Electronic equipment generates a large amount of unwanted heat, and efficiently dissipating or recycling this unwanted heat within data centers is a major concern.
Several methods for managing this unwanted heat can be used. These methods include cooling or removing hot air exhausted from electronic equipment, liquid cooling heat generating components within equipment, and even immersing equipment into liquid coolants.
Each method has its drawbacks. Exhausting hot air from electronic equipment can require that the hot air is removed using some form of heating, ventilation and air conditioning (HVAC) system and replaced with fresh air. Exhausting hot air can alternatively require that the hot air is cooled and recycled within the data center, frequently involving the use of water chillers. This requires additional energy and equipment and introduces multiple points of failure. Liquid cooling meanwhile, while effective, can make maintenance and upgrades complex and introduces a risk of leakage within sensitive environments.
A need therefore exists to remove heat from electronic equipment deployed in data centers in an efficient manner which is low risk and versatile.
Embodiments include rack mountable equipment and a complementary cooling rack enclosure arranged to work together to transmit heat from heat generating components of the rack mountable equipment to the cooling rack enclosure. Heat from the components is transferred to the cooling rack enclosure via a coolable surface disposed in a channel of the cooling rack enclosure. The rack mountable equipment includes a rail adapted to be received by the channel in the cooling rack enclosure. A thermally conductive surface on the rail contacts the coolable surface within the channel and transfers heat from the rack mountable equipment to the cooling rack enclosure. The disclosed enclosure may be backwards compatible with existing equipment, such as standard fan cooled rack mounted equipment. One benefit of this arrangement is that, by using a structural support connection between the rail and channel as the heat transmitting mechanism, the force of gravity may be sufficient to maintain contact between the thermally conductive surface of the installed equipment and a cooled surface of the enclosure.
One exemplary embodiment discloses a rack mountable equipment of a type which can be cooled by installation into a cooling rack enclosure. The equipment comprises a heat generating component and heat transmitter. The equipment further comprises a rail adapted to be received by a channel in an enclosure when the equipment is installed in the enclosure. The equipment further comprises a thermally conductive surface located on the rail, the thermally conductive surface thermally connected via the heat transmitter to the heat generating component.
Another exemplary embodiment discloses a rack enclosure into which rack mounted equipment can be installed. The rack mounted equipment is of a type which can be cooled by installation into a cooling rack enclosure. The rack mounted equipment further comprises a rail comprising a thermally conductive surface. The rack enclosure comprises a channel adapted to receive the rail of the rack mounted equipment when the equipment is installed into the enclosure. The rack enclosure further comprises a coolable surface disposed on a surface of the channel in such a way that the coolable surface is adjacently located to the thermally conductive surface when the equipment is installed into the enclosure.
In another embodiment, a method of cooling rack mounted equipment is disclosed. The method comprises enabling the transmission of heat from a heat-generating component of the rack mounted equipment to a thermally conductive surface. The method further comprises configuring the thermally conductive surface such that it can be urged against a cooled surface of a cooling apparatus by using a magnetic fastener.
In another embodiment, a method of cooling rack mounted equipment is disclosed. The method comprises enabling the transmission of heat from a heat-generating component of the rack mounted equipment to a thermally conductive surface. The method further comprises configuring the thermally conductive surface such that it can be urged against a cooled surface of a cooling apparatus by using a magnetic fastener.
In another embodiment, a method of cooling rack mounted equipment is disclosed. The method comprises positioning a magnetically attractive feature such that a thermally conductive surface can be urged against a cooled surface by a magnetic fastener cooperating with the magnetically attractive feature.
In another embodiment, a cooling apparatus for cooling a thermally conductive surface of rack mountable equipment is disclosed. The cooling apparatus comprises a heat-generating component thermally connected to a thermally conductive surface. The cooling apparatus comprises a coolable surface and a magnetically attractive feature configured such that a magnetic fastener can be used to urge the thermally conductive surface against the cooled surface.
In another embodiment, an apparatus is disclosed. The apparatus comprises a heat-generating component, a heat transmitter, and a thermal connector. The thermal connector comprises a thermally conductive surface. The thermally conductive surface is thermally connected to the heat-generating component by the heat transmitting means. The thermal connector is configured to be urged against a surface by a magnetic fastener.
These and other features, aspects, and advantages of embodiments of the present disclosure will become better understood with regard to the following description, appended claims, and accompanying drawings where:
Embodiments include rack mountable equipment and a complementary cooling rack enclosure arranged to work together to transmit heat from heat generating components of the rack mountable equipment to the cooling rack enclosure. Heat from the components is transferred to the cooling rack enclosure via a coolable surface disposed in a channel of the cooling rack enclosure. The rack mountable equipment includes a rail adapted to be received by the channel in the cooling rack enclosure. A thermally conductive surface on the rail contacts the coolable surface within the channel and transfers heat from the rack mountable equipment to the cooling rack enclosure. The disclosed enclosure may be backwards compatible with existing equipment, such as standard fan cooled rack mounted equipment. One benefit of this arrangement is that, by using a structural support connection between the rail and channel as the heat transmitting mechanism, the force of gravity may be sufficient to maintain contact between the thermally conductive surface of the installed equipment and a cooled surface of the enclosure.
It is intended that the following description and claims should be interpreted in accordance with Webster's Third New International Dictionary, Unabridged unless otherwise indicated.
In the following specification and claims, a “thermal connector” is defined to be an apparatus, article of manufacture or portion of an apparatus or article of manufacture, the purpose of which is to transfer, transmit or communicate heat to a counterpart thermal connector when contacted with or otherwise interacting with the counterpart thermal connector. Examples of thermal connectors are shown in
It is intended that a “thermal connector” as defined above is interpreted to include a surface which is configured, adapted, or otherwise intended to be contacted by another surface for the purpose of communicating heat between the surfaces.
In the following specification and claims, a “heat transmitting means” is intended to encompass heatpipes, vapor chambers, thermosyphons, thermal interface materials, and thermally conductive materials, composites, manufactures and apparatus such as: thermally conductive metals, examples of which include copper, aluminium, beryllium, silver, gold, nickel and alloys thereof; thermally conductive non-metallic materials, examples of which include diamond, carbon fiber, carbon nanotubes, graphene, graphite and combinations thereof; composite materials and manufactures, examples of which include graphite fiber/copper matrix composites and encapsulated graphite systems; and apparatuses such as liquid circulation, heat pumps and heat exchangers. A “heat transmitting means” is further intended to encompass any means presently existing or that is discovered in the future which transmits heat from one place to another.
Apparatuses for cooling shelf-style rack mounted equipment using a thermal connector and magnetic fasteners are disclosed. The apparatus comprises a thermally conductive surface thermally connected to a heat generating component such as a computer processing unit (CPU) via a heat transmitter such as a heatpipe. The thermally conductive surface is configured to be urged against a cooled surface by a magnetic fastener when the equipment is installed.
The recessed surfaces 412 and 414 of the part 420 are configured such that a thermal connector 100, which has apertures 110 a certain distance apart, can be fastened by a magnetic fastening means 600 to the magnetically attractive plates 442 and 444 while maximizing contact with the surface 410. The magnetically attractive plates are fastened to the part 420 by means of an adhesive or other fastening means such as screws. Optionally, the use of a thermal adhesive can improve heat conduction between thermal connectors contacting the magnetically attractive plate and the part 420. Alternatives to the magnetically attractive plates of apparatus 400 include constructing the cooling apparatus entirely from magnetically attractive materials or providing magnetically attractive features positioned only where required to provide fastening points.
The part 420 has a series of channels beneath the surface 410 which are configured such that a liquid coolant can flow beneath and cool any thermal connectors contacted to the surface 410. In this embodiment, the channels are sealed from the outside environment by the lid 430. In some embodiments, configuring the channels such that coolant flows in parallel beneath thermal connectors will allow each thermal connector being cooled to be cooled independently of others.
Other toolless fasteners that may be used in place of magnetic fasteners include, but are not limited to, latches, thumbscrews, and non-screw rotating fasteners which fasten and generate a pulling force along the axis of rotation.
Another apparatus for cooling shelf-style rack mounted equipment is disclosed, the apparatus comprising a thermal connector which is thermally connected to a heat generating component via a heat transmitting means such as a heatpipe. The thermal connector is configured to be received by an aperture in a cooling apparatus when the equipment is installed.
Alternatives to the thermal connector 900 and cooling apparatus described include, but are not limited to, using other profiles for the contacting surfaces or using alternative urging means. One example includes configuring a part of the cooling apparatus such that it can be moved to clamp a thermal connector against a counterpart surface. Another example includes configuring a part of the thermal connector such that it can be moved to urge a surface of the thermal connector against a surface of the counterpart cooling apparatus. Another example includes configuring the cooling apparatus and thermal connector such that the thermal connector comprises one or more heatpipes, which are received by a profiled surface of the cooling apparatus such that each heatpipe can be clamped by a movable part of the cooling apparatus.
The cooled surface 1302 of each aperture 1304 of the enclosure 1300 may be cooled by any cooling means. One example of achieving cooling is to pass a liquid coolant beneath each cooled surface 1302. In this way, heat can be removed from the thermal connectors 900 being urged against the surface 1302 in an efficient manner and transported for later dissipation. This yields the benefit of liquid cooling with a significantly reduced risk of leak, and does not create significant difficulties with respect to maintaining or replacing equipment installed in the enclosure.
In another embodiment, another apparatus for cooling rack mounted equipment is disclosed. The apparatus comprises a pair of rail thermal connectors which are thermally connected to one or more heat generating components via a heat transmitting means, such as a heatpipe. In this embodiment, the rail thermal connectors are configured to be received by an aperture in a cooling apparatus when the equipment is installed, and optionally support some or all of the weight of the equipment.
The above embodiments have a number of advantages. For example, quick and easy installation of equipment into a rack enclosure is enabled, with no complex fittings or fasteners needed during installation. Another advantage of the above embodiments is that an urging force can urge the thermally conductive surface of installed equipment against the cooled surface of the enclosure without inducing stress or strain in the body of the installed equipment. Instead, in many embodiment, the only force against the equipment is maintained as a clamping action operating on the thermal connector while avoiding putting significant stress or strain on the body of the installed equipment.
In addition, by disposing heat exchanging surfaces on both the equipment and the enclosure as disclosed, non-flexible heat transmitting means, e.g. fixed heat pipes, can be used to transmit heat to both sides of the equipment. Additionally, as disclosed in one embodiment above, the force of gravity may be sufficient to maintain contact between the thermally conductive surface of the installed equipment and a cooled surface of the enclosure.
While some of the examples described disclose thermal connectors which are similarly positioned relative to the example computer systems, it is not intended that apparatuses embodying principles of the present disclosure are required to have such positioning. Further, it is not intended that the teachings of the present disclosure are limited to computer systems, a specific form of enclosure, or a specific type of heat-generating component, and it is expected that principles of the present disclosure can be applied to other forms of apparatus.
Although specific embodiments of the disclosure have been shown and described herein, it is to be understood that these embodiments are merely illustrative of the many possible specific arrangements that can be devised in application of the principles of the disclosure. Numerous and varied other arrangements can be devised by those of ordinary skill in the art without departing from the scope and spirit of the disclosure.
The present application claims priority to U.S. Patent Application Ser. No. 61/684,856 filed on Aug. 20, 2012 entitled “Cooling Electronic Equipment in a Rack Enclosure,” which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/001789 | 8/19/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61684856 | Aug 2012 | US |