/001312; Written Opinion. |
Int'l Search Report issued Apr. 26, 2010 in Int'l Application No. PCT/US2009/069552. |
Office Action issued Apr. 5, 2010 in U.S. Appl. No. 12/244,666. |
Office Action issued Sep. 21, 2010 in U.S. Appl. No. 12/244,666. |
Office Action issued Apr. 5, 2010 in U.S. Appl. No. 12/244,688. |
Office Action issued Sep. 2, 2010 in U.S. Appl. No. 12/244,688. |
Office Action issued Sep. 30, 2010 in U.S. Appl. No. 12/689,250. |
Int'l Search Report issued Jan. 12, 2011 in Int'l Application No. PCT/US2010/048556; Written Opinion. |
International Preliminary Report on Patentability issued on Jul. 5, 2011 in International Application No. PCT/US2009/069552; Written Opinion. |
Office Action issued Jul. 13, 2011 in U.S. Appl. No. 12/559,563. |
Int'l Preliminary Report on Patentability issued Sep. 1, 2011 in Int'l Application No. PCT/US2010/048556. |
Office Action issued Sep. 6, 2011 in U.S. Appl. No. 12/345,818. |
Office Action issued Feb. 21, 2012 in U.S. Appl. No. 12/689,249. |
Int'l Search Report issued Jun. 17, 2011 in Int'l Application No. PCT/US2011/021604. |
Int'l Search Report issued Oct. 12, 2011 in Int'l Application No. PCT/US2011/021605. |
Office Action issued Oct. 28, 2011 in U.S. Appl. No. 12/615,828. |
Int'l Search Report issued Sep. 22, 2011 in Int'l Application No. PCT/IL11/00368; Written Opinion. |
U.S. Appl. No. 13/521,181 by Cabiri, filed Jul. 9, 2012. |
U.S. Appl. No. 13/521,167 by Cabiri, filed Jul. 9, 2012. |
Office Action issued May 16, 2012 in U.S. Appl. No. 12/615,828. |
Office Action issued Jul. 2, 2012 in U.S. Appl. No. 13/272,555. |
Office Action issued May 3, 2012 in CN Application No. 200880117084.X. |
U.S. Appl. No. 13/472,112 by Cabiri, filed May 15, 2012. |
U.S. Appl. No. 13/429,840 by Cabiri, filed Mar. 26, 2012. |
Int'l Preliminary Report on Patentability issued Aug. 2, 2012 in Int'l Application No. PCT/US2011/021604. |
U.S. Appl. No. 13/643,470 by Alon, filed Oct. 25, 2012. |
U.S. Appl. No. 13/733,516 by Cabiri, filed Jan. 3, 2013. |
Office Action issued Jan. 8, 2013 in JP Application No. 2010-527595. |
Int'l Preliminary Report on Patentability issued Feb. 7, 2013 in Int'l Application No. PCT/US2011/021604. |
Int'l Preliminary Report on Patentability issued Feb. 7, 2013 in Int'l Application No. PCT/US2011/021605. |
English translation of an Office Action issued Jan. 30, 2013 in CN Application No. 200880117084.X. |
U.S. Appl. No. 13/873,335 by Filman, filed Apr. 30, 2013. |
U.S. Appl. No. 13/892,905 by Cabiri, filed May 13, 2013. |
U.S. Appl. No. 13/874,121 by Degtiar, filed Apr. 30, 2013. |
U.S. Appl. No. 13/874,085 by Cabiri, filed Apr. 30, 2013. |
Int'l Preliminary Report on Patentability issued May 14, 2015 in Int'l Application No. PCT/US2013/065211. |
Office Action issued May 7, 2015 in JP Application No. 2012-550069. |
Office Action issued May 13, 2015 in CN Application No. 201380025566.3. |
U.S. Appl. No. 14/715,791 by Cabiri, filed May 19, 2015. |
U.S. Appl. No. 14/725,009 by Bar-El, filed May 29, 2015. |
Office Action issued May 1, 2015 in U.S. Appl. No. 14/638,525 by Filman. |
Office Action issued Jun. 4, 2015 in U.S. Appl. No. 13/667,739 by Cabiri. |
Office Action issued Jun. 3, 2014 in JP Application No. 2010-527595. |
Office Action issued Jul. 7, 2014 in U.S. Appl. No. 12/244,666 by Gross. |
Int'l Search Report and Written Opinion issued Jul. 31, 2014 in Int'l Application No. PCT/US2014/033598. |
Int'l Search Report and Written Opinion issued Jul. 26, 2013 in Int'l Application No. PCT/US2012/039465. |
Int'l Search Report and Written Opinion issued Aug. 5, 2013 in Int'l Application No. PCT/US2013/033118. |
U.S. Appl. No. 13/964,651 by Gross, filed Aug. 12, 2013. |
Office Action issued Aug. 15, 2013 in CN Application No. 200880117084.X. |
Office Action issued Dec. 17, 2013 in JP Application No. 2012-529808. |
Office Action issued Dec. 10, 2013 in CN Application No. 201180006567.4. |
Office Action issued Jan. 8, 2014 in U.S. Appl. No. 13/521,167 by Cabiri. |
U.S. Appl. No. 29/479,307 by Norton, filed Jan. 14, 2014. |
Partial European Search Report issued Nov. 24, 2015 in EP Application No. 141665921. |
Office Action issued Dec. 1, 2015 in CN Application No. 201410289204.1. |
U.S. Appl. No. 14/193,692 by Gross, filed Feb. 28, 2014. |
Office Action issued Feb. 4, 2014 in EP Application No. 11 707 942.6. |
English translation of an Office Action issued Mar. 5, 2014 in CN Application No. 200880117084.X. |
Int'l Search Report and Written Opinion issued Apr. 3, 2014 in Int'l Application No. PCT/US2013/078040. |
Extended European Search Report issued Mar. 27, 2014 in EP Application No. 14154717.4. |
Office Action issued Feb. 28, 2014 in CN Application No. 201180006571.0. |
U.S. Appl. No. 14/258,661 by Cabiri, filed Apr. 22, 2014. |
Int'l Search Report and Written Opinion issued Jan. 7, 2014 in Int'l Application No. PCT/US2013/065211. |
Office Action issued May 23, 2014 in U.S. Appl. No. 13/472,112 by Cabiri. |
Office Action issued Sep. 9, 2015 in U.S. Appl. No. 13/643,470 by Alon. |
U.S. Appl. No. 14/850,450 by Gross, filed Sep. 10, 2015. |
U.S. Appl. No. 14/861,478 by Cabiri, filed Sep. 22, 2015. |
U.S. Appl. No. 14/880,673 by Cabiri, filed Oct. 12, 2015. |
Office Action issued Sep. 30, 2015 in U.S. Appl. No. 13/667,739 by Cabiri. |
Office Action issued Sep. 18, 2015 in U.S. Appl. No. 13/874,085 by Cabiri. |
Office Action issued Jun. 10, 2016 in U.S. Appl. No. 13/964,651 by Gross. |
Office Action issued May 31, 2016 in U.S. Appl. No. 14/593,051 by Gross. |
Office Action issued Apr. 22, 2016 in CN Application No. 2014102892041. |
Office Action issued May 5, 2015 in CN Application No. 201180006571.0. |
Office Action issued Jun. 2, 2016 in CN Application No. 2014101783189. |
Office Action issued Nov. 10, 2016 in U.S. Appl. No. 13/874,121, by Degtiar. |
Office Action issued Oct. 5, 2016 in U.S. Appl. No. 13/964,651, by Gross. |
Dffice Action issued Dec. 9, 2016 in U.S. Appl. No. 14/593,051, by Gross. |
Search Report issued Oct. 14, 2016 in CN Application No. 2014101783742. |
Office Action issued Oct. 28, 2016 in CN Application No. 2014101783742. |
Office Action issued Jan. 10, 2017 in U.S. Appl. No. 14/193,692, by Gross. |
Number | Date | Country | |
---|---|---|---|
20130245596 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
60997459 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12689250 | Jan 2010 | US |
Child | 13521181 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12244666 | Oct 2008 | US |
Child | 13874017 | US | |
Parent | 13521181 | US | |
Child | 12244666 | US |