The present application relates to apparatuses, systems, and methods for inline injection of gases into a flowing liquid, for example injecting nitrogen and/or other gases into coffee.
The following U.S. patents are incorporated herein by reference, in entirety:
U.S. Pat. No. 9,114,368 discloses a batch carbonation apparatus that includes a housing defining a vessel cavity. The housing includes an agitation mechanism. The pressure vessel includes a cap that has a CO2 inlet and a CO2 outlet. The pressure vessel also includes a seal. The pressure vessel is moveable into an out of the vessel cavity. A locking mechanism is provided and is attached to the agitation mechanism to removably lock the cap and seal relative to the pressure vessel. A CO2 source is connected to a plurality of valves where each valve has a differing pressure. A selection toggle is attached to the housing. A control mechanism is coupled to the plurality of valves. A user selects a desired carbonation level using the selection toggle and CO2 is introduced to the pressure vessel at a specified pressure, wherein the agitation mechanism agitates liquid within the pressure vessel forming a carbonated beverage having a selected carbonation level. Also disclosed is a process of forming a carbonated beverage in a batch.
U.S. Pat. No. 9,107,449 discloses a CPU that controls an inlet valve, which connects a tank of pressurized carbon dioxide to a vessel containing the beverage to be carbonized. The tube connecting the tank of pressurized carbon dioxide to the vessel contains an orifice for reducing the carbon dioxide's flow rate, thereby increasing control over the amount of carbon dioxide introduced to the vessel. A motor agitates the vessel, causing the carbon dioxide to become absorbed in the beverage. During the pressurization process, the pressure inside the vessel is monitored by the CPU to determine whether more CO2 should be added to the vessel. An outlet valve causes excess pressure to drain from the vessel. An outlet orifice causes the pressure to release gradually, thus preventing the beverage from foaming.
U.S. Pat. No. 8,882,084 discloses an inline carbonation apparatus that includes a fluid tube having an inner diameter. At least one water orifice is linked to a water source and is attached at one end of the fluid tube. The water orifice atomizes water passing there through. A carbon dioxide source is connected to a carbon dioxide solenoid valve. The carbon dioxide solenoid valve is connected to a carbon dioxide regulator that is coupled to a carbon dioxide orifice and attached to the fluid tube in a spaced relationship from the water orifice. The atomized water has a pressure less than the carbon dioxide such that carbon dioxide is absorbed into the water forming carbonated water having a specified volume of carbonation. The carbon dioxide solenoid valve is opened and closed for a predetermined portion of a drink dispense time providing a volume of carbonated and non-carbonated fluid which upon mixing achieves a desired carbonation level.
U.S. Pat. No. 8,857,797 discloses an inline carbonation apparatus that includes a fluid tube having an inner diameter. At least one water orifice is linked to a water source and is attached to one end of the fluid tube. The water orifice includes a plurality of holes atomizing water that passes there through. A carbon dioxide orifice is linked to a carbon dioxide source and is attached to the fluid tube in a spaced relationship from the water orifice. The atomized water has a pressure less than the carbon dioxide such that carbon dioxide is absorbed into the water forming carbonated water having a specified volume of carbonation.
U.S. Pat. No. 8,840,092 discloses an inline carbonation apparatus that includes a fluid tube having an inner diameter. A water flow control module is connected to a water source. At least one water orifice is linked to the water flow control module and is attached at one end of the fluid tube. The water orifice includes a plurality of holes atomizing water passing there through. A carbon dioxide source is connected to a carbon dioxide valve. The carbon dioxide solenoid valve is connected to a carbon dioxide regulator that is coupled to a carbon dioxide orifice and attached to the fluid tube in a spaced relationship from the water orifice. The atomized water has a pressure less than the carbon dioxide such that carbon dioxide is absorbed into the water forming carbonated water having a specified volume of carbonation. The water control module regulates a water flow rate into the inline carbonation apparatus.
U.S. Pat. No. 5,792,391 discloses a carbonator comprising a tube cylinder having a closed and an open end. A disk is removably retained in the open end for providing access into the interior volume thereof. The disk provides for mounting thereto of water and carbon dioxide gas inlets, a carbonated water outlet, a safety relief valve and a water level sensor. A rigid retaining wire is bent into a square configuration wherein radiused corners thereof cooperate with slots in the open end of the cylinder to retain the disk therein. Manipulation of the retaining wire provides for removal of the disk from the cylinder when the carbonator is not pressurized.
U.S. Pat. No. 5,515,687 discloses an apparatus for providing carbonating of water. The apparatus includes a carbonating tank having a carbon dioxide inlet, a water inlet, and a carbonated water outlet. The carbonating tank is pivotally mounted to a rigid structure and connected to an electric motor for providing an undulating or rocking motion of the carbonator about its pivot mounting. The motion of the carbonating tank provides for carbonating of the water held therein.
U.S. Pat. No. 5,419,461 discloses a narrow profile substantially flat carbonator, consisting of a pair of cold drawn sheet metal halves. Each half defines corresponding alternating seams and ridges and are welded together around a perimeter thereof and along each corresponding seam. When both halves are welded together the ridges define an interior plurality of vertical interior columns, which columns are fluidly interconnected with top and bottom interior channels. The channel includes a pressure relief valve, a carbon dioxide inlet fitting, a water inlet fitting, and a level sensor fitting for retaining a level sensor. A plurality of carbonated water lines extend from the bottom of the carbonator and up along and closely adjacent a side of the carbonator. The carbonated water lines terminate at a point above the carbonator and provide for direct securing to a beverage dispensing valve. The carbonator is preferably of the integral type and held within the water tank of an ice bank type dispenser or within the ice bin of a cold plate cooled dispenser.
U.S. Pat. No. 5,038,976 discloses a beverage dispensing head and a method of dispensing that provides increased carbonation in a dispensed fountain beverage. The dispensing head has a discrete carbonated water decompression chamber in-between an upstream volumetric flow control and a downstream normally closed valve. The method includes the steps of propelling carbonated water through a flow control and then decompressing the carbonated water before it reaches the normally closed valve.
U.S. Pat. No. 4,708,827 discloses a method of and apparatus for making and dispensing carbonated water. A double diaphragm continuous delivery pneumatic liquid pump has a water pressure regulator on a water inlet line to the pump, a water fill line to a carbonator, a propellant exhaust line from the pump to the carbonator, a carbon dioxide line to the carbonator, and a gas pressure regulator for controlling the storage pressure in the carbonator and the exhaust back pressure in the pump propellant outlet. The exhaust back pressure is kept higher than the water pressure at the pump preventing diaphragm inversion.
U.S. Pat. No. 3,617,032 discloses a carbonator or carbonator-blender for producing and storing carbonated water or an admixture of carbonated water and syrup. An open-top bowl is disposed within a cylindrical carbon dioxide-pressurized chamber formed within a pressure tank. A nozzle is provided within the chamber for directing a conical stream of pressurized water into the bowl and another nozzle directs a stream of syrup against the side of the water stream. The bowl is provided with an abutment to produce a swirling action of the water and syrup there within and an aperture is formed in the bottom of the bowl for draining the admixture of water and syrup into the lower portion of the chamber.
This Summary is provided to introduce a selection of concepts that are further described herein in the Detailed Description. This Summary is not intended to identify key or central features from the claimed subject matter, not is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In certain examples, a gas injection device for injecting a gas into a liquid to form a solution includes a flow channel that conveys a liquid from an upstream inlet configured to receive the liquid to a downstream outlet configured to dispense the solution and a sparger having a porous surface positioned in the flow channel. The sparger is configured to inject the gas into the liquid through the porous surface as the liquid flows across the porous surface.
In certain examples, a gas injection system for injecting a gas into a liquid to form a solution includes a flow channel that conveys a liquid from an upstream inlet configured to receive the liquid and a downstream outlet configured to dispense the solution, sparger positioned in the flow channel, a solution pressure detection device configured to sense a pressure of the solution in the flow channel, and a liquid valve configured to regulate flow of the liquid in the flow channel based on the pressure sensed by the solution pressure detection device. The sparger is configured to inject the gas into the liquid through the porous surface as the liquid flows across the surface.
In certain example, a method of injecting a gas into a liquid includes selecting a flow channel that conveys a liquid from an upstream inlet configured to receive the liquid to a downstream outlet configured to dispense the solution; positioning a sparger having a porous surface in the flow channel such that the liquid flows across the porous surface and injects the gas into the liquid through the porous surface; sensing the pressure of the solution in the flow channel with a solution pressure detection device; and regulating the flow of the liquid with a liquid valve based on the pressure sensed by the solution pressure detection device.
Examples of the present disclosure are described with reference to the following drawing FIGURES. The same numbers are used throughout the FIGURES to reference like features and components.
In the present disclosure, certain terms have been used for brevity, clarity and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed. The different apparatuses, systems, and methods described herein may be used alone or in combination with other apparatuses, systems, and methods. Various equivalents, alternatives and modifications are possible within the scope of the appended claims.
The present disclosure is described herein using several definitions, as set forth below and throughout the application. Unless otherwise specified or indicated by context, the terms “a”, “an”, and “the” mean “one or more.” For example, “a compound” should be interpreted to mean “one or more compounds.”
As used herein, “about,” “approximately,” “substantially,” and “significantly” will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which they are used. If there are uses of these terms which are not clear to persons of ordinary skill in the art given the context in which they are used, “about” and “approximately” will mean plus or minus ≤10% of the particular term and “substantially” and “significantly” will mean plus or minus >10% of the particular term.
As used herein, the terms “include” and “including” have the same meaning as the terms “comprise” and “comprising” in that these latter terms are “open” transitional terms that do not limit claims only to the recited elements succeeding these transitional terms. The term “consisting of,” while encompassed by the term “comprising,” should be interpreted as a “closed” transitional term that limits claims only to the recited elements succeeding this transitional term. The term “consisting essentially of,” while encompassed by the term “comprising,” should be interpreted as a “partially closed” transitional term which permits additional elements succeeding this transitional term, but only if those additional elements do not materially affect the basic and novel characteristics of the claim.
Through research and experimentation, the present inventors have endeavored to develop apparatuses, systems, and methods that effectively inject or dissolve gas into a liquid inline. Furthermore, the present inventors have endeavored to develop apparatuses, systems, and methods that provide efficient and repeatable injection or dissolution of a gas into a liquid inline and mixing gas at constant proportions such that a final solution (e.g. coffee injected with nitrogen) has a consistent gas concentration level and a foam head. The inventors have recognized that carbon dioxide gas bonds well with water when chilled, but other forms of gas, such as nitrogen (N2), do not bond as well with water. The inventors have observed that the N2 and other gases almost instantly break out of solution once the pressure head is removed from the solution, and therefore, controlling and repeating dispenses of solutions with gases can be difficult.
Accordingly, the present inventors have invented machines that quickly and effectively inject or dissolve a gas (e.g. nitrogen, CO2) in a liquid, such as coffee. In certain examples, the concentration of the gas in the solution can be efficiently adjusted to various levels based on the preferences of the operator and/or consumer. The machine can include a gas injection device that has a porous member that is pressurized with gas. The gas is pressurized to a slightly higher pressure than the pressure of the liquid passing through the device such that the gas injects or dissolves into the liquid flowing past the porous surface. When the flow of the liquid stops, the pressure of the gas and the pressure of the liquid equalizes such that the gas does not inject into the liquid and the liquid does not enter or clog the gas injection device.
Referring to
Referring to
Referring to
Referring to
The sparger 30 is configured to inject the gas into the liquid through the porous surface 31 as the liquid flows across the porous surface 31. The porous surface 31 is elongated such that the liquid flows tangentially across the porous surface 31 and the gas injects transversely into the liquid. The liquid flows under laminar flow conditions across the porous surface 31. In operation, the liquid flows through the flow channel 22 such that liquid “scrubs” gas in the form of bubbles from the porous surface 31. The non-porous surface 32 is positioned adjacent to and upstream of the porous surface 31. In certain examples, the non-porous surface 32 is positioned upstream of the porous surface 31, and the liquid flows under non-laminar flow conditions across the non-porous surface 32.
Referring to
Referring to
In some examples, the controller 116 may include a computing system that includes a processing system, storage system, software, and input/output (I/O) interfaces for communicating with devices such as those shown in
The storage system (e.g., memory 114) can comprise any storage media readable by the processing system and capable of storing software. The storage system can include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. The storage system can be implemented as a single storage device or across multiple storage devices or sub-systems. The storage system can further include additional elements, such as a controller capable of communicating with the processing system. Non-limiting examples of storage media include random access memory, read only memory, magnetic discs, optical discs, flash memory, virtual memory, and non-virtual memory, magnetic sets, magnetic tape, magnetic disc storage or other magnetic storage devices, or any other medium which can be used to store the desired information and that may be accessed by an instruction execution system. The storage media can be a non-transitory or a transitory storage media.
In one non-limiting example, the controller 116 communicates with one or more components of the system 111 via a communication link 113, which can be a wired or wireless link. The controller 116 is capable of monitoring and controlling one or more operational characteristics of the system 111 and its various subsystems by sending and receiving control signals via the communication link 113. It should be noted that the extent of connections of the communication link 113 shown herein is for schematic purposes only, and in non-limiting examples the communication link 113 can in fact provide communication between the controller 116 and each of the sensors, devices, and various subsystems described herein, although not every connection is shown in the drawing for purposes of clarity.
The system 111 may include several modules. For example, the user interface module 119 may be connected to a remote 120, a control panel, a connection port, and/or the like. In another non-limiting example, a control module 121 such as an internet or network module may connect the dispenser to the internet. The control module 121 may be wireless or wired, and the control module 121 may allow a remote user to control the components of the dispenser. The controller 116 may further relay data to and/or receive data from components of the dispenser such as switches, valves, pumps 134, displays 136, and/or the like.
In certain examples, the solution pressure detection device 40, gas pressure detection device 50, liquid valve 46, and/or gas valve 56 can be electrically coupled to the controller 116 by communication links 113 and controlled by the controller 116. The solution pressure detection device 40 and/or the gas pressure detection device 50 can relay a signal to the controller 116 to indicate when the pressure of the solution or gas, respectively, exceeds a predetermined level. Alternately, the solution pressure detection device 40 and/or the gas pressure detection device 50 can relay a signal to the controller 116 indicative of the pressure of the solution pressure or gas pressure, respectively (e.g. solution pressure is 7.0 PSI; gas pressure is 2.5 PSI). The controller 116 controls the liquid valve 46 and/or the gas valve 56 by opening and closing each valve 46, 56 based on the pressures sensed by the solution pressure detection device 40 and/or the gas pressure detection device 50. In certain examples, the controller 11 maintains the solution at a pressure having a maximum delta of 0.75 to 1.0 PSI. The controller 116 maintains the pressure during dispense of the solution from the tap 9, when the operator cycles the machine 6 on and off, when the operator cycles the tap from an open position to a closed position, if the liquid from the liquid source is running low, and/or when a loss of liquid or gas pressure is sensed. The gas injection machine 6 and/or controller 116 can be configured as a closed-loop system wherein the controller 116 continuously receives signals from the solution pressure detection device 40 and/and the gas pressure detection device 50 and continuously controls the liquid valve 46 and/or the gas valve 56 to maintain the selected pressure of the solution. As the solution is dispensed, the controller 116 determines the amount of backpressure acting on the sparger 30 based on the solution pressure detection device 40 and/or the gas pressure detection device 50 and sends a signal to open or close the gas valve 56 and/or liquid valve 46.
Referring to
Referring to
Referring to
The present disclosure thus provides methods for injecting or dissolving the gas into the liquid to form the solution, including selecting the flow channel 22 that conveys the liquid from the upstream inlet 24 to the downstream outlet 26; positioning the sparger 30 having the porous surface 31 in the flow channel 22 such that the liquid flows across the porous surface 31 and injects the gas into the liquid through the porous surface 31; sensing the pressure of the solution in the flow channel 22 with the solution pressure detection device 40; and regulating the flow of the liquid with the liquid valve 46 based on the liquid pressure sensed by the solution pressure detection device 40. In certain examples, sensing the pressure of the gas in the sparger 30 with the gas pressure detection device 50; regulating the flow of the gas with the gas valve based on the gas pressure sensed by the gas pressure detection device 50; positioning the backpressure device 60 in the flow channel 22 downstream of the sparger 30 such that the backpressure device 60 applies a backpressure on the solution; and/or controlling the liquid valve 46 and the gas valve 56 with the controller 116 that is configured to receive signals from the solution pressure detection device 40 and the gas pressure detection device 50 such that the pressure of the gas is greater than the pressure of the liquid whereby the gas injects into the liquid.
In certain examples, bias relays or bias regulators are included to monitor the pressures in the machine to control components that coupled to or plug into the controller system e.g. as an input pressure is applied to the system, the controller can be programmed to give it an input signal and the pressure output is modified based on the input signal. In certain examples, inclusion of one or more controllers, pressure controls, and/or flow controls increases the consistency of poured solutions was surprisingly repeatable once the machine is properly tuned. In certain examples, controlling, sensing, and/or auto-adjusting the pressure of the gas and/or liquid from the gas and liquid sources increases the consistency of the solution, especially in transitions between static and dynamic flows (e.g. stop-flow to moving-flow) of the solution. In certain examples, the controller is configured to control the pressures of the gas source and/or liquid source.
In certain examples, when the machine is not dispensing the solution, the liquid pressure and the gas pressure are higher than the pressure acting on the solution when a beverage is being dispensed. The higher pressures cause at least one pressure detection device to close at least one valve. In certain examples, the pressure detection devices maintain the gas pressure at a pressure that is higher than the pressure of the liquid when the solution is being dispensed. Maintaining the gas at a pressure that is higher that the pressure of the liquid can prevent the liquid from clogging or backflowing into the sparger.
In certain examples, the valves maintain flow rates and pressures across multiple incoming fluids (e.g. gases, liquids, carbonated beverages, such that multiple fluids mix together in the device. The valves can be set at any selected fluid mixing ratio (e.g. 1:1, 5:1, 30:1).
In certain examples, the dispensing system for injecting a gas flow into a fluid flow to create a solution includes a gas injection device including a porous element. The porous element receives a pressurized gas flow having a slightly higher pressure than the pressure of the fluid flow. The dispensing system includes a restrictor plate configured to apply a backpressure on the injection device, and a controller is configured to a continuously monitor changes in pressures acting on the dispensing system and send signals to the valves.
In certain examples, the gas flow and/or the liquid flow are controlled by modifying pressures in relatively small amounts. The pressures of the gas flow and/or liquid flow can range from 10.0 to 100.0 PSI and are controlled in increments of 0.25 to 0.75 PSI dynamic pressure. Through research and experimentation, the inventors have discovered that the dynamic pressure delta between the gas flow pressure and the liquid flow pressure can range from 0.1 to 3.0 PSI. It was further discovered, that the dynamic pressure delta range of 0.5 to 5.0 PSI was surprisingly effective in producing consistent solution properties. The gas flow and/or the liquid flow may also be subject to a backpressure created between the restrictor plate and/or the sparger. The backpressure created by the restrictor plate is dependent on the pressure for the gas flow and/or liquid flow and therefore can vary (e.g. the backpressure created by the restrictor plate 61 is 25.0 to 30.0 PSI). The present inventors have found that the combination of the applied pressure of the gas flow and/or liquid flow with the backpressure from the restrictor plate surprisingly and advantageously maintains consistent solution pours. Further, the combination maintains the injected gas in the solution downstream of the sparger.
In certain examples, the gas injection device includes a filter for filtering particles from the liquid and/or the gas to prevent clogging of the sparger.
This written description uses examples to disclose the invention, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application is a divisional of U.S. patent application Ser. No. 15/226,450 filed on Aug. 2, 2016, which '450 application claims priority to U.S. Provisional Application No. 62/209,701 filed on Aug. 25, 2015, U.S. Provisional Application No. 62/211,414 filed on Aug. 28, 2015, and U.S. Provisional Application No. 62/241,928 filed on Oct. 15, 2015. All of which are incorporated herein by reference in entirety.
Number | Name | Date | Kind |
---|---|---|---|
1365183 | Moffatt | Jan 1921 | A |
1561036 | Sugden | Nov 1925 | A |
1960640 | Lajeunesse | May 1934 | A |
2006313 | Geddes | Jun 1935 | A |
2170531 | Kahn | Aug 1939 | A |
2209054 | Doud et al. | Jul 1940 | A |
2556038 | Kollsman | Jun 1951 | A |
2620107 | Tolan | Dec 1952 | A |
3084718 | Ash | Apr 1963 | A |
3113871 | Webster | Dec 1963 | A |
3397871 | Hasselberg | Aug 1968 | A |
3399542 | Bracken | Sep 1968 | A |
3417974 | Glynn | Dec 1968 | A |
3545731 | McManus | Dec 1970 | A |
3582351 | Austin et al. | Jun 1971 | A |
3617032 | Tracy | Nov 1971 | A |
3780198 | Pahl et al. | Dec 1973 | A |
3911064 | McWhirter, Jr. et al. | Oct 1975 | A |
4124049 | Yamaguchi | Nov 1978 | A |
4171580 | Vabrinskas | Oct 1979 | A |
4181604 | Onishi et al. | Jan 1980 | A |
4208903 | Hopper et al. | Jun 1980 | A |
4251473 | Gilbey | Feb 1981 | A |
4259360 | Venetucci et al. | Mar 1981 | A |
4268279 | Shindo et al. | May 1981 | A |
4323090 | Magi | Apr 1982 | A |
4364493 | Raynes | Dec 1982 | A |
4466342 | Basile et al. | Aug 1984 | A |
4481986 | Meyers | Nov 1984 | A |
4517135 | Szerenyi et al. | May 1985 | A |
4518541 | Harris | May 1985 | A |
4526298 | Boxer et al. | Jul 1985 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4583969 | Mortensen | Apr 1986 | A |
4610888 | Teng | Sep 1986 | A |
4668219 | Israel | May 1987 | A |
4674958 | Igarashi et al. | Jun 1987 | A |
4681244 | Geddie | Jul 1987 | A |
4708827 | McMillin | Nov 1987 | A |
4709625 | Layre et al. | Dec 1987 | A |
4719056 | Scott | Jan 1988 | A |
4739905 | Nelson | Apr 1988 | A |
4759474 | Regunathan et al. | Jul 1988 | A |
4781889 | Fukasawa et al. | Nov 1988 | A |
4785973 | Kobe | Nov 1988 | A |
4808346 | Strenger | Feb 1989 | A |
4808348 | Rudick et al. | Feb 1989 | A |
4815635 | Porter | Mar 1989 | A |
4818447 | Kiyomoto Tekko et al. | Apr 1989 | A |
4820269 | Riddell | Apr 1989 | A |
4850269 | Hancock et al. | Jul 1989 | A |
4857350 | Kiyomoto Tekko et al. | Aug 1989 | A |
4869396 | Horino et al. | Sep 1989 | A |
4897359 | Oakley et al. | Jan 1990 | A |
4923379 | Tomminen | May 1990 | A |
4927335 | Pensa | May 1990 | A |
4927567 | Rudick | May 1990 | A |
4940212 | Burton | Jul 1990 | A |
4950431 | Rudick et al. | Aug 1990 | A |
4959152 | Nichols | Sep 1990 | A |
4961760 | Caskey et al. | Oct 1990 | A |
4971836 | Fukasawa et al. | Nov 1990 | A |
4976894 | Robinson | Dec 1990 | A |
4999140 | Sutherland et al. | Mar 1991 | A |
5029733 | Hedderick et al. | Jul 1991 | A |
5034164 | Semmens | Jul 1991 | A |
5037610 | Fukasawa et al. | Aug 1991 | A |
5038976 | McMillin | Aug 1991 | A |
5044171 | Farkas | Sep 1991 | A |
5059374 | Krueger et al. | Oct 1991 | A |
5060833 | Edison et al. | Oct 1991 | A |
5062548 | Hedderick et al. | Nov 1991 | A |
5073811 | Botti et al. | Dec 1991 | A |
5104158 | Meyer et al. | Apr 1992 | A |
5118009 | Novitsky | Jun 1992 | A |
5124088 | Stumphauzer | Jun 1992 | A |
5152419 | Yanagi | Oct 1992 | A |
5156871 | Goulet et al. | Oct 1992 | A |
5192513 | Stumphauzer et al. | Mar 1993 | A |
5222308 | Barker et al. | Jun 1993 | A |
5232601 | Chu et al. | Aug 1993 | A |
5254143 | Anazawa et al. | Oct 1993 | A |
5260081 | Stumphauzer et al. | Nov 1993 | A |
5287636 | Lafleur et al. | Feb 1994 | A |
5294338 | Kamo et al. | Mar 1994 | A |
5299715 | Feldman | Apr 1994 | A |
5304130 | Button et al. | Apr 1994 | A |
5306242 | Joyce et al. | Apr 1994 | A |
5353963 | Gorski | Oct 1994 | A |
5358142 | Holmes | Oct 1994 | A |
5366625 | Pedersen et al. | Nov 1994 | A |
5380433 | Etienne et al. | Jan 1995 | A |
5419461 | Goulet | May 1995 | A |
5460846 | Stumphauzer et al. | Oct 1995 | A |
5509349 | Anderson et al. | Apr 1996 | A |
5510194 | Hendricks et al. | Apr 1996 | A |
5515687 | Arriulou | May 1996 | A |
5531254 | Rosenbach | Jul 1996 | A |
5538028 | Lombardo | Jul 1996 | A |
5549037 | Stumphauzer et al. | Aug 1996 | A |
5565149 | Page et al. | Oct 1996 | A |
5588984 | Verini | Dec 1996 | A |
5592867 | Walsh et al. | Jan 1997 | A |
5634571 | Cataneo et al. | Jun 1997 | A |
D384731 | Ramacier, Jr. et al. | Oct 1997 | S |
5674433 | Semmens et al. | Oct 1997 | A |
5779897 | Kalthod et al. | Jul 1998 | A |
5792391 | Vogel et al. | Aug 1998 | A |
5826432 | Ledbetter | Oct 1998 | A |
5882717 | Panesar et al. | Mar 1999 | A |
5980959 | Fruitin | Nov 1999 | A |
6041970 | Vogel | Mar 2000 | A |
6073811 | Costea | Jun 2000 | A |
6082401 | Braun et al. | Jul 2000 | A |
6092811 | Bojarczuk et al. | Jul 2000 | A |
6098849 | McInnes | Aug 2000 | A |
6138995 | Page | Oct 2000 | A |
6155781 | Tsai | Dec 2000 | A |
6167718 | Halimi et al. | Jan 2001 | B1 |
6209855 | Glassford | Apr 2001 | B1 |
6216961 | Utter et al. | Apr 2001 | B1 |
6235641 | Christenson | May 2001 | B1 |
6439549 | Loov | Aug 2002 | B1 |
6481642 | Louis, Jr. et al. | Nov 2002 | B1 |
6530400 | Nelson | Mar 2003 | B2 |
6688019 | Buchweitz | Feb 2004 | B2 |
6719175 | Mackenzie | Apr 2004 | B2 |
6749090 | Bailey | Jun 2004 | B2 |
6755047 | Kreutzmann et al. | Jun 2004 | B2 |
6869081 | Jenco | Mar 2005 | B1 |
7048262 | Cheng | May 2006 | B2 |
7073688 | Choi et al. | Jul 2006 | B2 |
7086431 | D'Antonio et al. | Aug 2006 | B2 |
7104531 | Page | Sep 2006 | B2 |
7114707 | Rona et al. | Oct 2006 | B2 |
7255353 | Caplain et al. | Aug 2007 | B2 |
7267247 | Crunkleton, III et al. | Sep 2007 | B1 |
7361164 | Simpson et al. | Apr 2008 | B2 |
7407154 | Sakakibara | Aug 2008 | B2 |
7487888 | Pierre, Jr. | Feb 2009 | B1 |
7520925 | Sisk et al. | Apr 2009 | B2 |
7533786 | Woolfson et al. | May 2009 | B2 |
7717294 | Bodemann | May 2010 | B2 |
7784651 | Batschied et al. | Aug 2010 | B2 |
7806299 | Wauters | Oct 2010 | B2 |
7815078 | Robinson | Oct 2010 | B2 |
8024870 | Ballentine et al. | Sep 2011 | B1 |
8158001 | Taylor et al. | Apr 2012 | B2 |
8348245 | Fischer | Jan 2013 | B2 |
8356422 | Ballentine et al. | Jan 2013 | B1 |
8438969 | Gold | May 2013 | B2 |
8544688 | Ballentine | Oct 2013 | B2 |
8603805 | Goodwin et al. | Dec 2013 | B2 |
8622249 | Ballentine | Jan 2014 | B1 |
8840092 | Kumar et al. | Sep 2014 | B2 |
8857797 | Kumar et al. | Oct 2014 | B2 |
8882084 | Malagi et al. | Nov 2014 | B2 |
8912684 | Stahlkopf et al. | Dec 2014 | B2 |
8997633 | Bishop et al. | Apr 2015 | B2 |
9107449 | Njaastad et al. | Aug 2015 | B2 |
9114368 | Njaastad et al. | Aug 2015 | B2 |
9339056 | Njaastad | May 2016 | B2 |
9346024 | Page et al. | May 2016 | B2 |
9386782 | Choi et al. | Jul 2016 | B2 |
9497978 | Choi et al. | Nov 2016 | B2 |
9623383 | Kleinrichert | Apr 2017 | B1 |
9718035 | Bandixen et al. | Aug 2017 | B2 |
9801405 | Kleinrichert | Oct 2017 | B2 |
10017373 | Kleinrichert | Jul 2018 | B2 |
10182587 | Lundberg et al. | Jan 2019 | B2 |
20020074369 | Forsman et al. | Jun 2002 | A1 |
20030075573 | Bailey | Apr 2003 | A1 |
20040045980 | Robins | Mar 2004 | A1 |
20040112455 | Nelson | Jun 2004 | A1 |
20040118942 | Courtney | Jun 2004 | A1 |
20040244216 | Poole | Dec 2004 | A1 |
20040262331 | Woolfson et al. | Dec 2004 | A1 |
20050001340 | Page | Jan 2005 | A1 |
20050251090 | Hoskins | Nov 2005 | A1 |
20060016511 | Chantalat | Jan 2006 | A1 |
20060112717 | Walton | Jun 2006 | A1 |
20060163140 | Taylor et al. | Jul 2006 | A1 |
20060270036 | Goodwin | Nov 2006 | A1 |
20070065555 | Soane et al. | Mar 2007 | A1 |
20070090135 | Benham | Apr 2007 | A1 |
20070158371 | Lupfer | Jul 2007 | A1 |
20070261263 | Lee | Nov 2007 | A1 |
20070278145 | Taylor et al. | Dec 2007 | A1 |
20080148959 | Bockbrader | Jun 2008 | A1 |
20080304356 | Zhuang | Dec 2008 | A1 |
20090236361 | Doelman et al. | Sep 2009 | A1 |
20100031826 | Doglioni Majer | Feb 2010 | A1 |
20100065584 | Berger | Mar 2010 | A1 |
20100083843 | Denisart et al. | Apr 2010 | A1 |
20100096040 | Litto | Apr 2010 | A1 |
20100133708 | Fischer | Jun 2010 | A1 |
20100203209 | Fishbein | Aug 2010 | A1 |
20100213223 | Ballentine | Aug 2010 | A1 |
20100218686 | O'Brien et al. | Sep 2010 | A1 |
20110020508 | Santoiemmo | Jan 2011 | A1 |
20110041543 | Tachibana et al. | Feb 2011 | A1 |
20110097466 | Vastardis | Apr 2011 | A1 |
20110113972 | Tatera | May 2011 | A1 |
20110115103 | Tatera | May 2011 | A1 |
20110180565 | Racino et al. | Jul 2011 | A1 |
20110226343 | Novak | Sep 2011 | A1 |
20110300275 | Lackey et al. | Dec 2011 | A1 |
20120098148 | Koslow et al. | Apr 2012 | A1 |
20120177784 | Malagi | Jul 2012 | A1 |
20120292790 | Tatera | Nov 2012 | A1 |
20130106690 | Lim | May 2013 | A1 |
20130196031 | Criezis et al. | Aug 2013 | A1 |
20130270722 | Phillips | Oct 2013 | A1 |
20140099405 | Boarman et al. | Apr 2014 | A1 |
20140113045 | Njaastad et al. | Apr 2014 | A1 |
20140220207 | Page | Aug 2014 | A1 |
20140255574 | Njaastad et al. | Oct 2014 | A1 |
20140302212 | Njaastad | Oct 2014 | A1 |
20150329343 | Kleinrchert | Nov 2015 | A1 |
20160136590 | Campbell | May 2016 | A1 |
20160280528 | Kleinrichert | Sep 2016 | A1 |
20160289617 | Mackenzie et al. | Oct 2016 | A1 |
20170055552 | Giardino et al. | Mar 2017 | A1 |
20170064977 | Bischel | Mar 2017 | A1 |
20170164643 | Lundberg et al. | Jun 2017 | A1 |
20170233235 | Kleinrichert | Aug 2017 | A2 |
20170259219 | Russell | Sep 2017 | A1 |
20170265499 | Hyde et al. | Sep 2017 | A1 |
20170326508 | Bandixen et al. | Nov 2017 | A1 |
20170367376 | Kleinrichert | Dec 2017 | A1 |
20180098658 | Angell et al. | Apr 2018 | A1 |
20180213824 | Schact et al. | Aug 2018 | A1 |
20180282144 | Kleinrichert | Oct 2018 | A1 |
20180362906 | Osborn | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2005959 | Jun 1990 | CA |
1060073 | Apr 1992 | CN |
2134366 | May 1993 | CN |
1197029 | Oct 1998 | CN |
1326380 | Dec 2001 | CN |
1537028 | Oct 2004 | CN |
1856687 | Nov 2006 | CN |
103025644 | Apr 2013 | CN |
2013123868 | Aug 2013 | CN |
103282304 | Sep 2013 | CN |
104039431 | Sep 2014 | CN |
20112974 | Sep 2002 | DE |
602004003627 | Oct 2007 | DE |
102008012486 | Sep 2009 | DE |
102010012175 | Sep 2011 | DE |
132913 | Feb 1988 | EP |
470377 | Feb 1992 | EP |
732142 | Sep 1996 | EP |
745329 | Dec 1996 | EP |
873966 | Oct 1998 | EP |
1092674 | Apr 2001 | EP |
1480906 | Dec 2004 | EP |
1480908 | Dec 2004 | EP |
1662218 | May 2006 | EP |
2070587 | Jun 2009 | EP |
2719450 | Apr 2014 | EP |
2571803 | Mar 2017 | EP |
2684088 | May 1993 | FR |
694918 | Jul 1953 | GB |
2247225 | Feb 1992 | GB |
2333282 | Jul 1999 | GB |
2340415 | Feb 2000 | GB |
2358145 | Jul 2001 | GB |
2496010 | May 2013 | GB |
2526735 | Feb 2015 | GB |
20140035878 | Mar 2014 | KR |
201446197 | Dec 2014 | TW |
9529130 | Nov 1995 | WO |
199529130 | Nov 1995 | WO |
187472 | Nov 2001 | WO |
2003066509 | Aug 2003 | WO |
2009026541 | Feb 2009 | WO |
2009077681 | Jun 2009 | WO |
2009077682 | Jun 2009 | WO |
2011134928 | Nov 2011 | WO |
2012100333 | Aug 2012 | WO |
2012162762 | Dec 2012 | WO |
2014138667 | Sep 2014 | WO |
2014183185 | Nov 2014 | WO |
2015061564 | Apr 2015 | WO |
2015075020 | May 2015 | WO |
2015119204 | Aug 2015 | WO |
2015124590 | Aug 2015 | WO |
2015175244 | Nov 2015 | WO |
2018023713 | Feb 2018 | WO |
2018185581 | Oct 2018 | WO |
Entry |
---|
“Check Valve” Wikipedia Published Apr. 27, 2014; Accessed at https://enwikipedia.org/w/index.php?title=check_valve&oldid=605998354> (year: 2014). |
Fulcher How to Use the Soda Stream Jet YouTube Feb. 11, 2012 [retrieved on Feb. 26, 2014] Retrieved from the Internet: <URL:http:www.youtube.com/watch?v=bf9MVEel5XM> entire video, (8 pages). |
GB Examination Report, GB Application No. 1506574.1, dated Mar. 1, 2017. |
http://mottcorp.com/sites/default/files/sparger_design_guide.pdf. |
International Preliminary Report of Patentability, PCT/US2014/033040, dated Oct. 15, 2015. |
International Preliminary Report on Patentability, PCT/US2013/065763, dated Sep. 25, 2014. |
International Preliminary Report on Patentability, PCT/US2014/022048, dated Feb. 18, 2015. |
International Search Report and Written Opinion PCT/US2016/048119 dated Nov. 16, 2016. |
International Search Report and Written Opinion, PCT/US2017/014665, dated Jun. 6, 2017. |
International Search Report and Written Opinion, PCT/US2017/029052, dated Aug. 21, 2017. |
Si Twist 'N Sparkle Beverage Carbonating System YouTube video [online], isinorthamerica Mar. 23, 2011 [retrieved on Mar. 11, 2014] Retrieved from the Internet: <URL:www.youtube.com/watch?v=ySSXdwTs-cY>, (3 pages). |
ISR and Written Opinion PCT/US2013/065763 dated Mar. 18, 2014. |
ISR and Written Opinion PCT/US2014/022048 dated Jun. 27, 2014. |
ISR and Written Opinion PCT/US2014/033040 dated Aug. 27, 2014. |
ISR and Written Opinion, PCT/US2014/040509, dated Oct. 1, 2014. |
Kycon, Inc., KLDPX-0207-x-DC Power Jack, Panel Mount drawing, Jan. 18, 2008. |
Mabuchi Motor Co. Ltd., RS-385SH-Motor Mounting drawing. |
Perlini Carbonated Cocktail System YouTube video [online] Perlage Systems Jan. 11, 2010 [retrieved on Mar. 11, 2014] Retrieved from the Internet: <URL:www.youtube.com/watch?v=fhle9b4mjC4&feature=relmfu>, (3 pages). |
Rubesin, MW et al., The Effect of Fluid Injection on the Compressible Turbulent Boundary Layer: Preliminary Tests on Transpiration Cooling of a Flat Plate at M=2.7 with Air as the Injected Gas, National Advisory Committee for Aeronautics, 1995. |
Sodastream webpage [online], [retrieved on Oct. 8, 2012] Retrieved from the internet: <URL:www.sodastream.com/fizz/>, (1 page). |
Sodastream, Video Demo [online], [retrieved on Mar. 11, 2014] Retrieved from the Internet: <URL:www.sodastreamusa.com/PopUps/VideoDemo.html>, (1 page). |
Number | Date | Country | |
---|---|---|---|
20200390127 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62209701 | Aug 2015 | US | |
62211414 | Aug 2015 | US | |
62241928 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15226450 | Aug 2016 | US |
Child | 16995367 | US |